1九年级二轮复习材料专题--实数

合集下载

九年级数学知识点归纳总结实数

九年级数学知识点归纳总结实数

九年级数学知识点归纳总结实数在九年级数学学习中,实数是一个非常重要的知识点。

实数是数学中的基本概念,对于理解和应用其他数学知识都起到了至关重要的作用。

本文将对九年级数学中与实数相关的知识进行归纳总结,帮助同学们更好地理解和掌握实数的性质和运算规则。

一、实数的基本性质实数是包含有理数和无理数的数集。

有理数是可以表示为两个整数的比值的数,可以是整数、分数或有限小数,而无理数则是不能表示为有理数的数。

实数具有以下几个基本性质:1. 实数可以按照大小进行比较。

对于任意两个实数a和b,有且只有以下三种情况之一:a>b,a=b或者a<b。

2. 实数具有传递性,即如果a>b,b>c,那么a>c。

3. 实数满足加法和乘法的封闭性,即两个实数的和或积仍然是一个实数。

二、实数的运算规则实数的运算规则包括加法、减法、乘法和除法。

以下是实数运算的几个重要规则:1. 加法和乘法满足交换律和结合律。

即对于任意实数a、b和c,有a+b=b+a,a*b=b*a,(a+b)+c=a+(b+c)和(a*b)*c=a*(b*c)。

2. 加法和乘法满足分配律。

即对于任意实数a、b和c,有a*(b+c)=a*b+a*c。

3. 减法可以视为加法的逆运算。

即a-b=a+(-b),其中- b表示b的相反数。

4. 除法可以视为乘法的逆运算。

即a÷b=a*(1/b),其中1/b表示b的倒数,即 b的倒数是 1/b。

三、实数的分类实数可以进一步分类为有理数和无理数。

有理数包含整数、分数和有限小数,可以写成一个分数的形式。

而无理数则包含所有不能写成分数形式的实数,它们的小数部分是无限不循环的。

四、实数的近似表示由于无理数的小数部分是无限不循环的,无法精确表示出来,因此我们通常使用近似值来表示无理数。

对于根号2这样的无理数,我们可以使用2的近似值1.414来表示。

五、实数的应用实数在数学以及其他学科中有着广泛的应用。

中考总复习:实数--知识讲解(基础)

中考总复习:实数--知识讲解(基础)

中考总复习:实数—知识讲解 (基础)【知识网络】【考点梳理】考点一、实数的分类1.按定义分类:⎧⎧⎫⎧⎫⎪⎪⎪⎬⎪⎪⎨⎪⎭⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数自然数整数零有理数有限小数或无限循环小数负整数实数正分数分数负分数正无理数无理数无限不循环小数负无理数 2.按性质符号分类:⎧⎧⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎪⎪⎨⎪⎧⎧⎪⎨⎪⎪⎨⎩⎪⎪⎪⎩⎩正整数正有理数正实数正分数正无理数实数零负整数负有理数负实数负分数负无理数 有理数:整数和分数统称为有理数或者“形如n m (m ,n 是整数n ≠0)”的数叫有理数. 无理数:无限不循环小数叫无理数.实数:有理数和无理数统称为实数.要点诠释:常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;(3…都是一些开方开不尽的数;(4)三角函数型:sin35°、tan27°、cos29°等.考点二、实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0;(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数;(3)互为相反数的两个数之和等于0.a 、b 互为相反数⇔a+b=0.2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0. 可用式子表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a (2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a 是实数,则|a|≥0.要点诠释: 若,a a =则0a ≥;-,a a =则0a ≤;-a b 表示的几何意义就是在数轴上表示数a 与数b 的点之间的距离.3.倒数(1)实数(0)a a ≠的倒数是a1;0没有倒数; (2)乘积是1的两个数互为倒数.a 、b 互为倒数1a b ⇔⋅=.4.平方根(1)如果一个数的平方等于a ,这个数就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a (a ≥0)的平方根记作a ±.(2)一个正数a 的正的平方根,叫做a 的算术平方根.a (a ≥0)的算术平方根记作a .5.立方根如果x 3=a ,那么x 叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;0的立方根仍是0.考点三、实数与数轴规定了原点、正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数. 要点诠释:(1)数轴的三要素:原点、正方向和单位长度.(2)实数和数轴上的点是一一对应的.考点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,正数大于一切负数;两个负数;绝对值大的反而小.3.对于实数a 、b , 若a-b>0⇔a>b ;a-b=0⇔a=b ;a-b<0⇔a<b.4.对于实数a ,b ,c ,若a>b ,b>c ,则a>c.5.无理数的比较大小:利用平方转化为有理数:如果a>b>0, a 2>b 2⇔a>b b a >⇔; 或利用倒数转化:如比较417-与154-.要点诠释:实数大小的比较方法:(1)直接比较法:正数都大于0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小.(2)数轴法:在数轴上,右边的数总比左边的数大.考点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.满足运算律:加法的交换律a+b=b+a ,加法的结合律(a+b)+c=a+(b+c).2.减法减去一个数等于加上这个数的相反数.3.乘法两数相乘,同号得正,异号得负,并把绝对值相乘.几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.乘法运算的运算律:(1)乘法交换律ab=ba ;(2)乘法结合律(ab)c=a(bc);(3)乘法对加法的分配律a(b+c)=ab+ac .4.除法(1)除以一个数,等于乘上这个数的倒数.(2)两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)求n 个相同因数的积的运算叫做乘方,a n 所表示的意义是n 个a 相乘.正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数011(0)(0).p p a a aa a-==≠,≠ 要点诠释:加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.考点六、有效数字和科学记数法一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.精确度的形式有两种:(1)精确到哪一位;(2)保留几个有效数字.把一个数用±a ×10n (其中1≤<10,n 为整数)的形式记数的方法叫科学记数法.要点诠释: (1)当要表示的数的绝对值大于1时,用科学记数法写成a ×10n ,其中1≤a <10,n 为正整数,其值等于原数中整数部分的数位减去1;(2)当要表示的数的绝对值小于1时,用科学记数法写成a ×10n ,其中1≤a <10,n 为负整数,其值等于原数中第一个非零数字前面所用零的个数的相反数(包括小数点前面的零).【典型例题】 类型一、实数的有关概念1.(1)a 的相反数是15-,则a 的倒数是_______.(2)实数a 、b 在数轴上对应点的位置如图所示: 则化简2()a b +=______.0a b(3)(泉州市)去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约____________.【答案】(1)5 ; (2)-a-b ; (3)1.02×107亩.【解析】(1)注意相反数和倒数概念的区别,互为相反数的两个数只有性质符号不同,互为倒数的两个数要改变分子分母的位置;或者利用互为相反数的两个数之和等于0,互为倒数的两个数乘积等于1来计算.(2)此题考查绝对值的几何意义,绝对值和二次根式的化简.注意要去掉绝对值符号,要判别绝对值内的数的性质符号.由图知:20 0 |||| 0 ()||().a b a b a b a b a b a b a b ><<∴+<+=+=-+=--,,,,(3)考查科学记数法的概念.【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解.举一反三:【变式】据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为( )A .8.55×106B .8.55×107C .8.55×108D .8.55×109【答案】C.类型二、实数的分类与计算2.下列实数227、sin60°、3π、()02、3.14159、-9、()27--、8中无理数有( )个A .1B .2C .3D .4【答案】C.【解析】无理数有sin60°、3π、8. 【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.举一反三:【变式】在,30cos ,2π,)23(,4,8,14.30 --,45tan ,712,1010010001.0 ,51-13.0%,3 中,哪些是有理数? 哪些是无理数?【答案】03.14,4,(32),-,45tan ,712,51-13.0%,3 都是有理数; π8,,cos30,2-0.1010010001,都是无理数. 3.计算:+|2﹣3|﹣()﹣1﹣(2015+)0. 【答案与解析】解:原式=2+3﹣2﹣3﹣1=﹣1.【点评】该题是实数的混合运算,包括绝对值,0指数幂、负整数指数幂等.只要准确把握各自的意义,就能正确的进行运算.举一反三:【变式1】计算:计算:|﹣1|+20120﹣(﹣)﹣1﹣3tan30°.【答案】解:原式=﹣1+1﹣(﹣3)﹣3×=+3﹣=3. 【变式2】计算:12004200320022001+⨯⨯⨯【答案】设n=2001,则原式=1)3)(2)(1(++++n n n n1)23)(3(22++++=n n n n (把n 2+3n 看作一个整体)=1)3(2)3(222++++n n n n=n 2+3n+1=n(n+3)+1=2001×2004+1=4010005. 类型三、实数大小的比较4.比较下列每组数的大小:(1)417-与154- (2)a 与a 1(a ≠0) 【答案与解析】(11740174=>+,4150415=>+,174+与415+1744150>+>, 174415-<-(2)当a<-1或O<a<1时,a<a1; 当-1<a<0或a>1时,a>a1; 【点评】(1)有时无理数比较大小,通过平方转化以后也无法进行比较,那么我们可以利用倒数关系比较;(2)这道题实际上是互为倒数的两个数之间的比较大小,我们可以利用数轴进行比较,我们知道,0没有倒数,±1的倒数等于它本身,这样数轴就被这3个数分成了4部分,下面就可以分类讨论每种情况.我们还可以利用函数图象来解决这个问题,把a1的值看成是关于a 的反比例函数,把a 的值看成是关于a 的正比例函数,在坐标系中画出它们的图象,可以很直观的比较出它们的大小.举一反三:【变式】比较下列每组数的大小: (1)817-和511- (2)52+和23+【答案】(1)将其通分,转化成同分母分数比较大小, 1785840= ,1188540=, 171185<, 所以171185->-. (2)()2257210740+=+=+,()232743748+=+=+,因为4048<,所以2532+<+.类型四、平方根的应用5.已知:x ,y 是实数,234690x y y ++-+=,若axy-3x=y ,则实数a 的值是_______.【答案】14. 【解析】234690x y y ++-+=,即234(3)0x y ++-=两个非负数相加和为0,则这两个非负数必定同时为0,∴340x +=,(y-3)2=0, ∴ x=43-, y=3 又∵axy-3x=y , ∴ a=43()33134433x y xy ⨯-++==-⨯. 【点评】此题考查的是非负数的性质.类型五、实数运算中的规律探索6.细心观察图形,认真分析各式,然后解答问题21222312,213,214,2SSS+==+==+==1A2AA(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出S12+ S22+ S32+…+ S102的值.【答案与解析】(1)由题意可知,图形满足勾股定理,()2,112nSnn n=+=+(2)因为OA1=1,OA2=2,OA3=3…,所以OA10=10(3)S12+ S22+ S32+…+ S102=2222)210()23()22()21(++++=)10321(41++++=455.【点评】近几年各地的中考题中越来越多的出现了一类探究问题规律的题目,这些问题素材的选择、文字的表述、题型的设计不仅考察了数学的基础知识,基本技能,更重点考察了创新意识和能力,还考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力.举一反三:【变式】图中是一幅“苹果图”,第一行有1个苹果,第二行有2个,第三行有4个,•第四行有8个,……你是否发现苹果的排列规律?猜猜看,第十行有______个苹果.【答案】29(512).。

初三数学总复习(实数)

初三数学总复习(实数)

初三数学总复习数与式 实数(一)知识梳理 一.实数的有关概念 1、实数分类⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎨⎩⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩正整数整数零负整数有理数实数正分数分数负分数无理数-无限不循环小数------(有限小数和无限循环小数) 注意:无理数有三种类型:(1)、π或者含π的式子;(2)、含有根号且开不尽方的数。

如:等;(3)、无限不循环的小数。

如:2.121121112.。

、3.141141114。

等。

实数还可以分为:正实数、零、负实数;有理数还可以分为:正有理数、零、负有理数。

解题中需考虑数的取值范围时,常常用到这种分类方法。

特别要注意0是自然数。

2、数轴数轴的三要素:原点、正方向和单位长度。

实数与数轴上的点是一一对应的,这种一一对应关系是数学中把数和形结合起来的重要基础。

在数轴上表示的两个数,右边的数总比左边的数大。

3、绝对值 绝对值的代数意义:绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离。

数a 的绝对值记着┃a ┃。

4、相反数、倒数只有符号不同的两个数叫做互为相反数【若a+b=0,则a 与b 互为相反数】;数a 的相反数记为-a 【这是求一个数的相反数的方法。

求一个数或式的相反数就是在这个数或式的前面填上一个负号】。

数a (a ≠0)的倒数记为1a。

【这是求倒数的方法,若一个数是小数,求它的倒数时先将这个小数化为分数再求倒数】,若ab =1,则a 与b 互为倒数。

相反数以及倒数都是成对出现的,零的相反数是零,零没有倒数。

5、非负数2a a 、、(a ≥0)形式的数都表示非负数。

||()()()a a a a a a =>=-<⎧⎨⎪⎩⎪0000②非负数的性质:几个非负数的和(积)仍是非负数;几个非负数的和等于零,则必定每个非负数都同时为零。

6、负整数指数幂、零指数幂:1(0)p p a a a-=≠;01(0)a a =≠。

7、实数大小的比较:两个实数比较大小:正数大于零和一切负数;零大于一切负数;两个负数,绝对值大的数较小。

中考数学复习重要知识点专项总结—实数

中考数学复习重要知识点专项总结—实数

中考数学复习重要知识点专项总结—实数实数是所有有理数和无理数的集合,用R表示。

实数的性质如下:1.实数的四则运算:实数的加法、减法、乘法和除法满足交换律、结合律和分配律。

2.实数的拓展性质:实数集是一个有序集,对实数a和b,有a<b、a=b或a>b。

3.实数的稠密性:对任意两个实数a和b(a<b),必存在一个有理数或无理数c,使得a<c<b。

4.实数的绝对值:对于实数a,其绝对值表示为,a,定义为a的非负实数。

5.实数的整除性:对于实数a和b,若a能整除b,则称a是b的因数,b是a的倍数。

6.实数的质数和合数:对于大于1的整数,若除了1和它本身外没有其他因数,则称为质数;若有其他因数,则称为合数。

7.实数的再排列:对于实数a、b和c,若有a<b<c,则称a、b和c具有从小到大的次序。

8.实数的大小比较:对于实数a和b,可以比较其大小关系,如a<b、a>b或a=b。

9.实数的绝对值不等式:对于实数a和b,若,a,<b,则-a<b<a;若,a,=b,则-a=b=a。

10.实数的代数式化简:对于实数的代数式,可以进行运算和化简,如多项式和分式等。

11.实数的连续性:实数集是连续的,任意两个实数之间必存在一个实数。

12.实数的小数化:对于实数,可以用小数表示,如有限小数和无限循环小数等。

13.实数的有理数和无理数:实数可以分为有理数和无理数两类。

有理数是可以表示为整数的比值,无理数是不能表示为整数的比值。

14.实数的逼近性:对于无理数,可以用有理数来逼近它们,无理数具有无限不循环小数的特点。

15.实数的运算律:实数的运算满足结合律、分配律、交换律和对称律等性质。

以上就是中考数学复习中实数的一些重要知识点的总结。

通过理解和掌握这些知识点,可以提高对实数的理解和应用能力,为解决数学问题打下坚实的基础。

九年级数学知识点归纳总结实数

九年级数学知识点归纳总结实数

九年级数学知识点归纳总结实数实数是数学中一个重要的概念,它包含了有理数和无理数。

在九年级数学中,我们学习了很多与实数相关的知识点。

本文将对这些知识点进行归纳总结,以帮助同学们更好地理解和掌握实数概念。

一、实数的分类实数可以分为有理数和无理数两大类。

有理数是可以用两个整数的比表示的数,包括正整数、负整数、零以及正、负分数等。

无理数是不能表示成两个整数的比的数,如π、√2等。

二、实数的表示实数可以用小数、分数和百分数表示。

小数是将数用十进制形式表示,可以是有限位数的小数,也可以是无限循环小数。

分数是用分子和分母表示的数,分子分母都是整数且分母不为零。

百分数是百分数与百分号(%)组成的数,表示百分之几。

三、实数的运算1. 实数的加法和减法:实数的加法是满足交换律、结合律和对加法逆元素的封闭性。

减法可以看作加法的逆运算。

2. 实数的乘法和除法:实数的乘法是满足交换律、结合律和对乘法逆元素的封闭性。

除法可以看作乘法的逆运算。

3. 实数的乘方和开方:实数的乘方是将实数连乘若干次的运算,记作an。

实数的开方是指找到一个数的平方等于该数的运算。

四、实数的性质1. 实数大小比较:实数可以通过大小比较运算符进行大小比较,如大于(>)、小于(<)、大于等于(≥)和小于等于(≤)。

2. 实数的相反数和绝对值:实数a的相反数是-b,满足a + (-b) = 0。

实数的绝对值表示数与0之间的距离,用|a|表示,如果a≥0,则|a|=a;如果a<0,则|a|=-a。

3. 实数的数轴表示:实数可以用数轴上的点来表示,其中0代表原点,正数向右延伸,负数向左延伸。

4. 实数的有序性:实数在数轴上是有序排列的,即可以通过大小比较来确定其顺序关系。

五、实数的应用实数在日常生活和实际问题中有广泛的应用:1. 金融领域:利率、股票价格、汇率等都是实数,它们的增长和变动可以通过实数的运算和比较来计算和预测。

2. 科学研究:物理学中的物理量、化学中的化学反应速率、生物学中的物种丰富度等都与实数密切相关。

九年级实数知识点总结

九年级实数知识点总结

九年级实数知识点总结在九年级的数学学习中,实数是一个重要的概念。

实数可表示整数、分数、小数和无理数等数值,它是由有理数和无理数组成。

本文将从整数、分数、小数和无理数等几个方面总结九年级实数的相关知识点。

一、整数整数是最基础的实数。

整数包括正整数、负整数和0。

其中,正整数用正号表示,负整数用负号表示,0表示没有偏向的整数。

在九年级学习中,我们学习了整数的加法、减法、乘法和除法运算法则,以及整数的绝对值和相反数概念。

1.1 整数的加法和减法整数的加法遵循相同符号相加、不同符号相减的原则。

例如,正整数与正整数相加,结果仍为正整数;负整数与负整数相加,结果仍为负整数。

而不同符号的整数相减,则是将相减改为相加,符号由绝对值大的数决定。

1.2 整数的乘法和除法整数的乘法规则为同号得正,异号得负。

即两个整数同为正或同为负时相乘的结果为正,异号相乘则为负。

整数的除法遵循同号得正,异号得负的原则,除法运算可能产生循环小数或无限不循环小数。

1.3 整数的绝对值和相反数整数的绝对值是指去掉符号的值,例如-5的绝对值是5,5的绝对值也是5。

而整数的相反数是指与原数值绝对值相等,但符号相反的数。

例如,-5的相反数是5,5的相反数是-5。

二、分数分数是表示部分与整体之间关系的数,由分子和分母组成,分子表示部分的数量,分母表示整体的数量。

在九年级中,我们学习了分数的加减乘除运算,以及分数的化简和比较大小等概念。

2.1 分数的加法和减法分数的加法和减法需要先找到相同的分母,然后对分子进行相应运算。

若分母相同,则直接对分子进行加减运算;若分母不同,则需要通过通分的方式转换为相同分母后再进行加减运算。

2.2 分数的乘法和除法分数的乘法是将两个分数的分子相乘得到新的分子,分母相乘得到新的分母。

分数的除法是将一个分数的分子乘以另一个分数的倒数作为新分数的新分子,分母也相应运算。

2.3 分数的化简和比较大小分数的化简是将分子和分母的公约数约去到最简形式。

中考总复习专题:实数

中考总复习专题:实数

中考总复习专题:实数中考总复习:实数专题一、知识回顾实数是一种数的类型,包括有理数和无理数。

有理数包括整数和分数,无理数则是不能表示为分数的数,如π(3.1415926……)等。

实数的概念和基本性质是进行数学运算和解决数学问题的基础。

二、重点难点1、重点:掌握实数的概念和基本性质,包括有理数和无理数的分类,理解实数与数轴上的点的对应关系。

2、难点:正确运用实数的运算法则进行计算,理解实数的大小比较规则,能够利用数轴解决相关问题。

三、运算法则1、加法:实数的加法遵循交换律和结合律,即a+b=b+a,(a+b)+c=a+(b+c)。

2、减法:实数的减法遵循反交换律,即a-b=-(b-a)。

3、乘法:实数的乘法遵循结合律和分配律,即(ab)c=acbc,(a+b)c=ac+bc。

4、除法:实数的除法遵循倒数的性质,即a/b=b/a。

四、应用举例1、求解实际问题的数值:例如求解一个矩形的面积或者周长,需要运用到实数的加减乘除等运算法则。

2、解决几何问题:例如在三角形、正方形等几何图形中,常常需要使用到勾股定理等知识点,从而涉及到实数的计算。

3、自然科学中的应用:例如在物理、化学等自然科学中,实数经常被用来表示物体的长度、质量等物理量。

五、复习建议1、强化基础知识:对于实数的基础知识,需要反复巩固和理解,例如实数的定义、性质、运算法则等。

2、练习实际应用:通过解决实际问题,加深对实数的理解和运用,提高解决实际问题的能力。

3、注重思路方法:在解决实数问题时,要注重思路和方法,善于总结规律,避免死记硬背。

4、查漏补缺:在复习过程中,要注意发现自己的薄弱环节,及时进行查漏补缺。

六、结语实数是数学中的一个重要概念,对于数学学习和实际应用都具有重要意义。

在中考总复习中,要全面系统地复习实数的相关知识,掌握实数的概念、性质、运算法则等,提高解决实际问题的能力。

要注意发现自己的不足之处,及时进行巩固和强化,为未来的数学学习和实际应用打下坚实的基础。

初三数学复习实数基础知识梳理

初三数学复习实数基础知识梳理

初三数学复习实数基础知识梳理实数是数学中最基本也是最广泛应用的概念之一,它包括了整数、分数和无理数,是数轴上所有点的集合。

实数的研究是数学中的一个重要分支,也是数学教育中的重点内容之一。

在初三数学的学习过程中,掌握实数的基础知识是非常重要的。

本文将对初三数学复习实数基础知识进行梳理和总结。

一、自然数、整数和有理数的定义实数的基础是自然数、整数和有理数。

自然数是指从1开始的正整数,用符号N表示。

整数是全体自然数、0和它们的相反数的集合,用符号Z表示。

有理数是可以表示为两个整数的比例的数,包括整数和分数,用符号Q表示。

在数轴上,自然数、整数和有理数都可以找到对应的位置,自然数位于数轴的右侧,整数包括自然数,位于数轴上的0点,而有理数则覆盖了整个数轴。

二、无理数的定义与性质无理数是指不能表示为两个整数的比例的数,它的小数部分是无限不循环的。

无理数包括了开方不尽的根号数和圆周率π等。

无理数是实数的一个重要组成部分,也是数学中一个重要的研究对象。

当我们用小数形式表示无理数时,大多数情况下是近似值,无理数的近似值可以用有理数的无限循环小数来表示。

三、实数的运算法则实数的运算包括加法、减法、乘法和除法。

下面将具体梳理实数的运算法则。

1. 加法与减法实数的加法和减法法则与整数的运算法则相同。

同号相加,异号相减。

即正数加正数仍为正数,负数加负数仍为负数;正数减负数等于正数加正数,负数减正数等于负数加负数。

2. 乘法与除法实数的乘法与除法法则也与整数的运算法则相同。

同号相乘,异号相除。

即正数乘正数仍为正数,负数乘负数仍为正数;正数除以正数为正数,负数除以负数为正数。

需要注意的是,当除数为0时,任何数除以0的结果是无定义的。

四、实数的大小比较实数的大小可以通过大小比较符号进行比较。

常见的大小比较符号有大于号(>)、小于号(<)、大于等于号(≥)、小于等于号(≤)和等于号(=)。

通过数轴可以很直观地判断实数的大小关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级二轮专题复习材料
专题一:实数
【近3年临沂市中考试题】
1.(20114•临沂,T1,3分)-3的相反数是
(A )3.
(B )-3.
(C )1.
(D )1-.
2.(2014•临沂,T2,3分)根据世界贸易组织(W T O )秘书处初步统计数据,2013年中国货物进出口总额为4 160 000 000 000美元,超过美国成为世界第一货物贸易大国.将这个数据用科学记数法可以记为
(A )124.1610⨯美元. (B )134.1610⨯美元.
(C )120.41610⨯美元. (D )1041610⨯美元.
3.(2012•临沂,T2,3分)太阳的半径大约是696000千米,用科学记数法可表示为( ) A .696×103千米 B .69.6×104千米 C .6.96×105千米 D .6.96×106千米
4. (2013•临沂,T1,3分) -2的绝对值是 (A )2.(B )2-. (C )
12 (D )-12
5. (2013•临沂,T2,3分)拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学计数法表示为
(A)11
0.510⨯ 千克 (B)95010⨯ 千克 (C)9510⨯ 千克 (D) 10
510⨯千克 6.(2012临沂)读一读:式子“1+2+3+4+···+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为
100
1
n n =∑,这里“∑”是求和符号通
过对以上材料的阅读,计算()
2012
11
1n n n =+∑=__________.
【知识点】
实数的概念及分类;实数的倒数、相反数和绝对值;实数大小的比较;实数的运算; 平方根、算数平方根和立方根;科学记数法、近似数. 【规律方法】
1.在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1
等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3
π
+8等; (3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数,如sin60o 等 2.实数大小比较的几种常用方法
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a 、b 是实数,
,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0
(3)求商比较法:设a 、b 是两正实数,
1;a a a
b b
b ⇔=1⇔a=b ;1a a b b

(4)绝对值比较法:设a 、b 是两负实数,则a b a b ⇔。

(5)平方法:设a 、b 是两负实数,则2
2a b a
b ⇔。

【中考集锦】
一、选择题
1. (2014•济宁)实数1,-1,-
2
1
,0,四个数中,最小的数是 A.0 B.1 C .- 1 D.-2
1 2. (2014•东营)的平方根是( )
A .±3
B . 3
C . ±9
D . 9
3. (2014•青岛)-7的绝对值( )
A. -7
B.7 C .-17 D. 1
7
4. (2013•德州) 下列计算正确的是( ) A .2
1
()
93
-= B 2=- C .0(2)1-=- D .532--=
5.(2013•广州)四个数-5,-0.1,1
2,3中为无理数的是( ).
A. -5
B. -0.1
C. 1

D. 3
6.(2013•菏泽)定义一种运算☆,其规则为a ☆b =1a +1
b
,根据这个规则,计算2☆3的值是 A .
56
B .
15
C .5
D .6
7. (2013•云南曲靖)实数,a b 在数轴上的位置如图所示,下列各式成立的是( )
1
–1
a
b
A .
0a
b
< B .0a b -> C .0ab >
D .0a b +>
二、填空题
1. (2014•日照)南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法可表示为 .
2. (2013•钦州)比较大小:﹣1 2(填“>”或“<”)
3.( 2013•杭州)32×3.14+3×(﹣9.42)= .
4.(2013•大兴安岭)定义一种新的运算a ﹠b=a b
,如2﹠3=23
=8,那么请试求(3﹠2)﹠2 = . 5.(2013•泰州)如图,数轴上的点P 表示的数是-1,将点P 向右移动3个单位长度得到点P ’,
则点P ’表示的数是: .
6.(2013•绥化)按如图所示的程序计算.若输入x 的值为3,则输出的值为 .
【特别提醒】
1.实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2.如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

3.科学计数法表示一个绝对值大于10的数时,n 等于该数的整数位数减1,科学计数法表示一个绝对值小于1的数时,n 是负整数,其绝对值等于该数第1个不为0的数的前面的0的个数;
九年级二轮专题复习材料专题1实数答案
【近3年临沂市中考试题】
1. A
2.A
3.C
4.A
5.D 6.
【中考集锦】 一、选择题
1.C
2.A
3.B
4.A
5.D
6.A
7.A 二、填空题 1. 3.6×106; 2.< 3. 72.22 4.81 5.2 6.-3。

相关文档
最新文档