二次根式练习题2含答案

合集下载

中考数学总复习《二次根式》练习题附带答案

中考数学总复习《二次根式》练习题附带答案

中考数学总复习《二次根式》练习题附带答案一、单选题1.√123÷√213×√125值为()A.1B.3C.√33D.√7 2.若√(a−b)2=b﹣a,则()A.a>b B.a<b C.a≥b D.a≤b 3.与√a3b不是同类次根式的是()A.1√abB.√baC.√ab2D.√ba34.下列运算正确的是()A.√3+3=3√3B.4√2−√2=4C.√2+√3=√5D.3√3−√3=2√35.若代数式1x−1+√x有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1 6.a、b在数轴上的位置如图所示,那么化简√(b−a)2的结果是()A.a-b B.a+b C.b-a D.-a-b7.设实数a,b在数轴上对应的位置如图所示,化简√a2+|a+b|的结果是()A.-2a+b B.2a+b C.-b D.b8.若√3−m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>39.下列运算正确的是()A.(x−y)2=x2−y2B.|√3−2|=2−√3C.√8−√3=√5D.﹣(﹣a+1)=a+110.已知2<a<4,则化简√1−2a+a2+√a2−8a+16的结果是() A.2a﹣5B.5﹣2a C.﹣3D.311.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4 12.下列计算正确的是()A.(m−n)2=m2−n2B.(2ab3)2=2a2b6C.√8a3=2a√a D.2xy+3xy=5xy 二、填空题13.计算:√45﹣√25× √50=.14.若√12x是一个整数,则x可取的最小正整数是3.(判断对错)15.计算:√24−√12√3=.16.如果x2﹣3x+1=0,则√x2+1x2−2的值是.17.化简:√75=.18.已知实数a,b,c在数轴上的位置如图所示,化简代数式√a2−|a+c|+√(b−c)2−|−b|三、综合题19.完成下列问题:(1)若n(n≠0)是关于x的方程x2+mx+2n=0的根,求m+n的值;(2)已知x,y为实数,且y= √2x−5+√5−2x﹣3,求2xy的值.20.阅读材料,解答问题:(1)计算下列各式:①√4×9=,√4×√9=;②√16×25=,√16×√25=.通过计算,我们可以发现√a×b=(a>0,b>0)从上面的结果可以得到:√8=√2×√4=2√2,√12=√3×√4=2√3(2)根据上面的运算,完成下列问题①化简:√24②计算:√27+√48③化简:√a2b(a>0,b>0)21.在数学课外学习活动中,小明和他的同学遇到一道题:已知a=12+√3,求2a2−8a+1的值.他是这样解答的:∵a=2+√3=√3(2+√3)(2−√3)=2−√3,∴a−2=−√3∴(a−2)2=3,a2−4a+4=3∴a2−4a=−1∴2a2−8a+1=2(a2−4a)+1=2×(−1)+1=−1.请你根据小明的解析过程,解决如下问题:(1)1√3+√2=;(2)化简 √2+1+√3+√2√4+√3⋯+√256+√255 ; (3)若 a =√10−3,求 a 4−6a 3+a 2−12a +3 的值. 22.已知 x =√3+12 , y =√3−12与 m =xy 和 n =x 2−y 2 . (1)求m ,n 的值;(2)若 √a −√b =m +72, √ab =n 2 求 √a +√b 的值. 23.计算: (1)√135•2 √3 •(﹣ 12 √10 ); (2)√3a 2b •( √b a ÷2 √1b). 24.计算下列各题 (1)计算:( 12 )﹣2﹣6sin30°﹣( √7−√5)0+ √2 +| √2 ﹣ √3 | (2)化简:( x+2x 2−2x ﹣ x−1x 2−4x+4 )÷ x−4x ,然后请自选一个你喜欢的x 值,再求原式的值.参考答案1.【答案】A2.【答案】D3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】√514.【答案】对15.【答案】2√2−216.【答案】√517.【答案】5√318.【答案】019.【答案】(1)将x=n 代入方程x 2+mx+2n=0得n 2+mn+2n=0,则n(n+m+2)=0 因为n≠0,所以n+m+2=0即m+n=-2.(2)因为y=√2x −5+√5−2x -3有意义,则{2x −5≥05−2x ⩾0解得{x ⩾52x ≤52则x=52 所以y=0+0-3=-3即2xy=2×52×(-3)=-15. 20.【答案】(1)6;6;20;20;√a ×√b(2)解:①√24=√4×6=√4×√6=2√6;②√27+√48=√3×9+√3×16=√3×√9+√3×√16=3√3+4√3=7√3 ;③√a 2b =√a 2⋅√b =a √b (a >0,b >0).21.【答案】(1)√3−√2(2)解:原式 =√2−1+√3−√2+√4−√3+⋯+√256−√255=−1+√2−√2+√3−√3+√4−⋯−√255+√256=√256−1=16−1=15 ;(3)解: ∵ a =√10−3 =√10+3 ∴a −3=√10∴(a −3)2=10即 a 2−6a +9=10 .∴a 2−6a =1 .∴a 4−6a 3=a 2∴a 4−6a 3+a 2−12a +3=2a 2−12a +3=2(a 2−6a)+3=2+3=5 .22.【答案】(1)解:由题意得, m =xy =√3+12×√3−12=12 n =(x +y)(x −y)=(√3+12+√3−12)(√3+12−√3−12)=√3 (2)解:由(1)得, √a −√b =4 √ab =3 ∴(√a +√b)2=(√a −√b)2+4√ab =42+4×3=28∵√a +√b >0∴√a +√b =2√723.【答案】(1)解: √135 •2 √3 •(﹣ 12 √10 ) =2×(﹣ 12 ) √135×3×10 =﹣ √16×3=﹣4 √3(2)解: √3a 2b •( √b a ÷2 √1b)= √3a2b × √ba× 12× √b= √3424.【答案】(1)解:原式=4﹣6× 12﹣1+ √2+ √3﹣√2 = √3;(2)解:原式=[x+2x(x−2)﹣x−1(x−2)2]•xx−4= (x+2)(x−2)−x(x−1)x(x−2)2•xx−4=x−4x(x−2)2•xx−4=1 (x−2)2当x=10时,原式= 1 64.。

二次根式练习题及参考答案

二次根式练习题及参考答案

二次根式练习题及参考答案一、选择题1. 下列各式中,是二次根式的是()A. √2B. 2+√3C. (√2)^2D. 1/√22. 二次根式的定义域是()A. 正实数集B. 全体实数集C. 负实数集D. 零集3. 已知a为正数,b为非负数,则必有()A. √a ≠ √bB. √a > √bC. √a < √bD. √a = √b4. 如果√a = √b,则()A. a = bB. a ≤ bC.a ≥ bD. a > b5. 下列哪个数是二次根式()A. 2B. 49C. 5^2D. 3^2二、计算题1. 计算√(3+2√2) 的值。

解答:将√(3+2√2) 分解成 r+s 的形式,即等于√2 + r + s,其中 r 和 s 都是实数。

则有:√2 + r + s = √(3+2√2)√2 = √(3+2√2) - r - s为了消去开方,上式两边平方可得:2 =3 + 2√2 - 2(r+s) + r^2 + s^2 + 2rs2 =3 + r^2 + s^2 + 2rs + √2(2 - 2(r+s))由于√2和(2 - 2(r+s))都是独立存在的,所以它们的系数和常数必须分别为零。

根据此条件可以整理出以下两个方程:2 - 2(r+s) = 02 =3 + r^2 + s^2 + 2rs解得 r = 1,s = 0。

因此:√(3+2√2) = √2 + 1 + 0 = √2 + 12. 计算(√3+1)(√3-1) 的值。

解答:使用公式 (a + b)(a - b) = a^2 - b^2,将a = √3,b = 1 代入,得到:(√3+1)(√3-1) = (√3)^2 - 1^2= 3 - 1= 2三、解答题1. 计算√18 - √8 的值。

解答:将√18 和√8 分别化简,得到:√18 = √(9 × 2) = √9 × √2 = 3√2√8 = √(4 × 2) = √4 × √2 = 2√2因此,√18 - √8 = 3√2 - 2√2 = √22. 计算√(6 + 3√2) + √(6 - 3√2) 的值。

二次根式测试题及答案

二次根式测试题及答案

二次根式测试题及答案
一、选择题
1. 以下哪个选项不是二次根式?
A. √3
B. √x
C. √x^2
D. √x^3
答案:D
2. 计算√(4×9)的结果是什么?
A. 6
B. 12
C. √36
D. √4×√9
答案:B
3. 以下哪个表达式等于√(2x)?
A. √2x
B. √x×√2
C. √2×√x
D. √2+√x
答案:C
二、填空题
1. 计算√(25)的结果是______。

答案:5
2. 如果√(a+b) = √a + √b,那么a和b的值分别是______。

答案:0
三、解答题
1. 化简下列二次根式:
√(32) = ______。

答案:4√2
2. 解方程:
√x + 3 = 7。

答案:x = 16
四、证明题
1. 证明√2是一个无理数。

答案:略
五、应用题
1. 一个正方形的面积是50平方厘米,求这个正方形的边长。

答案:边长为√50厘米,即5√2厘米。

六、综合题
1. 一个直角三角形的两条直角边分别为3厘米和4厘米,求斜边的长度。

答案:斜边长度为5厘米,根据勾股定理,√(3^2 + 4^2) = √(9
+ 16) = √25 = 5。

七、附加题
1. 如果一个数的平方根等于这个数本身,这个数是多少?
答案:0或1(因为√0 = 0,√1 = 1)
请注意,以上测试题及答案仅供参考,具体题目和答案应根据实际教学大纲和教材内容进行调整。

二次根式测试题及答案

二次根式测试题及答案

二次根式测试题及答案一、选择题(每题 3 分,共 30 分)1、下列式子一定是二次根式的是()A √xB √x²+1C √x² 1D √1 / x答案:B解析:二次根式的被开方数必须是非负数。

选项 A 中,当 x < 0 时,√x 无意义;选项 C 中,当-1 < x < 1 时,x² 1 < 0 ,√x² 1 无意义;选项 D 中,当 x < 0 时,√1 / x 无意义。

而对于选项 B,因为x² ≥ 0 ,所以 x²+1 ≥ 1 ,√x² + 1 一定有意义。

2、若√(2 a)²= a 2 ,则 a 的取值范围是()A a < 2B a >2C a ≤ 2D a ≥ 2答案:D解析:因为√(2 a)²=|2 a| ,而√(2 a)²= a 2 ,所以|2 a|= a 2 ,即2 a ≤ 0 ,解得a ≥ 2 。

3、下列计算正确的是()A √2 +√3 =√5B 2 +√2 =2√2C 3√2 √2 =3D √2 × √3 =√6答案:D解析:选项 A,√2 与√3 不是同类二次根式,不能合并;选项 B,2 与√2 不是同类二次根式,不能合并;选项 C,3√2 √2 =2√2 。

4、化简√( 5)²的结果是()A 5B 5C ± 5D 25答案:A解析:√( 5)²=| 5| = 5 。

5、若√x 1 +√1 x = 0 ,则 x 的值为()A 0B 1C 1D 2答案:B解析:因为二次根式有意义的条件是被开方数为非负数,所以 x 1 ≥ 0 且1 x ≥ 0 ,解得 x = 1 。

6、下列二次根式中,最简二次根式是()A √1 /2B √02C √2D √20答案:C解析:选项 A,√1 / 2 =√2 / 2 ;选项 B,√02 =√1 / 5 =√5 / 5 ;选项 D,√20 =2√5 。

二次根式练习10套(附答案)

二次根式练习10套(附答案)

二次根式练习01一、填空题1、下列和数1415926.3)1( .3.0)2(722)3( 2)4( 38)5(-2)6(π...3030030003.0)7(其中无理数有________,有理数有________(填序号) 2、94的平方根________,216.0的立方根________。

3、16的平方根________,64的立方根________。

4、算术平方根等于它本身的数有________,立方根等于本身的数有________。

5、若2562=x ,则=x ________,若2163-=x ,则=x ________。

6、已知ABC Rt ∆两边为3,4,则第三边长________。

7、若三角形三边之比为3:4:5,周长为24,则三角形面积________。

8、已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形。

9、如果0)6(42=++-y x ,则=+y x ________。

10、如果12-a 和a -5是一个数m 的平方根,则.__________,==m a11、三角形三边分别为8,15,17,那么最长边上的高为________。

12、直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________。

二、选择题13、下列几组数中不能作为直角三角形三边长度的是( )A. 25,24,6===c b aB. 5.2,2,5.1===c b aC.45,2,32===c b a D. 17,8,15===c b a14、小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C. 29英寸(cm 74)D .34英寸(cm 87)15、等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB. 248cmC. 224cmD. 232cm16、三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17、2)6(-的平方根是( )A .6-B .36C. ±6D. 6±18、下列命题正确的个数有:a a a a ==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( ) A .1个B. 2个C .3个D.4个19、x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B. 7C.3,7D. 1,720、直角三角形边长度为5,12,则斜边上的高( ) A. 6B. 8C.1318 D.1360 21、直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A. 2h ab =B. 2222h b a =+C.h b a 111=+ D.222111hb a =+ 22、如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2B.cm 3C.cm 4D.cm 5三、计算题23、求下列各式中x 的值:04916)1(2=-x25)1)(2(2=-x8)2)(3(3-=x27)3()4(3=--x24、用计算器计算:(结果保留3个有效数字)15)1(315)2(π-6)3( 2332)4(-四、作图题25、在数轴上画出8-的点。

100道二次根式含答案 (2)

100道二次根式含答案 (2)

100道二次根式题目及答案第一部分:简单题(共50题)1. $\\sqrt{9}$答案:32. $\\sqrt{25}$答案:53. $\\sqrt{81}$答案:94. $\\sqrt{64}$答案:85. $\\sqrt{100}$答案:106. $\\sqrt{121}$答案:11答案:128. $\\sqrt{169}$ 答案:139. $\\sqrt{196}$ 答案:1410. $\\sqrt{225}$ 答案:1511. $\\sqrt{256}$ 答案:1612. $\\sqrt{289}$ 答案:1713. $\\sqrt{324}$ 答案:18答案:1915. $\\sqrt{400}$ 答案:2016. $\\sqrt{441}$ 答案:2117. $\\sqrt{484}$ 答案:2218. $\\sqrt{529}$ 答案:2319. $\\sqrt{576}$ 答案:2420. $\\sqrt{625}$ 答案:25答案:2622. $\\sqrt{729}$ 答案:2723. $\\sqrt{784}$ 答案:2824. $\\sqrt{841}$ 答案:2925. $\\sqrt{900}$ 答案:3026. $\\sqrt{961}$ 答案:3127. $\\sqrt{1024}$ 答案:32答案:3329. $\\sqrt{1156}$ 答案:3430. $\\sqrt{1225}$ 答案:3531. $\\sqrt{1296}$ 答案:3632. $\\sqrt{1369}$ 答案:3733. $\\sqrt{1444}$ 答案:3834. $\\sqrt{1521}$ 答案:39答案:4036. $\\sqrt{1681}$ 答案:4137. $\\sqrt{1764}$ 答案:4238. $\\sqrt{1849}$ 答案:4339. $\\sqrt{1936}$ 答案:4440. $\\sqrt{2025}$ 答案:4541. $\\sqrt{2116}$ 答案:46答案:4743. $\\sqrt{2304}$ 答案:4844. $\\sqrt{2401}$ 答案:4945. $\\sqrt{2500}$ 答案:5046. $\\sqrt{2601}$ 答案:5147. $\\sqrt{2704}$ 答案:5248. $\\sqrt{2809}$ 答案:53答案:5450. $\\sqrt{3025}$答案:55第二部分:中等题(共25题)51. $\\sqrt{10} + \\sqrt{2}$答案:$\\sqrt{10} + \\sqrt{2}$52. $\\sqrt{5} + \\sqrt{20}$答案:$\\sqrt{5} + 2\\sqrt{5} = 3\\sqrt{5}$53. $\\sqrt{15} + \\sqrt{12}$答案:$\\sqrt{15} + \\sqrt{12} = \\sqrt{15} + 2\\sqrt{3}$ 54. $\\sqrt{7} - \\sqrt{8}$答案:$\\sqrt{7} - \\sqrt{8}$55. $\\sqrt{9} - \\sqrt{6}$答案:$\\sqrt{9} - \\sqrt{6} = 3 - \\sqrt{6}$答案:$\\sqrt{26} + \\sqrt{14}$57. $\\sqrt{30} - \\sqrt{10}$答案:$\\sqrt{30} - \\sqrt{10}$58. $\\sqrt{5} \\cdot \\sqrt{10}$答案:$\\sqrt{5} \\cdot \\sqrt{10} = \\sqrt{50}$59. $\\sqrt{10} \\cdot \\sqrt{2}$答案:$\\sqrt{10} \\cdot \\sqrt{2} = 2\\sqrt{5}$60. $\\sqrt{18} \\cdot \\sqrt{3}$答案:$\\sqrt{18} \\cdot \\sqrt{3} = 3\\sqrt{6}$61. $\\sqrt{32} - \\sqrt{8}$答案:$\\sqrt{32} - \\sqrt{8} = 4\\sqrt{2} - 2\\sqrt{2} = 2\\sqrt{2}$ 62. $\\sqrt{24} - \\sqrt{6}$答案:$\\sqrt{24} - \\sqrt{6} = 4\\sqrt{6} - \\sqrt{6} = 3\\sqrt{6}$答案:$(\\sqrt{2} + \\sqrt{3})^2 = 2 + 2\\sqrt{2}\\sqrt{3} + 3 = 5 +2\\sqrt{6}$64. $(\\sqrt{2} - \\sqrt{3})^2$答案:$(\\sqrt{2} - \\sqrt{3})^2 = 2 - 2\\sqrt{2}\\sqrt{3} + 3 = 5 - 2\\sqrt{6}$65. $(\\sqrt{2} + \\sqrt{3})(\\sqrt{2} - \\sqrt{3})$答案:$(\\sqrt{2} + \\sqrt{3})(\\sqrt{2} - \\sqrt{3}) = 2 - 3 = -1$66. $(\\sqrt{5} + \\sqrt{6})(\\sqrt{5} - \\sqrt{6})$答案:$(\\sqrt{5} + \\sqrt{6})(\\sqrt{5} - \\sqrt{6}) = 5 - 6 = -1$67. $3\\sqrt{2}(\\sqrt{2} - \\sqrt{3})$答案:$3\\sqrt{2}(\\sqrt{2} - \\sqrt{3}) = 3\\sqrt{2} \\cdot \\sqrt{2} -3\\sqrt{2} \\cdot \\sqrt{3} = 6 - 3\\sqrt{6}$68. $(\\sqrt{2}\\sqrt{5})(\\sqrt{3}\\sqrt{6})$答案:$(\\sqrt{2}\\sqrt{5})(\\sqrt{3}\\sqrt{6}) = \\sqrt{2\\cdot 5} \\cdot \\sqrt{3\\cdot 6} = \\sqrt{10} \\cdot \\sqrt{18} = \\sqrt{180}$69. $\\frac{\\sqrt{8}}{\\sqrt{2}}$答案:$\\frac{\\sqrt{8}}{\\sqrt{2}} = \\sqrt{4} = 2$70. $\\frac{\\sqrt{15}}{\\sqrt{5}}$答案:$\\frac{\\sqrt{15}}{\\sqrt{5}} = \\sqrt{3}$71. $\\frac{\\sqrt{18}}{\\sqrt{6}}$答案:$\\frac{\\sqrt{18}}{\\sqrt{6}} = \\sqrt{3}$72. $\\frac{\\sqrt{50}}{\\sqrt{2}}$答案:$\\frac{\\sqrt{50}}{\\sqrt{2}} = \\sqrt{25} = 5$73. $\\frac{\\sqrt{35}}{\\sqrt{5}}$答案:$\\frac{\\sqrt{35}}{\\sqrt{5}} = \\sqrt{7}$74. $\\frac{\\sqrt{40}}{\\sqrt{8}}$答案:$\\frac{\\sqrt{40}}{\\sqrt{8}} = \\sqrt{5}$75. $\\frac{\\sqrt{72}}{\\sqrt{18}}$答案:$\\frac{\\sqrt{72}}{\\sqrt{18}} = \\sqrt{4} = 2$第三部分:困难题(共25题)76. $\\sqrt{2} \\cdot \\sqrt{3} + \\sqrt{6}$答案:$\\sqrt{2} \\cdot \\sqrt{3} + \\sqrt{6} = \\sqrt{6} + \\sqrt{6} = 2\\sqrt{6}$答案:$\\sqrt{7} \\cdot \\sqrt{11} - \\sqrt{77} = \\sqrt{7\\cdot11} - \\sqrt{77} = \\sqrt{77} - \\sqrt{77} = 0$78. $(\\sqrt{3} + \\sqrt{5})^2 - (\\sqrt{3} - \\sqrt{5})^2$答案:$(\\sqrt{3} + \\sqrt{5})^2 - (\\sqrt{3} - \\sqrt{5})^2 =4\\sqrt{3}\\sqrt{5} = 4\\sqrt{15}$79. $(\\sqrt{2} + \\sqrt{5})^2 - (\\sqrt{2} - \\sqrt{5})^2$答案:$(\\sqrt{2} + \\sqrt{5})^2 - (\\sqrt{2} - \\sqrt{5})^2 =4\\sqrt{2}\\sqrt{5} = 4\\sqrt{10}$80. $\\sqrt{2\\sqrt{2}}$答案:$\\sqrt{2\\sqrt{2}} = \\sqrt{\\sqrt{2^2}\\sqrt{2}} =\\sqrt{\\sqrt{4}\\sqrt{2}} = \\sqrt{2}\\sqrt{2} = 2$81. $\\sqrt{3\\sqrt{3}}$答案:$\\sqrt{3\\sqrt{3}} = \\sqrt{\\sqrt{3^2}\\sqrt{3}} =\\sqrt{\\sqrt{9}\\sqrt{3}} = \\sqrt{3}\\sqrt{3} = 3$82. $\\sqrt{5\\sqrt{5}}$答案:$\\sqrt{5\\sqrt{5}} = \\sqrt{\\sqrt{5^2}\\sqrt{5}} =\\sqrt{\\sqrt{25}\\sqrt{5}} = \\sqrt{5}\\sqrt{5} = 5$答案:$(\\sqrt{5} + \\sqrt{3})^2 + 2\\sqrt{15} = 5 + 3 + 2\\sqrt{15} = 8 + 2\\sqrt{15}$84. $(\\sqrt{2} - \\sqrt{3})^2 + 2\\sqrt{6}$答案:$(\\sqrt{2} - \\sqrt{3})^2 + 2\\sqrt{6} = 2 - 2\\sqrt{2}\\sqrt{3} + 3 + 2\\sqrt{6} = 5 + 2\\sqrt{6}$85. $3\\sqrt{2} - \\sqrt{8}$答案:$3\\sqrt{2} - \\sqrt{8} = 3\\sqrt{2} - 2\\sqrt{2} = \\sqrt{2}$86. $2\\sqrt{3} + \\sqrt{12}$答案:$2\\sqrt{3} + \\sqrt{12} = 2\\sqrt{3} + 2\\sqrt{3} = 4\\sqrt{3}$87. $\\sqrt{8} + \\sqrt{72}$答案:$\\sqrt{8} + \\sqrt{72} = 2\\sqrt{2} + 6\\sqrt{2} = 8\\sqrt{2}$88. $\\sqrt{5}\\sqrt{10} - \\sqrt{10}$答案:$\\sqrt{5}\\sqrt{10} - \\sqrt{10} = \\sqrt{5\\cdot10} - \\sqrt{10} = \\sqrt{50} - \\sqrt{10} = 5\\sqrt{2} - \\sqrt{10}$89. $\\sqrt{3}\\sqrt{6} + \\sqrt{18}$答案:$\\sqrt{3}\\sqrt{6} + \\sqrt{18} = \\sqrt{3\\cdot6} + \\sqrt{18} =\\sqrt{18} + \\sqrt{18} = 2\\sqrt{18} = 6\\sqrt{2}$90. $\\sqrt{16} - \\sqrt{32}$答案:$\\sqrt{16} - \\sqrt{32} = 4 - 4\\sqrt{2} = 4(1 - \\sqrt{2})$91. $\\sqrt{12} - \\sqrt{20} + \\sqrt{5}$答案:$\\sqrt{12} - \\sqrt{20} + \\sqrt{5} = 2\\sqrt{3} - 2\\sqrt{5} + \\sqrt{5} = 2\\sqrt{3} - \\sqrt{5}$92. $\\sqrt{7}\\sqrt{35} - \\sqrt{7}$答案:$\\sqrt{7}\\sqrt{35} - \\sqrt{7} = \\sqrt{7\\cdot35} - \\sqrt{7} =\\sqrt{245} - \\sqrt{7}$93. $\\sqrt{50} + \\sqrt{200} - \\sqrt{8}$答案:$\\sqrt{50} + \\sqrt{200} - \\sqrt{8} = 5 + 10\\sqrt{2} - 2\\sqrt{2} = 5 + 8\\sqrt{2}$94. $5\\sqrt{2} - 2\\sqrt{18} + \\sqrt{32}$答案:$5\\sqrt{2} - 2\\sqrt{18} + \\sqrt{32} = 5\\sqrt{2} - 2\\cdot3\\sqrt{2} + 4\\sqrt{2} = 9\\sqrt{2}$95. $\\sqrt{72} - \\sqrt{18} + \\sqrt{32} - \\sqrt{8}$答案:$\\sqrt{72} - \\sqrt{18} + \\sqrt{32} - \\sqrt{8} = 6\\sqrt{2} -3\\sqrt{2} + 4\\sqrt{2} - 2\\sqrt{2} = 5\\sqrt{2}$96. $\\sqrt{3}(\\sqrt{15} - \\sqrt{5})$答案:$\\sqrt{3}(\\sqrt{15} - \\sqrt{5}) = \\sqrt{3}\\sqrt{15} -\\sqrt{3}\\sqrt{5} = \\sqrt{45} - \\sqrt{15} = 3\\sqrt{5} - \\sqrt{15}$97. $\\sqrt{2}(\\sqrt{16} - \\sqrt{8})$答案:$\\sqrt{2}(\\sqrt{16} - \\sqrt{8}) = \\sqrt{2}\\cdot4\\sqrt{2} - \\sqrt{2}\\cdot2\\sqrt{2} = 8 - 4\\sqrt{2} = 4(2 - \\sqrt{2})$98. $\\sqrt{5}(\\sqrt{12} + \\sqrt{3})$答案:$\\sqrt{5}(\\sqrt{12} + \\sqrt{3}) = \\sqrt{5}\\cdot2\\sqrt{3} + \\sqrt{5}\\sqrt{3} = 2\\sqrt{15} + \\sqrt{15} = 3\\sqrt{15}$99. $\\sqrt{7}(\\sqrt{7} + \\sqrt{11})$答案:$\\sqrt{7}(\\sqrt{7} + \\sqrt{11}) = \\sqrt{7}\\cdot\\sqrt{7} + \\sqrt{7}\\sqrt{11} = 7 + \\sqrt{77}$100. $\\sqrt{8}(\\sqrt{6} - \\sqrt{2})$答案:$\\sqrt{8}(\\sqrt{6} - \\sqrt{2}) = \\sqrt{8}\\cdot2\\sqrt{2} - \\sqrt{8}\\cdot\\sqrt{2} = 4\\sqrt{2} - 2\\sqrt{2} = 2\\sqrt{2}$结束语本文共提供了100道二次根式题目及其答案。

二次根式练习题含答案

二次根式练习题含答案
A. B.4 C. D.2
分析:直接利用二次根式的乘法运算法则求出即可.
解答:解: × = =4.
故选:B.
点评:此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.
9.(2015•山东日照,第2题3分)) 的算术平方根是( )
A.2B.±2C. D.±
考点:算术平方根..
专题:计算题.
分析:先求得 Байду номын сангаас值,再继续求所求数的算术平方根即可.
考点:二次根式的乘除法.
专题:计算题.
分析:原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.
解答:解:原式= = =4.
故答案为:4
点评:此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.
5.(2015•江苏南京,第7题3分)4的平方根是,算术平方根是.
【答案】±2;2.
考点:1.算术平方根;2.平方根.
解答:解:A、5a2+3a2=8a2,错误;
B、a3•a4=a7,错误;
C、(a+2b)2=a2+4ab+4b2,错误;
D、 ,正确;
故选D.
点评:此题考查同类项、同底数幂的乘法、立方根和完全平方公式,关键是根据法则计算.
14.(2015•江苏徐州,第4题3分)使 有意义的x的取值范围是( )
A.x≠1B.x≥1C.x>1D.x≥0
∴选项B不正确;
∵ ,
∴选项C不正确;
∵(a2b)3=a6b3,
∴选项D正确.
故选:D.
点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(am)n=amn(m,n是正整数);②(ab)n=anbn(n是正整数).

二次根式计算专题训练(附答案)

二次根式计算专题训练(附答案)

二次根式计算专题训练一、解答题(共30 小题)1.计算:(1)+;(2)(+)+(﹣).2.计算:(1)(π﹣3.14)0+| ﹣2| ﹣+()-2.(2)﹣4﹣(﹣).(3)( x﹣ 3)(3﹣x)﹣( x﹣ 2)2.3.计算化简:(1)++ (2)2﹣6 +3.4.计算(1)+﹣(2)÷×.5.计算:(1)×+3×2(2)2﹣6+3.6.计算:(1)()2﹣20+|﹣|(2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)7.计算(1)?(a≥0)(2)÷(3)+﹣﹣(4)(3+)(﹣)8.计算::(1)+﹣(2)3+(﹣)+÷.9.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.10.计算:(1)﹣4+(2)+2﹣(﹣)(3)( 2 +)(2﹣);(4)+﹣(﹣1)0.11.计算:(1)(3+﹣4)÷(2)+9﹣2x2.12.计算:①4+﹣+4;②( 7+4 )( 7﹣ 4 )﹣( 3 ﹣1)2.13.计算题(1)××(2)﹣+2(3)(﹣ 1﹣)(﹣+1)(4)÷(﹣)(5)÷﹣×+(6)..已知:a=,b= ,求2+3ab+b2 的值.14 a15.已知 x, y 都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9 +5﹣3;(2)2;(3)()2016(﹣)2015.18.计算:.19.已知 y=+﹣4,计算x﹣y2的值.20.已知: a、 b、 c 是△ ABC的三边长,化简.21.已知 1< x<5,化简:﹣| x﹣5|.22.观察下列等式:①= = ;②= = ;③= = ⋯⋯⋯回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++⋯+.23.观察下面的变形规律:= ,= ,= ,= ,⋯解答下面的问题:(1)若n 为正整数,请你猜想= ;(2)计算:(+ +⋯+ )×()24.阅读下面的材料,并解答后面的问题:= = ﹣1= =﹣;= =﹣(1)观察上面的等式,请直接写出(2)计算()()= (n 为正整数)的结果;;(3)请利用上面的规律及解法计算:(+++⋯+)().25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算(1)9 +7﹣5+2(2)(2﹣1)(2+1)﹣( 1﹣2)2.29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算(1)9 +7﹣5+2(2)(﹣1)(+1)﹣( 1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共 30 小题)1.计算:( 1) += 2 +5=7;(2)(+)+(﹣=4+2+2﹣ =6+.2.计算:( 1)(π﹣3.14) 0+|﹣2| ﹣+( )﹣2 ﹣ ﹣4 +9=1+2=12﹣5;( 2)﹣4 ﹣( ﹣ )=2 ﹣4× ﹣ +2=+( 3)(x ﹣3)( 3﹣ x )﹣( x ﹣2)2 =﹣x 2+6x ﹣ 9﹣( x 2﹣4x+4)=﹣2x 2+10x ﹣133.计算化简: (1)++ =2 +3 +2=5+2;(2)2﹣6 +3= 2×2 ﹣6× +3×4 = 144.计算( 1) +﹣= 2 +4 ﹣2= 6 ﹣ 2.(2)÷×=2 ÷3 ×3= 2 .5.计算:( 1) × +3×2 = 7 +30= 37 (2)2﹣ 6+3= 4 ﹣2+12= 146.计算:( 1)()2﹣20+| ﹣ | = 3﹣1+ =(2)(﹣)× ( 3﹣)×= 24=(3)2﹣ 3+= 4﹣12 +5 ﹣+5= 8(4)(7+4 )(2﹣ )2+(2+)(2﹣ )(2+ ) 2(2﹣ )2+(2+)(2﹣ ) =1+1=2=7.计算( 1) ? (a ≥0)== 6a( 2) ÷==(3)+﹣ ﹣=2 +3 ﹣2 ﹣4=2 ﹣3 (4)(3+)( ﹣ )=3 ﹣3 +2 ﹣5 ﹣﹣= 28.计算:( 1) +﹣= +3 ﹣2 =2 ;(2)3 +(﹣)+ ÷=+﹣2+ = .9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;(2)(1﹣)(1+ )+(1+ )2 =1﹣ 5+1+2 +5 =2+2 .10.计算:(1)﹣4 + =3 ﹣ 2 + =2 ;( 2)+2 ﹣(﹣)=2 +2 ﹣ 3 + =3 ﹣;(3)(2 + )(2 ﹣)=12﹣6 =6;( 4)+ ﹣(﹣1)0 = +1+3 ﹣1 =4 .11.计算:(1)(3 + ﹣4 )÷=4 +3 ﹣2x2×=(9 + ﹣ 2 )÷ 4=8 ÷4=7 ﹣2=2;=5 .(2)+9 ﹣ 2x2?12.计算:①4 + ﹣+4 =4 +3 ﹣2 +4 =7 +2 ;②( 7+4 )(7﹣4 )﹣( 3 ﹣1)2 ﹣﹣(﹣6 )﹣45+6.=49 48 45+1 = 13.计算题(1)××= = =2×3×5 =30;(2)﹣+2 =×4 ﹣2 +2×=2 ﹣2 + = ;(3)(﹣ 1﹣)(﹣+1)=﹣( 1+ )(1﹣) =﹣( 1﹣5) =4;(4)÷(﹣)=2 ÷(﹣)=2 ÷=12;(5)÷﹣×+ =4 ÷﹣+2 =4+ ;(6)= = = ..已知:a= , b= ,求2+3ab+b2 的值.14 a解: a= =2+ ,b= 2﹣,则 a+b=4, ab=1,a2+3ab+b2=( a+b)2 +ab=17.15.已知x, y 都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y 的值,因此,将已知等式变形:,x,y 都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y 都是有理数,∴ x2+2y﹣17 与 y+4 也是有理数,∴解得∵有意义的条件是x≥ y,∴取 x=5,y=﹣ 4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16.化简:﹣a.【分析】分别求出=﹣ a ,=﹣,代入合并即可.【解答】解:原式 =﹣ a+=(﹣ a+1).【点评】本题考查了二次根式性质的应用当a≥0 时,=a,当a≤0 时,=﹣ a.17.计算:(1)9+5 ﹣ 3 = 9 +10 ﹣12 = 7 ;(2)2 = 2×2×2×= ;(3)()2016(﹣)2015.=[ (+)(﹣)] 2015?(+)=( 5﹣ 6)2015?(+)=﹣(+)=﹣﹣.18.计算:.解:原式 =+()2﹣2+1﹣+=3+3﹣2 +1﹣2+=4﹣.19.已知 y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x 的值,进而可求出 y 的值,然后代入 x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把 x=代入y=+﹣4,得y=﹣4,当 x=,y=﹣4时x﹣y2=﹣16=﹣14.20.已知: a、 b、 c 是△ ABC的三边长,化简.【解】解:∵ a、b、 c 是△ ABC的三边长,∴ a+b>c, b+c>a,b+a>c,∴原式 =| a+b+c| ﹣ | b+c﹣a|+| c﹣b﹣a|=a+b+c﹣( b+c﹣a) +( b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣ c.21.已知 1< x< 5,化简:﹣| x﹣5|.解:∵ 1< x< 5,∴原式 =| x﹣1| ﹣| x﹣ 5| =( x﹣1)﹣( 5﹣x)= 2x﹣6.22.观察下列等式:①==;②==;③==⋯回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++⋯+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:( 1)原式 = = ;)(2)原式 = + + +⋯+=(﹣1).23 .观察下面的变形规律:=,=,=,=,⋯解答下面的问题:( 1)若 n 为正整数,请你猜想= ﹣;( 2)计算:(+ +⋯+ )×()解:原式 =[(﹣1)+(﹣)+(﹣)+⋯+(﹣)](+1)=(﹣1)(+1)=()2﹣12=﹣.2016 1 = 201524.阅读下面的材料,并解答后面的问题:= = ﹣ 1= = ﹣;= = ﹣(1)观察上面的等式,请直接写出(n 为正整数)的结果﹣;(2)计算()()= 1 ;(3)请利用上面的规律及解法计算:(+ + +⋯+ )().=(﹣ 1+ ﹣+⋯+ ﹣)()=(﹣1)(+1)=2017﹣1=2016.25.计算:(1)6﹣2 ﹣3 = 6﹣5 = 6﹣;(2)4 +﹣+4 =4 +3 ﹣2 +4 =7+2.26.计算( 1) | ﹣2| ﹣+2 = 2﹣﹣2+2 = ;( 2)﹣×+= ﹣×5+ =﹣1+﹣.=27.计算.=( 10 ﹣ 6 +4 )÷=( 10 ﹣6 +4 )÷=( 40 ﹣18 +8 )÷=30÷=15.28.计算( 1)9 +7﹣5+2= 9 +14﹣20+=;(2)(2 ﹣1)(2 +1)﹣(1﹣2 )2 = 12﹣1﹣1+4 ﹣12 = 4 ﹣2.29.计算下列各题.(1)(﹣)×+3 = ﹣+ =6﹣6 +=6﹣5 ;( 2)﹣×= +1﹣= 2 +1﹣2 .30.计算(1)9 +7﹣5+2 = 9 +14 ﹣20 + = ;(2)(﹣1)( +1)﹣( 1﹣2 )2 =3﹣1﹣( 1+12﹣ 4 )=2﹣13+4=﹣11+4.单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式习题2(一)判断题:(每小题1分,共5分)1.ab 2)2(-=-2ab .…………………( )2.3-2的倒数是3+2.( )3.2)1(-x =2)1(-x .…( )4.ab 、31b a 3、bax 2-是同类二次根式.…( ) 5.x 8,31,29x +都不是最简二次根式.( ) (二)填空题:(每小题2分,共20分)6.当x __________时,式子31-x 有意义. 7.化简-81527102÷31225a = . 8.a -12-a 的有理化因式是____________. 9.当1<x <4时,|x -4|+122+-x x =________________.10.方程2(x -1)=x +1的解是____________. 11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______.12.比较大小:-721_________-341.13.化简:(7-52)2000·(-7-52)2001=______________. 14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.(三)选择题:(每小题3分,共15分)16.已知233x x +=-x 3+x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B )2y (C )-2x (D )-2y 18.若0<x <1,则4)1(2+-xx -4)1(2-+xx 等于………………………( ) (A )x 2 (B )-x2(C )-2x (D )2x 19.化简aa 3-(a <0)得………………………………………………………………( ) (A )a - (B )-a (C )-a - (D )a 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---(四)计算题:(每小题6分,共24分)21.(235+-)(235--);22.1145--7114--732+;23.(a 2mn -m ab mn +m nn m )÷a 2b 2mn ;24.(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).(五)求值:(每小题7分,共14分)25.已知x =2323-+,y =2323+-,求32234232y x y x y x xy x ++-的值.26.当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值.六、解答题:(每小题8分,共16分)27.计算(25+1)(211++321++431++…+100991+).28.若x ,y 为实数,且y =x 41-+14-x +21.求x y y x ++2-xyy x +-2的值.(一)判断题:(每小题1分,共5分)1、【提示】2)2(-=|-2|=2.【答案】×.2、【提示】231-=4323-+=-(3+2).【答案】×.3、【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×. 4、【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5、29x +是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、【提示】x 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9.7、【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】(a -12-a )(________)=a 2-22)1(-a .a +12-a .【答案】a +12-a . 9、【提示】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数还是负数?x -4是负数,x -1是正数.【答案】3. 10、【提示】把方程整理成ax =b 的形式后,a 、b 分别是多少?12-,12+.【答案】x =3+22.11、【提示】22d c =|cd |=-cd .【答案】ab +cd .【点评】∵ ab =2)(ab (ab >0),∴ ab -c 2d 2=(cd ab +)(cd ab -).12、【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较281,481的大小,最后比较-281与-481的大小. 13、【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.] (7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0.15、【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分) 16、【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义. 17、【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-=2)(y x -=|x -y |=y -x .222y xy x ++=2)(y x +=|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质2a =|a |.18、【提示】(x -x 1)2+4=(x +x 1)2,(x +x 1)2-4=(x -x 1)2.又∵ 0<x <1, ∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x1<0. 19、【提示】3a -=2a a ⋅-=a -·2a =|a |a -=-a a -.【答案】C . 20、【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =2)(a -,-b =2)(b -,ab =))((b a --. 【答案】C .【点评】本题考查逆向运用公式2)(a =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、b 都没有意义. (四)计算题:(每小题6分,共24分)21、【提示】将35-看成一个整体,先用平方差公式,再用完全平方公式. 【解】原式=(35-)2-2)2(=5-215+3-2=6-215. 22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=1116)114(5-+-711)711(4-+-79)73(2--=4+11-11-7-3+7=1.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2m n -m ab mn +m n n m )·221b a nm =21b n m m n ⋅-mab 1nmm n ⋅+22b ma n n m n m ⋅ =21b-ab 1+221b a =2221b a ab a +-. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式=b a ab b ab a +-++÷))(())(()()(b a b a ab b a b a b a b b b a a a -+-+-+--=b a b a ++÷))((2222b a b a ab b a b ab b ab a a -++----=b a b a ++·)())((b a ab b a b a ab +-+-=-b a +.【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7分,共14分) 25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+=2)23(+=5+26,y =2323+-=2)23(-=5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.32234232yx y x y x xy x ++-=22)())((y x y x y x y x x +-+=)(y x xy y x +-=10164⨯=652. 【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷.26、【提示】注意:x 2+a 2=222)(a x +,∴ x 2+a 2-x 22a x +=22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ). 【解】原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=)()()2(22222222222x a x a x x x a x x a x x a x x -++-+++-+-=)()(22222222222222x a x a x x x a x x a x a x x x -++-+++++-=)()(222222222x a x a x x a x x a x -+++-+=)()(22222222x a x a x x x a x a x -++-++ =x 1.当x =1-2时,原式=211-=-1-2.【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x ax x -++-+221ax +=)11(2222a x xa x +--+-)11(22x x a x --++221a x +=x 1.六、解答题:(每小题8分,共16分) 27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(1212--+2323--+3434--+…+9910099100--) =(25+1)[(12-)+(23-)+(34-)+…+(99100-)]=(25+1)(1100-)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.28、【提示】要使y 有意义,必须满足什么条件?].014041[⎩⎨⎧≥-≥-x x 你能求出x ,y 的值吗?].2141[⎪⎪⎩⎪⎪⎨⎧==y x【解】要使y 有意义,必须⎩⎨⎧≥-≥-014041[x x ,即⎪⎪⎩⎪⎪⎨⎧≥≤.4141x x ∴ x =41.当x =41时,y =21.又∵x y y x ++2-xyy x +-2=2)(x y y x +-2)(xy y x - =|xy y x +|-|x y y x -|∵ x =41,y =21,∴ y x<x y .∴ 原式=x y y x +-y x x y +=2yx 当x =41,y =21时,原式=22141=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.。

相关文档
最新文档