平南大安初中2009-2010七年级(上)数学期末复习测试(六)
09~10学年度七数(上)期末复习试卷6

09~10学年度七数(上)期末复习试卷6班级___________ 学号___________ 姓名____________一.选择题(每小题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每小题3分,计30分)1.在()()2 2007228,1,3,1,0,5--------中,负数共有A 4个B 3个C 2个D 1个2.A为数轴上表示-1的点,将点A沿数轴向右平移3个单位到点B,则点B所表示的数是A.3 B 2 C -4 D 2或-43.下列说法正确的是①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数是互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列各式正确的是A 7a-a=6B 2a+b=2abC 3a+a=4aD -ab+2ab=ab5.a为任意有理数,下列式子的值总是正数的是A |a+1|B a2C (a+2007)2D a2+20076.如果代数式4y2-2y+5的值是7,则代数式2y2-y+1的值等于A.2B.3C.-2D.47.若是a一个三位数,b是一个两位数,如果把b放在a的左边,那么所成的五位数是A 、ba B、10b+a C、100b+a D、1000b +a8.一种商品的单价为a(a>0),先按原价提高10%,再按新价降低10%,最后该商品的价格为b元,那么a、b的大小关系是A、无法确定B、a>bC、a=bD、a<b 9.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A B C D 10.左图是正方体的表面展开图,如果将其合成原来的正方体(右图)时,与点P重合的两点应该是()A.S和Z B.T和YC.U和Y D.T和V二、填空题(每题3分,计30分)11.计算:(-3)+(-2)= (-3)×(-2)=12. 化简:-(-6)= -|-6|=13. 把正午记作0小时,午后3点钟记作+3小时,那么上午9点可表示为小时。
平南大安初中-七年级(上)数学期末复习测试(三).doc

七年级(上)数学期末复习测试(三)姓名___________ 学号______一. 单项选择题 (每小题2分, 共20分)1. 下列说法错误的是( )A. 负整数和负分数统称负有理数B. 正整数、0、负整数统称为整数C. 正有理数与负有理数组成全体有理数D. 3.14是小数, 也是分数2. 已知a<0, 那么下列各等式成立的是( )A. a 2=(-a)·aB. a 2=(-a)2C. a 3=|a 3|D. 5a>4a3. 设P=2y -2, Q=2y+3, 有2P -Q=1, 则y 的值是( )A. 0.4B. 4C. -0.4D. -2.54. 儿子今年12岁, 父亲今年39岁, _____父亲的年龄是儿子年龄的4倍. ( )A. 3年后B. 3年前C. 9年后D. 不可能5. 若∠α+∠β=900, ∠β+∠γ=900, 则∠α与∠γ的关系是( )A. 互余B. 互补C. 相等D. ∠α=900+∠γ6. 下列四个图形中, 能用∠1、∠AOB 、∠O 三种方法表示同一个角的图形是( )A B C D7. 图中是几何体的主视图与左视图, 其中正确的是( )A B C D8. 点M 、N 都在线段AB 上, 且M 分AB 为2:3两部分, N 分AB 为3:4两部分, 若MN=2cm, 则AB 的长为( )A. 60cmB. 70cmC. 75cmD. 80cm9. 95的意义是( )A. 9乘以5B. 9个5相乘C. 5个9相乘D. 5个9相加10. 轮船在静水中速度为每小时20km, 水流速度为每小时4km, 从甲码头顺流航行到乙码头, 再返回甲码头, 共用5小时(不计停留时间), 求甲、乙两码头的距离. 设两码头间的距离为x km, 则列出方程正确的是( )A. (20+4)x+(20-4)x=5B. 20x+4x=5C. 54x 20x =+D. 5420x 420x =-++ 二. 填空题. (每小题2分, 共20分)11. 绝对值等于4.5的数是___________, 绝对值小于4.5的整数是__________________, 其中负整数是_____________________.12. 已知x 2=4, 若x>0, 则x =__________; 若x<0, 则x =__________.13. 我们小时候听过龟兔赛跑的故事, 都知道乌龟最后占胜了小白兔.如果在第二次赛跑中,小白兔知耻而后勇, 在落后乌龟1km 时, 以10m/min 的速度奋起直追, 而乌龟仍然以1m/min 的速度爬行, 那么小白兔大概需要______min 就能追上乌龟.14. 如图所示, ∠AOB 是平角, ∠AOC=300, ∠BOD=600, OM 、ON 分别是∠AOC 、∠BOD 的平分线, ∠MON 等于_________________.15. 五边形ABCDE 中, 从顶点A 最多可引_________条对角线, 可以把这个五边形分成________个三角形. 若一个多边形的边数为n, 则从一个顶点最多可引_______________条对角线.16. 某足协举办了一次足球比赛, 记分规则为: 胜一场积3分; 平一场积1分; 负一场积0分. 若甲队比赛了5场后共积7分, 则甲队平__________场.17. 若有理数x<y<0, 则x 3·y 2_____________0.18. 买了5个本子和12枝笔共用23.9元, 已知每枝笔3.2元, 则每个本子________元.三. 计算题. (每小题3分, 共9分) 19.)41(|43|)31()32(----+-- 20. (-5)×8×(541-)×(-1.25)21. 2125.0)431(218)522(52÷⨯--⨯--÷四. 解方程. (每小题3分, 共9分)22. 5(x+8)-5=-6(2x -7) 23. )1x (32)]1x (21x [21-=--五. 解答题. (共42分)24. 如图, A 、B 两个平行四边形纸片部分重叠, 所占面积为160cm 2, A 的面积为120cm 2, B 的面积为74cm 2, 求重叠部分(图中阴影部分)的面积.25. 当n 为何值时关于x 的方程n 2x 113n x 2+-=++的解为0?26. 在公式S=21(a+b)h 中, 已知S=24, a=10, h=3, 求b 的值.27. 旅游商店出售两件纪念品, 每件120元, 其中一件赚20%, 而另一件亏20%, 那么这家商店出售这样两件纪念品是赚了还是亏了, 或是不赚也不亏呢?28. 某商品的售价为每件900元, 为了参与市场竞争, 商店按售价的9折再让利40元销售, 此时仍可获利10%, 此商品的进价是多少元?29. 1年定期储蓄年利率为1.98%, 所得利息要交纳20%利息税. 老刘有一笔1年期定期储蓄, 到期纳税后得利息396元, 问老刘有多少本金?(1)该班的学生共多少名? (2)全班一共捐了多少册书?(3)若该班所捐图书拟按图所示比例分, 则给山区学校的书比送给本市兄弟学校的书多多少册?31、如图,BO 、CO 分别平分∠ABC 和∠ACB ,(1)若∠A=60°。
【初中数学】广西平南大安初中09-10学年七年级上学期期末复习测试数学试卷(一) 通用

广西平南大安初中09-10学年七年级上学期期末复习测试数学试卷(一)一. 单项选择题 (每小题2分, 共20分)1. 13的倒数的相反数的绝对值是()A. 13B. -13C. 3D. -32. 计算(-3)2-(-3)3-22+(-2)2的结果是( )A. 36B. -18C. -36D. 183. 绝对值不大于4的整数的积是A. 16B. 0C. 576D. -14. 关于x的方程ax+3=4x+1的解为正整数, 则整数a的值为( )A. 2B. 3C. 1或2D. 2或35. 某商店有两个进价不同的计算器都卖了64元, 其中一个盈利60%, 另一个亏损20%, 在这次买卖中, 这家商店( )A. 不赔不赚B. 赚了32元C. 赔了8元D. 赚了8元6. 设x表示两位数, y表示三位数, 如果把x放在y的左边组成一个五位数, 可表示为( )A. xyB. 1000x+yC. x+yD. 100x+y7. 把一个周角n等分, 每份是180, 则n等于( )A. 18B. 19C. 20D. 218. 两个角的大小之比是7:3, 它们的差是720, 则这两个角的关系是( )A. 相等B. 互补C. 互余D. 无法确定9. 下图右边四个图形中是左边展形图的立体图的是( )10. 设 “〇、△、□” 表示三种不同的物体, 现用天平称了两次, 情况如图所示, 那么这三种物体质量大小从大到小的顺序排列正确的是 ( )A. □〇△B. □△〇C. △〇□D. △□〇二. 填空题. (每小题2分, 共20分)11. 如图所示, OA 、OB 是两条射线, C 是OA 上一点, D 、E 是OB 上两点, 则图中共有_________条线段, 它们分别是______________________________; 图中共有______条射线, 它们分别是_____________________________.12. 如图, 已知A 、B 、C 、D 是同一直线上的四点, 看图填空: AC=_______+BC, BD=AD -________, AC<________.13. 在图中, 共有k 个三角形, 则k+2001=_______________.14. 3.760=_______度_______分________秒; 22032ˊ24"=________________度.15. 将图中所示的纸片沿虚线折叠起来的几何体是______________. 且1的对面是_________, 2的对面是___________, 3的对面是____________.16. 右图是校七年级(1)班最喜欢上的课的调查结果的扇形统计图. 则阴影部分表示__________________. 17. 若x=-1是关于x 的方程ax 2-bx+c=0的解, 则c a+b =___________, b a+c=____________. 18. 方程2x 3 =1-1-x 6去分母后得___________________.19. 观察方程(x -1)(x+2)=0的解是_______________________________. 20. 将1299万保留三位有效数字为______________________. 三. 计算题. (每小题4分, 共16分) 21. 41)54(6)5(⨯-⨯⨯- 22. -1100 -(1-0.5)×31×[3-(-3)2]23. -32+(-3)2+(-5)2×(-45 )-0.32÷|-0.9| 24. (-2×5)3-(-179 )×(-34 )2-(-10.1 )2四. 解方程. (每小题4分, 共12分)25. 5(x+8)-5=6(2x -7) 26. 3x532x 35-=- 27. 3y181y 961y 5--+=+五. 解答题.28. (3分)一个正方体6个面分别写着1、2、3、4、5、6, 根据下列摆放的三种情况, 那么每个数对面上的数是几?29. (5分)如图, 数轴上的三点A、B、C分别表示有理数a、b、c, 化简|a-b|-|a+c|+|b -c|.30. (6分)若a、b互为相反数, c是最小的非负数, d是最小的正整数, 求(a+b)d+d-c 的值.31. (6分)如图所示, 直线AB、CD相交于O, OE平分∠AOD, ∠FOC=900, ∠1=400, 求∠2和∠3的度数.32. (6分)一项工程由甲单独做需12天完成, 由乙单独做需8天完成, 若两人合作3天后, 剩下部分由乙单独完成, 乙还需做多少天?33. (6分)贵阳市是我国西部的一个多民族城市, 总人口数为370万(2000年普查统计). 如图是2000年该市各民族人口统计图. 请你根据图中提供的信息, 回答下列问题:(1)2000年贵阳市少数民族总人数是多少?(2)2000年贵阳市总人口中苗族占的百分比是多少?(3)2000年贵阳市参加中考的学生约40000人, 请你估计2000年贵阳市参加中考的少数民族学生人数.七年级(上)数学期末复习测试(二)参考答案一. 选择题1. C2. A3. B4. D5. D6. B7. C8. B9. D [点拨: 注意小正方形成对角线的形式] 10. B 二. 填空题11. 6, CO, CD, CE, OD, OE, DE; 5, OC, CA, OD, DE, EB 12. AB; AB; AD 13. 200714. 3, 45, 36; 22.54 15. 正方体, 4, 5, 616. 最喜欢语言课的人数占全班学生数的23% 17. -1, -1 18. 4x=6-(1-x) 19. x=1或x=-2 20. 1.30×107 三. 计算题 21. 622. 解原式=011)6(31211=+-=-⨯⨯--23. 解析: “+” “-”号把式子分成四部分, 分别计算再加减. 解原式=-9+9+25×(54-)-0.09÷0.9=-9+9+(-20)-0.1=-20-0.1=-20.1 24. -1099 四. 解方程 25. x=11 26. x=-927. y=53 五. 解答题28. 1对4, 2对5, 3对6 29. 原式=b -a+a+c+c -b=2c 30. a+b=0, c=0, d=1(a+b)d+d -c=1 31. 解: ∠1=400, ∠BOD=900-400=500 ∠AOD=1800-500=1300, ∠AOC 与∠AOD 互补, ∴∠3=500, ∠2=21∠AOD=650 32. 解: 设乙还需做x 天, 由题意得18x83123=++, x=3 六. 附加题33. (1)55.5万人 (2)6% (3)6000人。
人教版七年级上期末数学测试卷6

余庆县花山民族中学七年级(上)期末数学试卷一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1.﹣3的倒数是()A.﹣ B.C.﹣3 D.32.地球距离月球表面约为383900千米,那么这个数据用科学记数法表示为()A.3.839×104B.3.839×105C.3.839×106D.38.39×1043.下列图形中为正方体的平面展开图的是()A.B.C.D.4.用代数式表示“a的2倍与b的差的平方”,正确的是()A.2(a﹣b)2B.2a﹣b2C.(2a﹣b)2D.(a﹣2b)25.如图,直线EO⊥CD,垂足为O,AB平分∠EOD.则∠EOB等于()A.120°B.135°C.125°D.140°6.若(m﹣2)x|2m﹣3|=6是一元一次方程,则m等于()A.1 B.2 C.1或2 D.任何数7.小明在假期里参加四天一期的夏令营活动,这四天各天的日期和为66,则夏令营的开营日()A.15日B.16日C.17日D.18日8.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离C.A、B两点到原点的距离之和D.A、C两点倒原点的距离之和二、填空题(本题有6个小题,每小题3分,共计18分)9.﹣1的相反数是,绝对值是.10.比较大小:(用“>或=或<”填空).11.若单项式﹣a2x b m与a n b y﹣1可合并为a2b4,则xy﹣mn= .12.若∠A=32°42′17″,则∠A的余角是.13.甲队有27人,乙队有19人,现在另调20人去支援,使甲队人数是乙队的2倍,应调往甲队人,乙队人.14.观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,…请你仔细观察后用你得到的规律填空×+ =522.三、解答题(本题有5个小题,每小题5分,共计25分)15.化简:(3a2﹣b2)﹣3(a2﹣2b2).16.计算:(3﹣4)2÷﹣(﹣2)2.17.一个角补角比它的余角的2倍多30°,求这个角的度数.18.解方程: [(x+2)+4]﹣5=﹣2.19.如图,已知AB=14cm,点C在AB上,BC=AC,求AC的长.四、解答题(本题有3个小题,每小题6分,共计18分)20.先化简,再求值:(2x2﹣5xy)﹣3(x2﹣y2)+x2﹣3y2,其中x=﹣3,y=.21.已知射线OA,由O点再引射线OB、OC,使得∠AOB=60°,∠BOC=30°.求∠AOC的度数.22.已知|a|=5,|b|=3,且|a﹣b|=b﹣a,求a+b的值.五、解答下列各题(本题共有2个小题,第23题7分,第24题8分,共计15分)23.清明节某校组织学生到距离离学校10km的烈士陵园扫墓,学生王争因事没能赶上学校的包车,于是准备在学校门口改乘出租车到烈士陵园,出租车的收费标准如下:里程收费(元)3km以下(含3km) 5.003km以上,每增加1km 1.20现王争身上仅有14元,他乘出租车到烈士陵园的车费够吗?24.用同样规格的黑白两种颜色的正方形,按下图的方式拼图,请根据你的观察完成下列问题.(1)在图②中用了块白色正方形,在图③中用了块白色正方形;(2)按如图所示的规律继续铺下去.那么第n个图形要用块白色正方形;(3)如果有足够多的白色正方形,能不能恰好用完2016块黑色正方形拼出具有以上规律的图形?如果可以,请说明它是第几个图形,如果不能,请说明你的理由.七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1.﹣3的倒数是()A.﹣ B.C.﹣3 D.3【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.地球距离月球表面约为383900千米,那么这个数据用科学记数法表示为()A.3.839×104B.3.839×105C.3.839×106D.38.39×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将383900用科学记数法表示为3.839×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列图形中为正方体的平面展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及立体图形的展开图解题.【解答】由四棱柱四个侧面和上下两个底面的特征可知,A,B,D上底面不可能有两个,故不是正方体的展开图.选项C可以拼成一个正方体.故选C.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.4.用代数式表示“a的2倍与b的差的平方”,正确的是()A.2(a﹣b)2B.2a﹣b2C.(2a﹣b)2D.(a﹣2b)2【考点】列代数式.【分析】先求倍数,然后求差,再求平方.【解答】解:依题意得:(2a﹣b)2.故选:C.【点评】本题考查了列代数式的知识,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”等,从而明确其中的运算关系,正确地列出代数式.5.如图,直线EO⊥CD,垂足为O,AB平分∠EOD.则∠EOB等于()A.120°B.135°C.125°D.140°【考点】垂线;角平分线的定义.【分析】利用角平分线的性质结合垂线的定义得出∠EOA=∠AOD=45°,∠COE=∠EOD=90°,∠AOD=∠COB=45°,进而得出答案.【解答】解:∵直线EO⊥CD,AB平分∠EOD,∴∠EOA=∠AOD=45°,∠COE=∠EOD=90°,∠AOD=∠COB=45°,∴∠BOE=∠COB+∠COE=90°+45°=135°.故选:B.【点评】此题主要考查了垂线的定义以及角平分线的定义,根据题意得出∠BOC的度数是解题关键.6.若(m﹣2)x|2m﹣3|=6是一元一次方程,则m等于()A.1 B.2 C.1或2 D.任何数【考点】一元一次方程的定义.【专题】计算题.【分析】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此列出关于m的等式,继而求出m的值.【解答】解:根据一元一次方程的特点可得,解得m=1.故选A.【点评】解题的关键是根据一元一次方程的未知数x的次数是1这个条件,此类题目应严格按照定义解答.7.小明在假期里参加四天一期的夏令营活动,这四天各天的日期和为66,则夏令营的开营日()A.15日B.16日C.17日D.18日【考点】一元一次方程的应用.【分析】要求夏令营的开营日,就要先设出一个未知数,然后根据题中四天各天的日期之和为66,列方程求解.【解答】解:设开营日为x日,那么其他三天可表示为x+1,x+2,x+3,根据“四天各天的日期之和为66”,则列方程:x+x+1+x+2+x+3=66,解得:x=15.故选A.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,再求解.8.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离C.A、B两点到原点的距离之和D.A、C两点倒原点的距离之和【考点】绝对值;数轴.【专题】推理填空题;实数.【分析】首先把|a+1|化为|a﹣(﹣1)|,然后根据数轴上的三点A、B、C,分别表示有理数a、1、﹣1,判断出|a+1|表示为A、C两点间的距离即可.【解答】解:∵|a+1|=|a﹣(﹣1)|,∴|a+1|表示为A、C两点间的距离.故选:B.【点评】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.二、填空题(本题有6个小题,每小题3分,共计18分)9.﹣1的相反数是 1 ,绝对值是 1 .【考点】绝对值;相反数.【分析】利用相反数、绝对值的性质求解即可.【解答】解:﹣1的相反数是1,绝对值是1.【点评】此题考查了相反数、绝对值的性质,要求掌握相反数、绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;10.比较大小:<(用“>或=或<”填空).【考点】有理数大小比较.【分析】根据两个负数比较大小,绝对值大的反而小,即可得出答案.【解答】解:∵>,∴<;故答案为:<.【点评】此题考查了有理数的大小比较,掌握两个负数比较大小,绝对值大的反而小是解题的关键.11.若单项式﹣a2x b m与a n b y﹣1可合并为a2b4,则xy﹣mn= ﹣3 .【考点】同类项.【分析】因为单项式﹣a2x b m与a n b y﹣1可合并为a2b4,而只有几个同类项才能合并成一项,非同类项不能合并,可知此三个单项式为同类项,由同类项的定义可先求得x、y、m和n的值,从而求出xy﹣mn的值.【解答】解:∵单项式﹣a2x b m与a n b y﹣1可合并为a2b4,则此三个单项式为同类项,则m=4,n=2,2x=2,y﹣1=4,x=1,y=5,则xy﹣mn=1×5﹣4×2=﹣3.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.12.若∠A=32°42′17″,则∠A的余角是57°17′43″.【考点】余角和补角;度分秒的换算.【分析】根据余角的定义以及度、分、秒的计算方法即可求解.【解答】解:∠A的余角是:90°﹣∠A=90°﹣32°42′17″=57°17′43″.故答案是:27°17′43″.【点评】本题考查了余角的定义和度分秒的计算,具体换算可类比时钟上的时、分、秒来说明角的度量单位度、分、秒之间也是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法.13.甲队有27人,乙队有19人,现在另调20人去支援,使甲队人数是乙队的2倍,应调往甲队17 人,乙队 3 人.【考点】一元一次方程的应用.【分析】因为一共有20人来支援,所以设应调往甲队x人,乙队(20﹣x)人,则现在甲队有(27+x)人,乙队有[19+(20﹣x)]人,根据甲队人数是乙队的2倍,列方程解出即可.【解答】解:设应调往甲队x人,乙队(20﹣x)人,27+x=2[19+(20﹣x)],27+x=2(39﹣x),27+x=78﹣2x,x=17,20﹣x=20﹣17=3,答:应调往甲队17人,乙队3人,故答案为:17,3.【点评】本题是一元一次方程的应用,考查的是人员调配问题,关键知道调配后的数量关系,从而可列方程求解.14.观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,…请你仔细观察后用你得到的规律填空50 ×54 + 4 =522.【考点】规律型:数字的变化类.【分析】通过观察可以发现等号左边有连续的自然数“1,2,3,4,…”,“5,6,7,8,…”和定值4,易得每个式子中“×”前后的两个数字相差4,从而得到一般式:n(n+4)+4,根据完全平方公式可知n(n+4)+4=n2+4n+4=(n+2)2;把等号右边对应的数字代入关系式即可验证此等式成立,进一步可求出522=(50+2)2=50×(50+4)+4=50×54+4.【解答】解:观察算式:1×5+4=322×6+4=42,3×7+4=52,4×8+4=62,可发现:等号左边:“×”前面的数字是连续的自然数1,2,3,4,…,n;“×”后面的数字也是连续的自然数5,6,7,8,…(n+4);“+”后面的数字是定值4;等号右边:32=(1+2)2,42=(2+2)2,52=(3+2)2,62=(4+2)2,…(n+2)2;所以这组算式的一般规律为:n(n+4)+4=(n+2)2;因为522=(50+2)2=50×(50+4)+4=50×54+4所以50×54+4=522.故答案为:50,54,4.【点评】解本题的关键是找到等号两边变化的数字之间的连续性,再结合完全平方公式得出一般规律后,再去求解.三、解答题(本题有5个小题,每小题5分,共计25分)15.化简:(3a2﹣b2)﹣3(a2﹣2b2).【考点】整式的加减.【专题】计算题;整式.【分析】原式去括号合并即可得到结果.【解答】解:原式=3a2﹣b2﹣3a2+6b2=5b2.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.16.计算:(3﹣4)2÷﹣(﹣2)2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.【解答】解:原式=1×﹣4=﹣3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.一个角补角比它的余角的2倍多30°,求这个角的度数.【考点】余角和补角.【分析】设这个角为x,根据余角和补角的概念列出方程,解方程即可.【解答】解:设这个角为x,由题意得,180°﹣x=2(90°﹣x)+30°,解得x=30°.答:这个角的度数是30°.【点评】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.18.解方程: [(x+2)+4]﹣5=﹣2.【考点】解一元一次方程.【分析】先去中括号,移项,合并同类项,再去分母,移项、合并同类项即可.【解答】解:去中括号得,(x+2)+2﹣5=﹣2,移项、合并同类项得,(x+2)=1,去分母得,x+2=6,移项、合并同类项得,x=4.【点评】本题考查的是解一元一次方程,在解答此类题目时要根据方程的特点选择合适的步骤求解.19.如图,已知AB=14cm,点C在AB上,BC=AC,求AC的长.【考点】两点间的距离.【分析】根据AC+BC=AB即可得出AC的长.【解答】解:∵AB=14cm,点C在AB上,BC=AC,∴AC+BC=AB,即AC+AC=14cm,解得AC=8.答:AC的长是8cm.【点评】本题考查的是两点间的距离,熟知连接两点间的线段的长度叫两点间的距离是解答此题的关键.四、解答题(本题有3个小题,每小题6分,共计18分)20.先化简,再求值:(2x2﹣5xy)﹣3(x2﹣y2)+x2﹣3y2,其中x=﹣3,y=.【考点】整式的加减—化简求值.【专题】探究型.【分析】先根据整式的加法法则把原式进行化简,再把x、y的值代入进行计算即可.【解答】解:原式=2x2﹣5xy﹣3x2+3y2+x2﹣3y2=(2﹣3+1)x2+(3﹣3)y2﹣5xy=﹣5xy,当x=﹣3,y=时,原式=(﹣5)×(﹣3)×=5.【点评】本题考查的是整式的加减﹣化简求值,熟知整式的加减就是合并同类项是解答此题的关键.21.已知射线OA,由O点再引射线OB、OC,使得∠AOB=60°,∠BOC=30°.求∠AOC的度数.【考点】角的计算.【分析】本题是角的计算中的多解题,出现多解得原因在于三条射线OA,OB,OC的位置不能确定,求解时应分情况讨论.【解答】解:当射线OC在∠AOB内部时,∵∠AOB=60°,∠BOC=30°,∴∠AOC=∠AOB﹣∠BOC=60°﹣30°=30°当射线OC在∠AOB外部时,∵∠AOB=60°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=60°+30°=90°.∴∠AOC=30°或90°.【点评】本题考查角度的计算,是多解问题,易错点是漏解,因为题目中没有交代其中的位置关系,所以求解时要讨论,在线段的计算中有时也出现类似的情况.22.已知|a|=5,|b|=3,且|a﹣b|=b﹣a,求a+b的值.【考点】有理数的减法;绝对值;有理数的加法.【分析】根据绝对值的性质求出a、b,再判断出a、b的对应情况,然后相加即可得解.【解答】解:∵|a|=5,|b|=3,∴a=±5,b=±3,∵|a﹣b|=b﹣a,∴a=﹣5时,b=3或﹣3,∴a+b=﹣5+3=﹣2,或a+b=﹣5+(﹣3)=﹣8,所以,a+b的值是﹣2或﹣8.【点评】本题考查了有理数的减法,有理数的加法和绝对值的性质,难点在于确定a、b的值的对应情况.五、解答下列各题(本题共有2个小题,第23题7分,第24题8分,共计15分)23.清明节某校组织学生到距离离学校10km的烈士陵园扫墓,学生王争因事没能赶上学校的包车,于是准备在学校门口改乘出租车到烈士陵园,出租车的收费标准如下:里程收费(元)3km以下(含3km) 5.003km以上,每增加1km 1.20现王争身上仅有14元,他乘出租车到烈士陵园的车费够吗?【考点】实数大小比较.【专题】应用题.【分析】根据车费=5+3km以上的收费,列出代数式,当到10km的烈士陵园时,代入表示车费的代数式求值,再与14做比较,如果车费小于14元,则够支付乘出租车到烈士陵园的车费;否则不够.【解答】解:∵5+(10﹣3)×1.2=13.4<14,∴他乘出租车到烈士陵园的车费够.【点评】考查实数大小比较,理解出租车的总付费为分段付费是解决本题的关键.24.用同样规格的黑白两种颜色的正方形,按下图的方式拼图,请根据你的观察完成下列问题.(1)在图②中用了8 块白色正方形,在图③中用了11 块白色正方形;(2)按如图所示的规律继续铺下去.那么第n个图形要用3n+2 块白色正方形;(3)如果有足够多的白色正方形,能不能恰好用完2016块黑色正方形拼出具有以上规律的图形?如果可以,请说明它是第几个图形,如果不能,请说明你的理由.【考点】规律型:图形的变化类.【分析】(1)观察如图可直接得出答案;(2)认真观察题目中给出的图形,结合问题(1),通过分析,即可找到规律,得出答案;(3)根据问题(2)中总结的规律,列出算式3n+1=2016,如果结果是整数,则能够拼出具有以上规律的图形,否则,不能.【解答】解:(1)观察如图可以发现,图②中用了8块白色正方形,在图③中用了11块白色正方形;(2)在图①中,需要白色正方形的块数为3×1+2=5;在图②中,需要白色正方形的块数为3×2+2=8;在图③中,需要白色正方形的块数为3×3+2=11;…因此第n个图形要用3n+2块白色正方形;(3)假设第n个图形恰好能用完2016块黑色正方形,则3n+1=2016,解得:n=,因为n不是整数,所以不能.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律:第n个图形要用3n+2块白色正方形,第n个图形要用3n+1块黑色正方形,利用规律解决问题.。
06 【人教版】七年级上期末数学试卷(含答案)

七年级(上)期末数学试卷一、选择题:每小题3分,共计30分.请将答案写在题后面的表格中1.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=52.下列说法正确的是()A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c3.下列四个实数中,是无理数的为()A.B.C.D.4.若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣8 B.0 C.8 D.25.在平面直角坐标系中,将点A(﹣1,4)向右平移2个单位长度,再向上平移3个单位长度,则平移后对应点的坐标是()A.C.6.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°7.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.C.8.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)9.如图,a∥b,c,d是截线,∠1=70°,∠2﹣∠3=30°,则∠4的大小是()A.100°B.105°C.110°D.120°10.下列四个式子:①;②<8;③<1;④>0.5.其中大小关系正确的式子的个数是()A.1个B.2个C.3个D.4个二、填空题:每小题3分,共计30分.请将答案写在题后面的表格中11.点A(a,b)在x轴上,则ab=.12.实数27的立方根是.13.列等式表示“比a的3倍大5的数等于a的4倍”为.14.把命题“对顶角相等”改写成“如果…那么…”的形式:.15.已知(x﹣1)2=4,则负数x的值为.16.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于度.17.有一列数,按一定规律排成1,﹣3,9,﹣27,81,﹣243,…,其中某三个相邻数的和是5103,则这三个数中最小的数是.18.如图,直线AB.CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC= 度.19.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截,同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点P(x,y)的坐标满足xy<0,那么点P一定在第二象限.其中正确命题的序号为.20.在风速为24千米/时的条件下,一架飞机顺风从A机场飞到B机场要用2.8小时,它逆风飞行同样的航线要用3小时,则A,B两机场之间的航程为千米.三、解答题:其中21-22题各8分,23题6分,24题8分,25-27题各10分,共计60分21.计算:(1)﹣(2)|﹣1.7|+|﹣1.8|22.解下列方程(1)2(x+8)=3(x﹣1)(2)3x+=.23.完成下面的证明:如图,∠1+∠3=180°,∠CDE+∠B=180°,求证:∠A=∠4.证明;∵∠1=∠2()又∠1+∠3=180°,∴∠2+∠3=180°,∴AB∥DE()∴∠CDE+=180°()又∠CDE+∠B=180°,∴∠B=∠C∴AB∥CD()∴∠A=∠4()24.阅读下面“将无限循环小数化为分数”材料,并解决相应问题:我们知道分数写成小数形式即0.,反过来,无限循环小数0.写成分数形式即.一般地,任何一个无限循环小数都可以写成分数形式吗?如果可以,应怎样写呢?先以无限循环小数0.为例进行讨论.设0.=x,由0.=0.777…可知,10x=7.777…,所以10x﹣x=7,解方程,得x=.于是,得0.=.再以无限循环小数0.为例,做进一步的讨论.无限循环小数0.=0.737373…,它的循环节有两位,类比上面的讨论可以想到如下的做法.设0.=x,由0.=0.737373…可知,100x=73.7373…,所以100x﹣x=73.解方程,得x=,于是,得0.=.请仿照材料中的做法,将无限循环小数0.化为分数,并写出转化过程.25.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.26.元旦期间,某玩具店从玩具批发市场批发玩具进行零售,部分玩具批发价格与零售价格如下表:玩具型号 A B C批发价(元/个)20 24 28零售价(元/个)25 30 40请解答下列问题:(1)第一天,该玩具店批发A,B两种型号玩具共59个,用去了1344元钱,这两种型号玩具当天全部售完后一共能赚多少元钱?(2)第二天,该玩具店用第一天全部售完后的总零售价钱批发A,B,C三种型号玩具中的两种玩具共68个,且当天全部售完,请通过计算说明该玩具店第二天应如何进货才能使全部售完后赚的钱最多?27.如图,在平面直角坐标系中,点O为坐标系原点,点A(3a,2a)在第一象限,过点A 向x轴作垂线,垂足为点B,连接OA,S△AOB=12.点M从点O出发,沿y轴的正半轴以每秒2个单位长度的速度运动,点N从点B出发,沿射线BO以每秒3个单位长度的速度运动,点M与点N同时出发,设点M的运动时间为t秒,连接AM,AN,MN.(1)求a的值;(2)当0<t<2时,①请探究∠ANM,∠OMN,∠BAN之间的数量关系,并说明理由;②试判断四边形AMON的面积是否变化?若不变化,请求出;若变化,请说明理由.(3)当OM=ON时,请求出t的值及△AMN的面积.七年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题3分,共计30分.请将答案写在题后面的表格中1.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=5【考点】一元一次方程的定义.【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程可得答案.【解答】解:A、是一元二次方程,故此选项错误;B、是一元一次方程,故此选项正确;C、是二元一次方程,故此选项错误;D、是二元二次方程,故此选项错误;故选:B.【点评】此题主要考查了一元一次方程的定义,关键是掌握只含有一个未知数,未知数的指数是1,一次项系数不是0.2.下列说法正确的是()A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c【考点】平行线;垂线.【分析】根据题意画出图形,从而可做出判断.【解答】解:先根据要求画出图形,图形如下图所示:根据所画图形可知:A正确.故选:A.【点评】本题主要考查的是平行线,根据题意画出符合题意的图形是解题的关键.3.下列四个实数中,是无理数的为()A.B.C.D.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是有理数,故A错误;B、是有理数,故B错误;C、是有理数,故C错误;D、是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于()A.﹣8 B.0 C.8 D.2【考点】一元一次方程的解.【分析】把x=﹣2代入原方程,得到关于a的一元一次方程,解方程得到答案.【解答】解:由题意得,2×(﹣2)+a﹣4=0,解得:a=8,故选:C.【点评】本题考查的是方程的解的定义,使方程两边的值相等的未知数的值是方程的解.5.在平面直角坐标系中,将点A(﹣1,4)向右平移2个单位长度,再向上平移3个单位长度,则平移后对应点的坐标是()A.C.【考点】坐标与图形变化-平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得平移后对应点的坐标是(﹣1+2,4+3),再计算即可.【解答】解:点A(﹣1,4)向右平移2个单位长度,再向上平移3个单位长度,平移后对应点的坐标是(﹣1+2,4+3),即(1,7),故选:A.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.6.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°【考点】平行线的判定.【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;B、根据内错角相等,两直线平行可得AB∥CD,故此选项正确;C、根据内错角相等,两直线平行可得BD∥AC,故此选项错误;D、根据同旁内角互补,两直线平行可得BD∥AC,故此选项错误;故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.7.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.C.【考点】坐标与图形性质;矩形的性质.【分析】本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.【解答】解:如图可知第四个顶点为:即:(3,2).故选:B.【点评】本题考查学生的动手能力,画出图后可很快得到答案.8.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)【考点】由实际问题抽象出一元一次方程.【分析】设把x公顷旱地改为林地,根据旱地面积占林地面积的20%列出方程即可.【解答】解:设把x公顷旱地改为林地,根据题意可得方程:54﹣x=20%(108+x).故选B.【点评】本题考查一元一次方程的应用,关键是设出未知数以以改造后的旱地与林地的关系为等量关系列出方程.9.如图,a∥b,c,d是截线,∠1=70°,∠2﹣∠3=30°,则∠4的大小是()A.100°B.105°C.110°D.120°【考点】平行线的性质.【分析】首先根据邻补角的定义求得∠2的度数,则∠3即可求得,然后根据平行线的性质求得∠5,进而求得∠4.【解答】解:∠2=180°﹣∠1=180°﹣70°=110°,∵∠2﹣∠3=30°,∴∠3=∠2﹣30°=110°﹣30°=80°,∵a∥b,∴∠5=∠3=80°,∴∠4=180°﹣∠5=180°﹣80°=100°.故选A.【点评】本题考查了邻补角的定义和平行线的性质,两直线平行,同位角相等,理解角之间的位置关系是关键.10.下列四个式子:①;②<8;③<1;④>0.5.其中大小关系正确的式子的个数是()A.1个B.2个C.3个D.4个【考点】实数大小比较.【专题】推理填空题;实数.【分析】①两个正数,哪个数的越大,则它的算术平方根就越大,据此判断即可.②首先分别求出、8的平方各是多少;然后根据两个正数,哪个数的平方越大,则这个数就越大,判断出、8的大小关系即可.③根据﹣1所得的差的正负,判断出、1的大小关系即可.④根据﹣0.5所得的差的正负,判断出、0.5的大小关系即可.【解答】解:∵8<10,∴<,∴①正确;=65,82=64,∵65>64,∴>8,∴②不正确;∵﹣1=<=0,∴<1,∴③正确;∵﹣0.5=>=0,∴>0.5,∴④正确.综上,可得大小关系正确的式子的个数是3个:①③④.故选:C.【点评】(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)解答此题的关键还要明确:两个正数,哪个数的平方越大,则这个数就越大.二、填空题:每小题3分,共计30分.请将答案写在题后面的表格中11.点A(a,b)在x轴上,则ab=0.【考点】点的坐标.【分析】根据x轴上点的纵坐标等于零,可得b的值,根据有理数的乘法,可得答案.【解答】解:由点A(a,b)在x轴上,得b=0.则ab=0,故答案为:0.【点评】本题考查了点的坐标,利用x轴上点的纵坐标等于零得出b的值是解题关键.12.实数27的立方根是3.【考点】立方根.【专题】计算题.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵3的立方等于27,∴27的立方根等于3.故答案为3.【点评】此题主要考查了求一个数的立方根,解题时先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.13.列等式表示“比a的3倍大5的数等于a的4倍”为3a+5=4a.【考点】等式的性质.【分析】根据等量关系,可得方程.【解答】解:由题意,得3a+5=4a,故答案为:3a+5=4a.【点评】本题主要考查了等式的基本性质,理解题意是解题关键.14.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.15.已知(x﹣1)2=4,则负数x的值为﹣1.【考点】有理数的乘方.【专题】计算题;实数.【分析】方程利用平方根定义求出解,即可确定出负数x的值.【解答】解:方程(x﹣1)2=4,开方得:x﹣1=2或x﹣1=﹣2,解得:x=3或x=﹣1,则负数x的值为﹣1.故答案为:﹣1.【点评】此题考查了有理数的乘方,熟练掌握运算法则是解本题的关键.16.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于70度.【考点】平行线的性质.【分析】根据两条直线平行,同旁内角互补可以得∠1+∠2=140°,求出∠2,再利用平行线的性质得出∠4.【解答】解:∵a∥b,∴∠2+∠1+∠3=180°,∵∠1=∠2,∠3=40°,∴∠2=70°,∴∠4=70°,故答案为:70【点评】此题考查平行线的性质,关键是主要运用了平行线的性质解答.17.有一列数,按一定规律排成1,﹣3,9,﹣27,81,﹣243,…,其中某三个相邻数的和是5103,则这三个数中最小的数是﹣2187.【考点】规律型:数字的变化类.【专题】计算题;推理填空题.【分析】观察所给的数发现:它们的一般式为(﹣3)n﹣1,而其中某三个相邻数的和是5103,设第一个的数为x,由此即可得到关于x的方程,解方程即可求解.【解答】解:设第一个的数为x,依题意得x﹣3x+9x=5103,∴x=729,∴﹣3x=﹣2187.∴最小的数为﹣2187.故答案为:﹣2187.【点评】此题主要考查了数字的变化规律,解题的关键是首先认真观察所给数字,然后找出隐含的规律即可解决问题.18.如图,直线AB.CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC= 52度.【考点】垂线;对顶角、邻补角.【分析】根据垂线的定义,可得∠AOE=90°,根据角的和差,可得∠AOD的度数,根据邻补角的定义,可得答案.【解答】解:∵OE⊥AB,∴∠AOE=90°,∴∠AOD=∠AOE+∠EOD=90°+38°=128°,∴∠AOC=180°﹣∠AOD=180°﹣128°=52°,故答案为:52.【点评】本题考查了垂线的定义,对顶角相等,邻补角的和等于180°,要注意领会由垂直得直角这一要点.19.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截,同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点P(x,y)的坐标满足xy<0,那么点P一定在第二象限.其中正确命题的序号为①③.【考点】命题与定理.【分析】根据在同一平面内,过一点有且只有一条直线与已知直线垂直;两条平行的直线被第三条直线所截,同旁内角互补;数轴上的点与实数是一一对应关系;点P(x,y)的坐标满足xy<0,则点P的横纵坐标符号相反,可得P在二、四象限进行分析.【解答】解:①在同一平面内,过一点有且只有一条直线与已知直线垂直,说法正确;②两条直线被第三条直线所截,同旁内角互补,说法错误;③数轴上的每一个点都表示一个实数,说法正确;④如果点P(x,y)的坐标满足xy<0,那么点P一定在第二象限,说法错误;正确的命题有①③,故答案为:①③.【点评】此题主要考查了命题与定理,关键是熟练掌握课本上所学的定理.20.在风速为24千米/时的条件下,一架飞机顺风从A机场飞到B机场要用2.8小时,它逆风飞行同样的航线要用3小时,则A,B两机场之间的航程为2016千米.【考点】一元一次方程的应用.【分析】设无风时飞机的航速是x千米/时,根据顺风速度×顺风时间=逆风速度×逆风时间,列出方程求出x的值,进而求解即可.【解答】解:设无风时飞机的航速是x千米/时,依题意得:2.8×(x+24)=3×(x﹣24),解得:x=696,则3×(696﹣24)=2016(千米).答:A,B两机场之间的航程是2016千米.故答案为2016.【点评】此题考查了一元一次方程的应用,用到的知识点是顺风速度=无风时的速度+风速,逆风速度=无风时的速度﹣风速,关键是根据顺风飞行的路程等于逆风飞行的路程列出方程.三、解答题:其中21-22题各8分,23题6分,24题8分,25-27题各10分,共计60分21.计算:(1)﹣(2)|﹣1.7|+|﹣1.8|【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用立方根及算术平方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=4﹣9=﹣5;(2)原式=﹣1.7+1.8﹣=0.1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.解下列方程(1)2(x+8)=3(x﹣1)(2)3x+=.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)根据解方程的一般步骤:去括号、移项、合并同类项、系数化为1,可得方程的解;(2)两边都乘以分母的最小公倍数6去分母后,去括号、移项、合并同类项、系数化为1后可得方程的解.【解答】解:(1)去括号,得:2x+16=3x﹣3,移项,得:2x﹣3x=﹣3﹣16,合并同类项,得:﹣x=﹣19,系数化为1,得:x=19;(2)去分母,得:18x+3(x﹣1)=2(2x﹣1),去括号,得:18x+3x﹣3=4x﹣2,移项,得:18x+3x﹣4x=﹣2+3,合并同类项,得:17x=1,系数化为1,得:x=.【点评】本题主要考查解一元一次方程的基本技能,熟练掌握去分母、去括号、移项、合并同类项、系数化为1是关键.23.完成下面的证明:如图,∠1+∠3=180°,∠CDE+∠B=180°,求证:∠A=∠4.证明;∵∠1=∠2(对顶角相等)又∠1+∠3=180°,∴∠2+∠3=180°,∴AB∥DE(同旁内角互补,两直线平行)∴∠CDE+∠C=180°(两直线平行,同旁内角互补)又∠CDE+∠B=180°,∴∠B=∠C∴AB∥CD(内错角相等,两直线平行)∴∠A=∠4(两直线平行,内错角相等)【考点】平行线的判定与性质.【专题】推理填空题.【分析】欲证明∠A=∠4,只需推知AB∥CD,利用平行线的性质即可证得结论.【解答】证明:∵∠1=∠2(对顶角相等),又∠1+∠3=180°,∴∠2+∠3=180°,∴AB∥DE(同旁内角互补,两直线平行),∴∠CDE+∠C=180°(两直线平行,同旁内角互补),又∠CDE+∠B=180°,∴∠B=∠C.∴AB∥CD(内错角相等,两直线平行),∴∠A=∠4(两直线平行,内错角相等).故答案是:对顶角相等;同旁内角互补,两直线平行;∠C;两直线平行,同旁内角互补;错角相等,两直线平行;两直线平行,内错角相等.【点评】本题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.24.阅读下面“将无限循环小数化为分数”材料,并解决相应问题:我们知道分数写成小数形式即0.,反过来,无限循环小数0.写成分数形式即.一般地,任何一个无限循环小数都可以写成分数形式吗?如果可以,应怎样写呢?先以无限循环小数0.为例进行讨论.设0.=x,由0.=0.777…可知,10x=7.777…,所以10x﹣x=7,解方程,得x=.于是,得0.=.再以无限循环小数0.为例,做进一步的讨论.无限循环小数0.=0.737373…,它的循环节有两位,类比上面的讨论可以想到如下的做法.设0.=x,由0.=0.737373…可知,100x=73.7373…,所以100x﹣x=73.解方程,得x=,于是,得0.=.请仿照材料中的做法,将无限循环小数0.化为分数,并写出转化过程.【考点】一元一次方程的应用.【专题】阅读型.【分析】先设0.=x,由0.=0.9898…,得100x=98.9898…,100x﹣x=98,再解方程即可.【解答】解:设0.=x,由0.=0.9898…,得100x=98.9898…,所以100x﹣x=98,解方程得:x=.于是0.=.【点评】此题主要考查了一元一次方程的应用,解答本题的关键是找出其中的规律,即通过方程形式,把无限小数化成整数形式.25.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOD=2:3.(1)求∠BOD的度数;(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.【考点】平行线的判定;角的计算.【分析】(1)根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答.(2)由已知条件和对顶角相等得出∠MFC=∠MFH=∠BOD+90°=126°,得出∠ONF=90°,求出∠OFM=54°,延长∠OFG=2∠OFM=108°,证出∠OFG+∠EOC=180°,即可得出结论.【解答】解:∵∠EOC:∠EOD=2:3,∴∠EOC=180°×=72°,∵OA平分∠EOC,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.(2)延长FM交AB于N,如图所示:∵∠MFH﹣∠BOD=90°,FM平分∠OFG,∴∠MFC=∠MFH=∠BOD+90°=126°,∴∠ONF=126°﹣36°=90°,∴∠OFM=90°﹣36°=54°,∴∠OFG=2∠OFM=108°,∴∠OFG+∠EOC=180°,∴OE∥GH.【点评】本题考查了平行线的判定、角平分线定义、角的互余关系等知识;熟练掌握平行线的判定、角平分线定义是解决问题的关键,(2)有一定难度.26.元旦期间,某玩具店从玩具批发市场批发玩具进行零售,部分玩具批发价格与零售价格如下表:玩具型号 A B C批发价(元/个)20 24 28零售价(元/个)25 30 40请解答下列问题:(1)第一天,该玩具店批发A,B两种型号玩具共59个,用去了1344元钱,这两种型号玩具当天全部售完后一共能赚多少元钱?(2)第二天,该玩具店用第一天全部售完后的总零售价钱批发A,B,C三种型号玩具中的两种玩具共68个,且当天全部售完,请通过计算说明该玩具店第二天应如何进货才能使全部售完后赚的钱最多?【考点】一元一次方程的应用.【分析】(1)设A种型号玩具批发了x个,则B种型号玩具批发了(59﹣x)个,题中的等量关系为:A种型号玩具的个数×A种型号玩具的批发价+B种型号玩具的个数×B种型号玩具的批发价=1344元,依此列出方程,解方程求出x的值,则当天赚的钱=(A种型号玩具的零售价﹣批发价)×A种型号玩具的个数+(B种型号玩具的零售价﹣批发价)×B种型号玩具的个数;(2)分三种情况:①购买A,B两种型号玩具;②购买A,C两种型号玩具;③购买B,C两种型号玩具.分别求出每一种情况下全部售完后赚的钱,比较即可.【解答】解:(1)设A种型号玩具批发了x个,则B种型号玩具批发了(59﹣x)个,由题意得:20x+24(59﹣x)=1344,解得x=18,所以59﹣x=41.则18×(25﹣20)+41×(30﹣24)=336(元).答:这两种型号玩具当天全部售完后一共能赚336元钱;(2)该玩具店用第一天全部售完后的总零售价为:1344+336=1680(元).分三种情况:①购买A,B两种型号玩具.设A种型号玩具批发了a个,则B种型号玩具批发了(68﹣a)个,由题意得:20a+24(68﹣a)=1680,解得a=12,所以68﹣a=56.则12×(25﹣20)+56×(30﹣24)=396(元);②购买A,C两种型号玩具.设A种型号玩具批发了b个,则B种型号玩具批发了(68﹣b)个,由题意得:20b+28(68﹣a)=1680,解得b=28,所以68﹣b=40.则28×(25﹣20)+40×(40﹣28)=620(元);③购买B,C两种型号玩具.设B种型号玩具批发了c个,则C种型号玩具批发了(68﹣c)个,由题意得:24c+28(68﹣c)=1680,解得c=56,所以68﹣c=12.则56×(30﹣24)+12×(40﹣28)=480(元);620>480>396,故该玩具店第二天A种型号玩具批发28个,B种型号玩具批发40个,才能使全部售完后赚的钱最多.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.27.如图,在平面直角坐标系中,点O为坐标系原点,点A(3a,2a)在第一象限,过点A 向x轴作垂线,垂足为点B,连接OA,S△AOB=12.点M从点O出发,沿y轴的正半轴以每秒2个单位长度的速度运动,点N从点B出发,沿射线BO以每秒3个单位长度的速度运动,点M与点N同时出发,设点M的运动时间为t秒,连接AM,AN,MN.(1)求a的值;(2)当0<t<2时,①请探究∠ANM,∠OMN,∠BAN之间的数量关系,并说明理由;②试判断四边形AMON 的面积是否变化?若不变化,请求出;若变化,请说明理由.(3)当OM=ON 时,请求出t 的值及△AMN 的面积.【考点】坐标与图形性质;三角形的面积.【专题】动点型.【分析】(1)根据三角形面积公式可以求出a .(2)①如图1作NH ∥AB 即可证明;②根据S 四边形AMON =S 梯形ABOM ﹣S △ANB =(OM+AB )OB ﹣计算即可.(3)分两种情形:①点N 在原点左边;②点N 在原点右边考虑.【解答】解:(1)∵S △AOB =12,∴3a2a=12,∴a 2=4,∵a >0,∴a=2.(2)当O <t <2时,①结论:∠MNA=∠NMO+∠NAB ,理由如下:作NH ∥AB ,∵AB ⊥x 轴,∴OM ∥AB ∥NH ,∴∠MNO=∠MNH ,∠NAB=∠HNA ,∴∠MNA=∠NMO+∠NAB .②结论:S 四边形AMON =12,理由如下:由题意BN=3t ,OM=2t ,OB=6,AB=4,∵S 四边形AMON =S 梯形ABOM ﹣S △ANB =(OM+AB )OB ﹣=,=6t+12﹣6t=12.∴四边形AMON 的面积不变.(3)∵OM=ON ,∴2t=6﹣3t 或2t=3t ﹣6 ∴t=或6, t=时,OM=,BN=,ON=,∴S △AMN =S △AOM +S △AON ﹣S △MON =6+4﹣=.当t=6时,如图2,OM=ON=12,∴S△AMN=S△MON+S△OMA﹣S△ANO==84.【点评】本题考查平面直角坐标系、平行线的性质、三角形、四边形的面积的有关知识,学会用分割法求三角形面积.。
广西贵港市平南县七年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中七年级全册数学试题

某某贵港市平南县2015-2016学年七年级数学上学期期末考试试题一、选择题(共12小题,每小题3分,满分36分)1.计算1÷(﹣)的结果是()A.﹣B.C.﹣5 D.52.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱3.下列计算正确的是()A.2(a+b)=2a+b B.3x2﹣x2=2 C.﹣(m﹣n)=﹣m+n D.a+2a2=3a34.如果a和2b互为相反数,且b≠0,那么a的倒数是()A.﹣B.C.﹣D.2b5.已知多项式5x2y m+1+xy2﹣3是六次多项式,单项式﹣7x2n y5﹣m的次数也是6,则n m=()A.﹣8 B.6 C.8 D.96.如图是交通禁止驶入标志,组成这个标志的几何图形有()A.圆、长方形B.圆、线段 C.球、长方形D.球、线段7.如图,甲、乙两地之间有多条路可走,那么最短路线的走法序号是()A.①﹣④B.②﹣④C.③﹣⑤D.②﹣⑤8.如图,∠AOC,∠BOD都是直角,∠AOD:∠AOB=3:1,则∠BOC的度数是()A.22.5°B.45° C.90° D.135°9.如图所示是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多 B.乙户比甲户多C.甲、乙两户一样多 D.无法确定哪一户多10.已知实数a在数轴上的位置如图所示,则化简|a+1|+|a|的结果为()A.1 B.2 C.2a+1 D.﹣2a﹣111.已知|n+2|+(5m﹣3)2=0,则关于x的方程10mx+4=3x+n的解是x=()A.2 B.﹣2 C.D.﹣12.某商店把一商品按标价的九折出售(即优惠10%),仍可获利20%,若该商品的标价为每件28元,则该商品的进价为()二、填空题(共6小题,每小题3分,满分18分)13.﹣7+4=.14.某天最低气温是﹣8℃,最高气温比最低气温高9℃,则这天的最高气温是℃.15.若关于a,b的多项式5(a2﹣2ab+b2)﹣(a2+mab﹣b2)中不含有ab项,则m=.16.甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:从2002~2006年,这两家公司中销售量增长较快的是公司.17.已知a,b互为相反数,c,d互为倒数,x的绝对值是2,则x4﹣(a+b+c•d)x2+(a+b)2014+(﹣c•d)2015的值为.18.用同样大小的黑色棋子按如图所示的规律摆放,第n个图形有黑色棋子枚.三、解答题(共8小题,满分66分)19.计算:(1)5×(﹣3)﹣32÷8(2)﹣2 [6+(﹣3)3].20.解方程:3x﹣5(x﹣1)=3+2(x+3)21.有这样一道题:“计算2x3﹣3x2y﹣(x3﹣2xy2+y3)+(﹣x3+4x2y﹣y3)的值,其中x=2,y=﹣1”.小明把x=2错抄成x=﹣2,但他计算的结果也是正确的,你说这是为什么?并求出正确的值.22.某校为了了解本校七年级学生课外阅读的喜好,随机抽取该校七年级部分学生进行问卷调査(每人只选一种书籍).下图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)这次活动一共调查了名学生;(2)在扇形统计图中,“其他”所在扇形的圆心角等于度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是.23.画线段AB=3cm,延长AB至C,使AC=3AB,反向延长AB至E,使AE=CE,求线段CE 的长.24.如图,已知∠AOB=140°,∠COE与∠EOD互余,OE平分∠AOD.(1)若∠COE=40°,则∠DOE=,∠BOD=;(2)设∠COE=α,∠BOD=β,请探究α与β之间的数量关系.25.某同学在对方程去分母时,方程右边的﹣2没有乘3,这时方程的解为x=2,试求a的值,并求出原方程正确的解.26.某开发公司要生产若干件新产品,需要精加工后,才能投放市场,现有红星和巨星两个加工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天可加工16件产品,巨星厂每天可加工24件产品公司每天需付红星厂每天加工费80元,巨星厂每天加工费120元.(1)这个公司要加工多少件新产品?(2)在加工过程中,公司需另派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助费,公司制定产品加工方案如下:可由一个厂单独加工完成,也可由两厂合作同时完成,请你帮助公司从所有可供选择的方案中选择一种即省钱,又省时间的加工方案.2015-2016学年某某贵港市平南县七年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.计算1÷(﹣)的结果是()A.﹣B.C.﹣5 D.5【考点】有理数的除法.【分析】根据“两数相除,同号得正,并把绝对值相除”的法则直接计算.【解答】解:1÷(﹣)=﹣5,故选C【点评】此题考查有理数的除法,解答这类题明确法则是关键,注意先确定运算的符号.2.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故A选项错误;B、旅客上飞机前的安检,意义重大,宜用全面调查,故B选项错误;C、学校招聘教师,对应聘人员面试必须全面调查,故C选项错误;D、了解全市中小学生每天的零花钱,工作量大,且普查的意义不大,不适合全面调查,故D选项正确.故选D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列计算正确的是()A.2(a+b)=2a+b B.3x2﹣x2=2 C.﹣(m﹣n)=﹣m+n D.a+2a2=3a3【考点】合并同类项;去括号与添括号.【分析】根据合并同类项,系数相加字母和字母的指数不变,去括号的法则,可得答案.【解答】解:A、括号内的每一项都乘以括号前的系数,故A错误;B、合并同类项,系数相加字母和字母的指数不变,故B错误;C、括号前是负数去括号全变号,故C正确;D、不是同类项不能合并,故D错误;故选:C.【点评】本题考查了合并同类项,合并同类项,系数相加字母和字母的指数不变,注意括号前是负数去括号全变号,括号前是正数去括号不变号.4.如果a和2b互为相反数,且b≠0,那么a的倒数是()A.﹣B.C.﹣D.2b【考点】倒数;相反数.【分析】根据相反数和为零可得a+2b=0,进而得到a=﹣2b,再根据倒数之积等于1可得答案.【解答】解;∵a和2b互为相反数,∴a+2b=0,∴a=﹣2b,∴a的倒数是﹣,故选:A.【点评】此题主要考查了相反数和倒数,关键是掌握倒数:乘积是1的两数互为倒数.5.已知多项式5x2y m+1+xy2﹣3是六次多项式,单项式﹣7x2n y5﹣m的次数也是6,则n m=()A.﹣8 B.6 C.8 D.9【考点】多项式;单项式.【分析】利用单项式以及多项式次数的确定方法得出关于m,n的等式进而求出答案.【解答】解:∵多项式5x2y m+1+xy2﹣3是六次多项式,单项式﹣7x2n y5﹣m的次数也是6,∴,解得:,故n m=23=8.故选:C.【点评】此题主要考查了多项式与单项式的次数,正确掌握多项式次数确定方法是解题关键.6.如图是交通禁止驶入标志,组成这个标志的几何图形有()A.圆、长方形B.圆、线段 C.球、长方形D.球、线段【考点】认识平面图形.【分析】根据平面图形:一个图形的各部分都在同一个平面内可得答案.【解答】解:根据图形可得组成这个标志的几何图形有长方形、圆.故选A.【点评】此题主要考查了平面图形,关键是掌握平面图形的定义.7.如图,甲、乙两地之间有多条路可走,那么最短路线的走法序号是()A.①﹣④B.②﹣④C.③﹣⑤D.②﹣⑤【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质进行解答即可.【解答】解:由图可知,甲乙两地之间的四条路只有②﹣④是线段,故最短路线的走法序号是②﹣④.故选:B.【点评】本题考查的是线段的性质,正确掌握两点之间线段最短是解题关键.8.如图,∠AOC,∠BOD都是直角,∠AOD:∠AOB=3:1,则∠BOC的度数是()A.22.5°B.45° C.90° D.135°【考点】角的计算.【分析】根据题意设∠AOB和∠AOD分别为x、3x,根据题意列出方程,解方程即可.【解答】解:设∠AOB和∠AOD分别为x、3x,由题意得,x+90°=3x,解得x=45°,则∠AOB=45°,故∠BOC=∠AOC﹣∠AOB=45°.故选B.【点评】本题考查的是角的计算,正确读懂图形、灵活运用数形结合思想是解题的关键.9.如图所示是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多 B.乙户比甲户多C.甲、乙两户一样多 D.无法确定哪一户多【考点】扇形统计图.【专题】压轴题;图表型.【分析】根据扇形图的定义,本题中的总量不明确,所以在两个图中无法确定哪一户多.【解答】解:因为两个扇形统计图的总体都不明确,所以A、B、C都错误,故选:D.【点评】本题考查的是扇形图的定义.利用圆和扇形来表示总体和部分的关系用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.10.已知实数a在数轴上的位置如图所示,则化简|a+1|+|a|的结果为()A.1 B.2 C.2a+1 D.﹣2a﹣1【考点】整式的加减;绝对值;实数与数轴.【分析】根据点a在数轴上的位置判断出其符号,再去绝对值符号,合并同类项即可.【解答】解:∵由图可知,﹣1<a<0,∴a+1>0,∴原式=a+1﹣a=1.故选A.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.11.已知|n+2|+(5m﹣3)2=0,则关于x的方程10mx+4=3x+n的解是x=()A.2 B.﹣2 C.D.﹣【考点】解一元一次方程;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题;一次方程(组)及应用.【分析】利用非负数的性质求出m与n的值,代入方程计算即可求出解.【解答】解:∵|n+2|+(5m﹣3)2=0,∴m=,n=﹣2,代入方程得:6x+4=3x﹣2,移项合并得:3x=﹣6,解得:x=﹣2,故选B.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.某商店把一商品按标价的九折出售(即优惠10%),仍可获利20%,若该商品的标价为每件28元,则该商品的进价为()【考点】一元一次方程的应用.【专题】销售问题.【分析】设该商品的进价是x元.则实际售价为(1+20%)x.【解答】解:设该商品的进价是x元,由题意得:(1+20%)x=28×(1﹣10%),解得:x=21故选A.【点评】本题考查一元一次方程的应用,要注意寻找等量关系,列出方程.二、填空题(共6小题,每小题3分,满分18分)13.﹣7+4= ﹣3 .【考点】有理数的加法.【专题】计算题;实数.【分析】根据异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小绝对值,计算可得.【解答】解:﹣7+4=﹣(7﹣4)=﹣3.故答案为:﹣3.【点评】本题主要考查有理数加法法则的运用,先确定符号、再确定绝对值是关键.14.某天最低气温是﹣8℃,最高气温比最低气温高9℃,则这天的最高气温是 1 ℃.【专题】计算题;实数.【分析】根据题意列出算式,按照异号两数相加,取绝对值较大加数的符号,用较大绝对值减较小绝对值可得结果.【解答】解:∵最低气温是﹣8℃,最高气温比最低气温高9℃,∴最高气温为:﹣8+9=+(9﹣8)=1;故答案为:1.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.15.若关于a,b的多项式5(a2﹣2ab+b2)﹣(a2+mab﹣b2)中不含有ab项,则m= ﹣10 .【考点】整式的加减.【分析】先去括号,再合并同类项,令ab的系数等于,求出m的值即可.【解答】解:原式=5a2﹣10ab+5b2﹣a2﹣mab+b2=4a2﹣(10+m)ab+6b2.∵不含有ab项,∴10+m=0,解得m=﹣10.故答案为:﹣10.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.16.甲、乙两家汽车销售公司根据近几年的销售量,分别制作如下统计图:从2002~2006年,这两家公司中销售量增长较快的是甲公司.【专题】图表型.【分析】结合折线统计图,求出甲、乙各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2006年的销售量约为510辆,2002年约为100辆,则从2002~2006年甲公司增长了510﹣100=410辆;乙公司2006年的销售量为400辆,2002年的销售量为100辆,则从2002~2006年,乙公司中销售量增长了400﹣100=300辆;则甲公司销售量增长的较快.【点评】本题单纯从折线的陡峭情况来判断,很易错选乙公司;但是两幅图中横轴的组距选择不一样,所以就没法比较了,因此还要抓住关键.17.已知a,b互为相反数,c,d互为倒数,x的绝对值是2,则x4﹣(a+b+c•d)x2+(a+b)2014+(﹣c•d)2015的值为11 .【考点】代数式求值;相反数;绝对值;倒数.【专题】计算题;实数.【分析】利用相反数,绝对值,以及倒数的定义求出a+b,cd,x的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,x=2或x=﹣2,则原式=16﹣4+0﹣1=11.故答案为:11.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.用同样大小的黑色棋子按如图所示的规律摆放,第n个图形有黑色棋子3(n+1)枚.【考点】规律型:图形的变化类.【分析】根据图中所给的黑色棋子的颗数,找出其中的规律,根据规律列出式子,即可求出答案【解答】解:第一个图需棋子6,第二个图需棋子9,第三个图需棋子12,第四个图需棋子15,第五个图需棋子18,…第n个图需棋子3(n+1)枚.故答案为:3(n+1).【点评】此题考查了图形的变化规律,关键是通过归纳与总结,从特殊到一般得到其中的规律,利用规律解决问题.三、解答题(共8小题,满分66分)19.计算:(1)5×(﹣3)﹣32÷8(2)﹣2 [6+(﹣3)3].【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣15﹣4=﹣19;(2)原式=﹣16﹣×(6﹣27)=﹣16﹣2+9=﹣18+9=﹣9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:3x﹣5(x﹣1)=3+2(x+3)【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得3x﹣5x+5=3+2x+6,移项合并得﹣4x=4,系数化为1得x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.有这样一道题:“计算2x3﹣3x2y﹣(x3﹣2xy2+y3)+(﹣x3+4x2y﹣y3)的值,其中x=2,y=﹣1”.小明把x=2错抄成x=﹣2,但他计算的结果也是正确的,你说这是为什么?并求出正确的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+4x2y﹣y3)=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+4x2y﹣y3=x2y﹣2y3,化简后的结果含x的项只是出现x2,且22=(﹣2)2,∴小明把x=2错抄成x=﹣2,计算的结果也是正确的;当x=2,y=﹣1时,原式=22×(﹣1)﹣2×(﹣1)3=﹣4+2=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.某校为了了解本校七年级学生课外阅读的喜好,随机抽取该校七年级部分学生进行问卷调査(每人只选一种书籍).下图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)这次活动一共调查了200 名学生;(2)在扇形统计图中,“其他”所在扇形的圆心角等于36 度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是180人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图和扇形统计图结合进行计算;(2)首先计算小说的人数,再进一步计算其它的人数,从而根据圆心角=(其它人数÷总数)×360°;(3)根据具体数目补全条形统计图;(4)首先计算“科普常识”的百分比,进一步用样本估计总体.【解答】解:(1)80÷40%=200(名).所以,一共调查了200名学生.(2)20÷200=10%,360°×10%=36°.所以,“其他”所在扇形的圆心角的度数为36°.(3)“科普常识”的学生人数200﹣80﹣40﹣20=60人.根据上述具体数据进行正确画图:(4)600×=180(名).若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是180名.【点评】本题主要考查了条形统计图,扇形统计图及用样本估计总体.解题的关键是能从条形统计图,扇形统计图准确找出数据.23.画线段AB=3cm,延长AB至C,使AC=3AB,反向延长AB至E,使AE=CE,求线段CE 的长.【考点】两点间的距离.【分析】根据题意画出图形,分别求出AC、AE的长,计算即可.【解答】解:如图:∵AC=3AB,AB=3cm,∴AC=9cm,∵AE=CE,∴AE=AC=4.5cm,∴CE=A E+AC=13.5cm.【点评】本题考查的是两点间的距离的计算,正确理解题意、灵活运用数形结合思想是解题的关键.24.如图,已知∠AOB=140°,∠COE与∠EOD互余,OE平分∠AOD.(1)若∠COE=40°,则∠DOE=50°,∠BOD=40°;(2)设∠COE=α,∠BOD=β,请探究α与β之间的数量关系.【考点】余角和补角.【分析】(1)根据互余的概念求出∠EOD,根据角平分线的定义求出∠AOD,结合图形计算即可;(2)根据互余的概念用α表示∠EOD,根据角平分线的定义求出∠AOD,结合图形列式计算即可【解答】解:(1)∵∠COE与∠EOD互余,∠COE=40°,∴∠EOD=90°﹣40°=50°,∵OE平分∠AOD,∴∠AOD=2∠AOE=100°,∴∠BOD=∠AOB﹣∠AOD=40°,故答案为:50°;40°;(2)∵∠COE=α,且∠COE与∠EOD互余,∴∠EOD=90°﹣α,∵OE平分∠AOD∴∠AOD=2,∴β+2=1400解得,β=2α﹣40°.【点评】本题考查的是余角和补角的概念和性质,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.25.某同学在对方程去分母时,方程右边的﹣2没有乘3,这时方程的解为x=2,试求a的值,并求出原方程正确的解.【考点】解一元一次方程.【分析】某同学在对方程去分母时,方程右边的﹣2没有乘3,这时方程的解为x=2,说明x=2是方程2x﹣1=x+a﹣2的解,把x=2代入求得a的值即可.再把a的值代入原方程,求出原方程正确的解.【解答】解:根据题意得,x=2是方程2x﹣1=x+a﹣2的解,∴把x=2代入2×2﹣1=2+a﹣2,得a=3.把a=3代入到原方程中得,整理得,2x﹣1=x+3﹣6,解得x=﹣2.【点评】本题考查了一元一次方程的解法,是基础知识要熟练掌握.26.某开发公司要生产若干件新产品,需要精加工后,才能投放市场,现有红星和巨星两个加工厂都想加工这批产品,已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天可加工16件产品,巨星厂每天可加工24件产品公司每天需付红星厂每天加工费80元,巨星厂每天加工费120元.(1)这个公司要加工多少件新产品?(2)在加工过程中,公司需另派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助费,公司制定产品加工方案如下:可由一个厂单独加工完成,也可由两厂合作同时完成,请你帮助公司从所有可供选择的方案中选择一种即省钱,又省时间的加工方案.【考点】一元一次方程的应用.【专题】工程问题;优选方案问题.【分析】(1)设这个公司要加工x件新产品,则红星厂单独加工这批产品需天,巨星厂单独加工这批产品需要天,根据题意找出等量关系:红星厂单独加工这批产品需要的天数﹣巨星厂单独加工这批产品需要的天数=20,根据此等量关系列出方程求解即可.(2)应分为三种情况讨论:①由红星厂单独加工;②由巨星厂单独加工;③由两场厂共同加工,分别比较三种情况下,所耗时间和花费金额,求出即省钱,又省时间的加工方案.【解答】解:(1)设这个公司要加工x件新产品,由题意得:﹣=20,解得:x=960(件),答:这个公司要加工960件新产品.(2)①由红星厂单独加工:需要耗时为=60天,需要费用为:60×(5+80)=5100元;②由巨星厂单独加工:需要耗时为=40天,需要费用为:40×=5000元;③由两场厂共同加工:需要耗时为=24天,需要费用为:24×(80+120+5)=4920元.所以,由两厂合作同时完成时,即省钱,又省时间.【点评】本题主要考查一元一次方程的应用,关键在于理解清楚题意,找出等量关系列出方程.对于要求最符合要求类型的题目,应将所有方案,列出来求出符合题意的那一个即可.。
2009-2010学年七年级数学上期末测试试卷(含答案)人教版

2009-2010学年七年级上期末测试试卷总分100分,时间120分钟一、选择题(每题2分,共16分)1.绝对值不大于5的所有整数的积为( ) A .120 B .-14400 C .-576 D .02.如果a ,b 互为相反数,x ,y 互为倒数,则xy b a 2)(++的值是() A .2 B .3 C .3.5 D .4 3.若a <0,则化简a a a a aa++-的结果为( )A .0B .-1C .1D .24.用一副三角板画角,不能画出的角的度数是()A .15°B .75°C .145°D .165° 5.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式6.桌上放着一个茶壶,4个同学分别从前、后、左、右四个方向观察,请指出图1中右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②7.数a ,b 在数轴上的位置如图2所示,则b a +是() A .正数 B .零 C .负数 D .都有可能8.在二行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点),在每一种翻动方式中,骰子不能后退.开始时骰子如图(3)那样摆放,朝图1图2图(3)图(4)上的点数是2;最后翻动到如图(4)所示的位置,此时骰子朝上的点数不可能...是下列数中的( )A .5B .4C .3D .1二、填空题(每题3分,共30分)9.每天供给地球光和热的太阳与我们的距离非常的遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为千米.10.52xy -的系数是.11.2009.20是一个近似数,它精确到____________位,有________个有效数字. 12.若72+-n m b a与443b a -是同类项,则m-n= .13.已知(a +1)2+|b -2|=0,则1+ab 的值等于. 14.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是.15.如图,点A 、O 、B 在一条直线上,且∠AOC =48°32′,OD 平分∠AOC 、,则图中∠BOD=度.16.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水瓶.17.平面上有任意三点,过其中两点画直线,共可以画条.18.我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中21110121202=⨯+⨯+⨯等于十进制的数6,543210110101121202120212=⨯+⨯+⨯+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的数是.(注:00101,21==)三、解答题(共10大题,54分) 19.计算(每小题3分,共12分)AO BC D 第15题(1)9.5 5.2(0.1)8.4 4.8-++-++ (2)13131()2424864-+-⨯(3))]4()2[(32322---÷-- (4)32423()633⎡⎤-⨯-⨯--⎢⎥⎣⎦20.解下列方程(每小题3分,共6分)(1))2(37)1(26+-=--x x x x (2) 1615312=--+x x21.(本题4分)已知多项式5422(1)3(2)3x m x x n x +++--+不含x 的偶次项,求多项式2222()()m mn n m m mn n n +-+--++的值.22.(本题4分)一个角的补角加上24º,恰好等于这个角的5倍,求这个角的度数.23.(本题4分)已知:线段AB =6厘米,点C 是AB 的中点,点D 在AC 的中点,求线段BD 的长.ABCD25.(本题4分)如图,∠AOB = 110°,∠COD = 70°,OA 平分∠EOC , OB 平分∠DOF ,求∠EOF 的大小.F EDCB OA26.(本题5分)海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫汐,合称潮汐,潮汐与人类的生活有着密切的联系,下面是某港口从0时到12时的水深情况.①6点时水深米,12点时 水深米.②大约时港口的水最深, 深度约是米.③大约时港口的水最浅, 深度约是米.④根据该折线统计图,说一说这个港口从0时水深的变化情况: .27.(本题5分)如图所示的运算程序中,若开始输入的x 值为48,请回答下列问题:(1)第1次输出的结果为,第2次输出的结果为,……(2)第2009次输出的结果为___________.28.(本题6分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%. (1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?(第27题)参考答案 一、选择题 1-8DABCDACD 二、填空题9.×710千米 10.51-11.百分位,6 12.9 13.-1 14.125元 15.155°44′ 16.3 17.1条或3条 18.43 三、解答题 19.(1)8.8;(2)1624或14524;(3)74-;(4)24 20.(1)1x =-;(2)3x =- 21.1 22.342311=AD 24分25.2627.(28.(1)2007年销量为a 万台,则a(1+40%)=350,a =250(万台). (2)设销售彩电x 万台,则销售冰箱 23x 万台,销售手机(350- x-23x)万台.由题意得: 1500x+2000·23x +800·(350- x-23x)=500000. 解得x =88. 所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部. ∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元), 130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元.。
最新-广西贵港市平南县大安镇第二初级中学七年级数学

图(2)广西贵港市平南县大安镇第二初级中学七年级数学综合测试题(3)一、填空题:1、单项式322ab -的系数是 , 次数是2、(1)22)3(y x -= (2)0222+-=3、等腰三角形一个角为50度,则其底角= 度4、写出一个至少具有2条对称轴的图形名称5、长方形的周和为4a+2b ,宽为a-b ,则它的长是6、一个正方形的棱长是2102⨯毫米,它的体积是 毫米37、地球距月球大约是51084.3⨯千米,一种飞行器的速度大约是2108⨯千米/时,如果飞行器从地球飞到月球,大约要 天。
8、2000年我国的人口大约是910295.1⨯,这个近似数是精确到 位,有 个有效数字。
8、镜子对面有一只钟,某人在镜子中看到钟的时间是9:30,则此时实际时间是 9、一个角为60°,且具有对称轴的三角形是 三角形。
10、如图,AB ∥D ,EF ⊥D ,∠1=50°,则∠EFG= ° 11、圆周率π-3.1415926……,用四舍止入法精确到0.0001数字。
12、某电视台综艺节目接到热线电话4500个,现要从中选取“幸运观众”30名,小颖打通了一次热线电话,那么她成为“幸运观众”3的概率是 13、如图(1):△ABC 中,∠ACB=90°,∠B 与∠2互余,则∠1与∠B 的关系是14、已知:a+b=6,ab=3,则__________22=+b a10、直角三角形两锐角的平分线交成的钝角是 度15、若三角形的三边长分别是5、8、x ,则x 的值小于 且大于 。
16、如图(2):△ABC 中,∠ACB=90°,DB 是∠ABC 的平分线,点E 是AB 的中点,且DE ⊥AB ,则图中全等三角形是 。
17、如图(3):∠CAB=∠DAE ,要使△ABD ≌△ACE ,需加的两个条件是 二、选择题:1、下列条件中,能判定两个直角三角形全等的是( )(A ) 一锐角对应相等(B )两锐角对应相等 (C ) 一条边对应相等(D )两条直角边对应相等AEBCDA EBC D图(3)2、若三角形三边的长是三个连续的自然数,其周长l 满足10<l<22,则这样的三角形有( )(A ) 2个(B )3个(C )4个(D )5个3、△ABC 中,AD ⊥BC ,AB=C ,AE=F ,则图中全等三角形的对数有( ) (A ) 5对(B )6对(C )7对(D )8对4、下列计算正确的是 ( )(A )229)3)(3(y x y x y x -=+-(B )9)9)(9(2-=+-x x x (C )22))((y x y x y x -=+---(D )41)21(22-=-x x 5、一种细菌半径是0.000187米,用科学记数法表示为( )(A )41047.0-⨯米(B )5107.4-⨯米(C )6107.4-⨯米(D )5107.4⨯-米 6、若代数式x x 322+的值是5,则代数式9642-+x x 的值是( )(A ) 10(B )1(C )-4(D )-87、某商场为了促销,设立了一自由转动的转盘供顾客摇奖,若顾客购物满200元,就可转动一次转盘,转盘被等分成25个扇形,其中2个扇形涂满了红色,3个扇形涂满了黄色,6个扇形涂满了绿色,若转盘停止后,指针对准红、黄或绿色区域,顾客就可分别获得100元、50元、20元的奖券,其他区域没有奖券,甲顾客购物220元,则他获得 奖券的概率是( ) (A )252(B )253(C )256(D )2511 8、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( ) (A )1个(B )2个(C )3个(D )4个 三、解下列各题题:1、))(2(y x y x -+2、)2)(2(2)32(2+---x x x 3、)2)(2(+++-y x y x4、如图:长为10cm 宽为6cm 的长方形,在4个角剪去4个边长为x 的小正方形,按折痕做一个有底无盖的长方体盒子,试求盒子的体积.四、作图题:已知△ABC ,如图以△ABC 的一边为边作三角形,使所作的三角形与△ABC 全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(上)数学期末复习测试(六)
班级___________-姓名___________成绩___________
一、耐心填一填,一锤定音!(每小题3分,共24分)
1.如果水位上升1.2米,记作 1.2+米;那么水位下降0.8米,记作_______米.
2.现有四个有理数3,4,6-,10,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其运算的结果是24,请你写出一个符合条件的算式_______. 3.瑞士中学教师巴尔末成功地从光谱数据
95,1612,2521,36
32
,中得到巴尔末公式,从而打开了光谱
奥妙的大门.请你安这种规律写出第七个数据是_______.
4.已知α∠与β∠互余,且40α=∠,则β∠的补角为_______度.
5.如图是一个数表,现用一个矩形在数表中任意框出a b
c d
个数, 则(1)a ,c 的关系是:_______;
(2)当32a b c d +++=时,a =_______.
6.某住宅小区六月份1至6日每天用水量变化情况如图2所示,那么这6天的平均用水量是_______.
7.如图,
已知直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOC=700,则∠BOD 的度数等于_______. 8.如图是一回形图,其回形通道的宽和OB 的长均为1,回形线与射线OA 交于点A 1,A 2,A 3.若从
O 点到A 1点的回形线为第1圈(长为7),从A 1点到A 2点的回形线为第2圈,,依此类推.则第10圈
的长为_______.
二、精心选一选,慧眼识金!(每小题3分,共24分) 1.23表示:A.222⨯⨯
B.23⨯ C.33⨯ D.222++ ( )
2.继短住之后,音乐类产品逐步成为我国手机用户的最爱和移动通住的增长点.目前中国移动彩铃声用户已超过40000000,占中国移动
2亿余用户总数的近20%,40000000用科学记数法可表示为:
A.7
4.010⨯ B.7
4010⨯ C.40×109
D.0.4×109 ( )
3.下列调查,适合用全面调查方法的是( )
A.了解一批炮弹的杀傻半径 B.了解湘潭市每天的流动人口数
C.保证“神舟6号”载入飞船的成功发射 D.要了解石家庄市居民日平均用水量
4.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( ) A.x=150×20%
B.25%x=150
C.150-x=25%x
D.150-x=25%
5.学校秋季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下
表:
新鞋码(y)
225245
280原鞋码(x)353946
如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是()
A.270B.255C.260D.265
6.如图是由一些相同的小正方体构成的几何体从
不同方向看得到的平面图形,在这个几何体中,小
正方体的个数是()
A.7B.6C.5D.4
7.由梅州到广州的某一次列车,运行途中停靠的
车站依次是:梅州
____
兴宁
____
华城
____
河
源
____
惠州
____
东莞
____
广州,那么要为这次列车制作的火车票有()
A.6种B.12种C.21种D.42钟
8.法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算78
⨯和89
⨯的两个示例.若用法国的“小九九”计算79
⨯,左、右手依次伸出手指的个数是()
A.2,3B.3,3C.2,4D.3,4
三、用心做一做,马到成功!(本大题共52分)
1.(本题8分)(1)计算-9÷3+(
1
2-
2
3)+3
2;(2)解方程
12
2
23
x x
x
-+
-=-.
2.(本题8分)如图是一个正方体的展开图,
标注了字母A的面是正方体的正面,如果正方
体的左面与右面所标注式子的值相等,求x的
值.
3.(本题8分)2004年全国普通高校招生报名
人数为723万,除少部分参加各省中专、中职、
中技考试的考生外,参加统考的考生中有文史
类、理工类、文理综合类.下面的条形统计图
(如图7)反映了2004年全国普通高校招生报
名人数的部分情况,请认真阅读图表,解答下
78?
⨯=
左手右手
两手伸出的手指数的和为
5,未伸出的手指数的积为6,
7856
∴⨯=.
(7810(23)3256)
⨯=⨯++⨯=
89?
⨯=
左手右手
两手伸出的手指数的和为
7,未伸出的手指数的积为2,
8972
∴⨯=.
(8910(34)2172)
⨯=⨯++⨯=
列问题:
(1)请你写出从图中获得的三个以上的信息; (2)请将该条形统计图补充完整.
4.(本题8分)我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树.若我市2005年初中毕业生中环保意识较强的有5万人,能把自己离校时的全部废纸送到回收站,使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐?
5.(本题8分)张新和李明相约到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.
6.(6分)如图,已知2BOC AOC =∠∠,OD 平分AOB ∠,且20COD =∠,求AOB ∠的度数.
7.(本题8分)据了解,火车票价按“⨯全程参考价实际乘车里程数
总里程数
”
的方法来确定.
已知A 站到H 站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H 站的里程表:
车站名
A
B C D E F G H
A
O
C
D
B
是的,我上次买了几本书,加
上办卡的费用还省了12元
听说花20元办一张会员卡,买书可享受八折优惠
各站至H 站的里程数(单位:千米) 1500 1130 910 622 402 219 72 0
例如,要确定从B 站至E 站的火车票价,其票价为
180(1130402)
87.36871500
⨯-=≈(元)
. (1)求A 站至F 站的火车票价(结果精确到1元);
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的?(要求写出解答过程) 附加题:
如图所示, 甲、乙两人在环形跑道上练习跑步, 已知环形跑道一圈长400米, 乙每秒钟跑6米, 甲的速度是乙的11
3
倍.
(1)如果甲、乙在跑道上相距8米处同时反向出发, 那么经过多少秒两人首次相遇? (2)如果甲在乙前面8米处同时同向出发, 那么经过多少秒两人首次相遇?
某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,会员每月交会员费12元,租碟费每张0.4元。
小彬经常来该店租碟,若小彬每月租碟数量为x 张。
(1) 分别写出两种租碟方式下小彬应付的租碟金额;
(2) 若小彬在一月内租24张碟,试问选用哪种租碟方式合算? (3) 小彬每月租碟多少张时选取哪种方式更合算?
七年级(上)期末 复习水平测试参考答案(B)
一、1.0.8- 2.答案不惟一,如:3(6410)24⨯-++=
3.8177
4.130
5.5a c +=或5c a -=等,5
6.32吨
7.35
8.79
二、1.A 2.A
3.C
4.C
5.D 6.C
7.D
8.C
三、1.(1)4;(2)1x =.
2.由332x x -=-,得1
2
x =-. 3.略. 4.112.5亩. 5.160元. 6.1200
7.(1)154元;(2)王大妈是D 站或G 站下车.。