1.4平行线的性质(2)

合集下载

平行线的性质和判定

平行线的性质和判定

平行线的性质和判定【知识要点归纳】1.平行线(1)定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∥b.(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行.注:点必须在直线外,而不是在直线上.(3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即“平行于同一条直线的两条直线平行”.2.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行.注:判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,两直线平行;3.两直线平行的判定方法(1)平行线的定义.(2)平行公理的推论.(3)同位角相等,两直线平行.(4)内错角相等,两直线平行.(5)同旁内角互补,两直线平行.4.平行线的性质(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.重点讲解:一个定义(平行线),一个位置,五个判定,三个性质.【课堂过关训练】平行线的性质1.选择题:(1)下列说法中,不正确的是()A.同位角相等,两直线平行; B.两直线平行,内错角相等; C.两直线被第三条直线所截,同旁内角互补; D.同旁内角互补,两直线平行(2)如图1所示,AC平分∠BCD,且∠BCA=∠CAD=12∠CAB,∠ABC=75°,则∠BCA等于( • ) A.36° B.35° C.37.5° D.70°(1) (2) (3)(3)如图2所示,AD⊥BC于D,DG∥AB,那么∠B和∠ADG的关系是()A.互余 B.互补 C.相等 D.以上都不对(4)如图3,直线c与直线a、b相交,且a∥b,则下列结论:①∠1=∠2;②∠1=∠3;③∠3=∠2中,正确的个数为()A.0个 B.1个 C.2个 D.3个(5)如图4,若AB∥CD,则()A.∠1=∠2+∠3 B.∠1=∠3-∠2C.∠1+∠2+∠3=180° D.∠1-∠2+∠3=180°(6)如图5,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个 B.2个 C.3个 D.4个(4) (5) (6) (7)(7)已知两个角的两边分别平行,并且这两个角的差是90°,•则这两个角分别等于() A.60°,150° B.20°,110° C.30°,120° D.45°,135°(8)如图6所示,若AB∥EF,用含α、β、γ的式子表示x,应为()A.α+β+γ B.β+γ-αC.180°-α-γ+β D.180°+α+β-γ4.如图所示,已知AD、BC相交于O,∠A=∠D,试说明一定有∠C=∠B.5.如图所示,已知AB∥CD,AD∥BC,BF平分∠ABC,DE平分∠ADC,则一定有DE∥FB,它的根据是什么?6.如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,•MG•平分∠BMF,MG交CD于G,求∠1的度数.平行线的判定1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = .2.如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE = .3.如图3所示(1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°().(2)若∠2 =∠,则AE∥BF.(3)若∠A +∠ = 180°,则AE∥BF.4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .5.如图5,AB ∥CD ,EG ⊥AB 于G ,∠1 = 50°,则∠ E = .6.如图6,直线l 1∥l 2,AB ⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 7.如图7,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有 . 8.如图8,AB ∥EF ∥CD ,EG ∥BD ,则图中与∠1相等的角(不包括∠1)共有 个. 二、解答下列各题9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G .10.如图10,DE ∥BC ,∠D ∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.11.如图11,已知AB ∥CD ,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)图51 A B C D E F GH 图7 1 2 D A C B l 1l 2 图81 A BFC DE G 图6C D F E B A 图912 ACB FGED图102 1BCED 图1112 ABEFDC12.如图12,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.求证:(1)AB ∥CD ; (2)∠2 +∠3 = 90°.综合练习:1.若α和β是同位角,且a =30°,则β的度数是( )A .30°B .150°C .30°或150°D .不能确定2.如果一个角的两边分别平行于另一个角的两边,且其中一个角比另一个角的4倍少30°,那么这两个角分别是( )A .30°和150°B .42°和138°C .都等于10°D .42°和138°或都等于10°3.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图所示.从图中可知,小敏画平行线的依据可能有( )①两直线平行,同位角相等;②两直线平行,内错角相等; ③同位角相等,两直线平行;④内错角相等,两直线平行.A .①②B .②③C .③④D .①④4.如图所示,AB ∥EF ,EF ∥CD ,EG 平分∠BEF ,∠B +∠BED +∠D=192°,∠B -∠D=24°,则C图1212 3AB DF∠GEF=__________.5.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是__________.6.如图所示,AB∥CD,∠1=∠2,∠3=∠4,试说明:AD∥BE.8.已知,如图所示,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB ∥DC.9.如图所示,已知∠DBF=∠CAF,CE⊥FE.垂足为E,∠BDA+∠ECA=180°,求证:DA⊥EF10.已知,如图所示,∠1+∠2=180°,∠1+∠EFD=180°,∠3=∠B,试判断∠AED与∠C的关系,并证明你的结论.11.已知,如图所示,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.。

浙教版数学七年级下册1.4《平行线的性质》教学设计1

浙教版数学七年级下册1.4《平行线的性质》教学设计1

浙教版数学七年级下册1.4《平行线的性质》教学设计1一. 教材分析《平行线的性质》是浙教版数学七年级下册1.4节的内容,主要包括平行线的传递性质、同位角、内错角和同旁内角的概念及它们之间的关系。

本节内容是学生学习几何的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析七年级的学生已经掌握了平行线的概念,但对平行线的性质和角度关系还不够了解。

学生的空间想象力有所不同,逻辑思维能力也各有差异。

因此,在教学过程中,需要关注学生的个体差异,引导学生通过观察、操作、思考、交流和总结,逐步掌握平行线的性质。

三. 教学目标1.知识与技能:使学生掌握平行线的传递性质,理解同位角、内错角和同旁内角的概念及它们之间的关系。

2.过程与方法:培养学生观察、操作、思考、交流和总结的能力,提高空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.教学重点:平行线的传递性质,同位角、内错角和同旁内角的概念及它们之间的关系。

2.教学难点:平行线性质的灵活运用,角度关系的推导和证明。

五. 教学方法1.情境教学法:通过生活实例和几何图形,引导学生发现平行线的性质,激发学生的学习兴趣。

2.动手操作法:让学生通过折纸、拼图等动手操作活动,观察和体验平行线的性质,培养学生的空间想象能力。

3.合作交流法:鼓励学生分组讨论,共同探讨平行线的性质,提高学生的团队协作能力。

4.引导发现法:教师引导学生发现问题,引导学生通过思考和总结,得出平行线的性质,培养学生的逻辑思维能力。

六. 教学准备1.教学素材:准备相关的图片、图形和实例,制作PPT。

2.教学工具:准备黑板、粉笔、直尺、圆规等。

3.学生活动材料:准备折纸、拼图等动手操作材料。

七. 教学过程1.导入(5分钟)通过展示生活中常见的平行线现象,如楼梯、铁路等,引导学生回顾平行线的概念,激发学生的学习兴趣。

(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)

(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)

5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。

2023年浙教版数学七年级下册全方位训练卷1

2023年浙教版数学七年级下册全方位训练卷1

2023年浙教版数学七年级下册全方位训练卷1.4平行线的性质一、单选题(每题3分,共30分)1.(2022七下·梧州期末)下列说法中,错误的是()A.两直线平行,同位角相等B.对顶角相等C.同旁内角互补,两直线平行D.两条直线被第三条直线所截,内错角相等【答案】D【知识点】平行线的判定与性质;对顶角及其性质【解析】【解答】解:A、两直线平行,同位角相等,故该选项正确,不符合题意;B、对顶角相等,故该选项正确,不符合题意;C、同旁内角互补,两直线平行,故该选项正确,不符合题意;D、两条平行的直线被第三条直线所截,内错角相等,故该选项不正确,符合题意.故答案为:D.【分析】根据平行线的性质可判断A、D;根据对顶角的性质可判断B;根据平行线的判定定理可判断C.2.(2022七下·巴彦期末)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.30°B.40°C.50°D.45°【答案】C【知识点】垂线;平行线的性质;对顶角及其性质【解析】【解答】解:∵AB∥CD,∴∠2+∠ABD=180°,∵DB⊥BC,∴∠CBD=90°,∵∠ABC=∠1=40°,∴∠ABD=∠ABC+∠CBD=130°,∴∠2=50°.故答案为:C【分析】由平行线的性质可得∠2+∠ABD=180°,由垂直的定义可得∠CBD=90°,由对顶角相等可得∠ABC=∠1=40°,从而求出∠ABD=∠ABC+∠CBD=130°,继而求解.3.(2022七下·无为期末)如图,直线AB与CD相交于E,在∠CEB的平分线上有一点F,FM∥AB.当∠3=10°时,∠F的度数是()A.82°B.80°C.85°D.83 °【答案】C【知识点】角的运算;平行线的性质【解析】【解答】解:∵∠3=10°,∴∠BEC=180°−10°=170°,∵EN平分∠CEB,∴∠2=85°,∵FM∥AB,∴∠F=∠2=85°,故答案为:C.【分析】根据题意先求出∠BEC=170°,再求出∠2=85°,最后计算求解即可。

平行线的性质教案

平行线的性质教案

平行线的性质教案课题:平行线的性质一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点:平行线的性质公理及平行线性质定理的推导.(二)难点:平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排:1课时五、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.六、教学过程(一)创设情境,复习导入1.如图1,(1)∵ (已知),∴ ().(2)∵ (已知),∴ ().(3)∵ (已知),∴ ().2.如图2,(1)已知,则与有什么关系?为什么?(2)已知,则与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:[板书]平行线的性质【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.(二)探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线AB 的平行线CD ,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位。

平行线的性质(二)

平行线的性质(二)
求: ∠2、∠3的度数
c
d
a
1
2
3b
练3:
已知: ∠ 1=130 °, ∠4=45 °, ∠3=50 °,求:∠2等于多少度?
ab 12 c
3
4d
知识巩固
(1)如图1,AB∥CD, ∠1=45°, ∠D= ∠C,依
次求出∠D, ∠C, ∠B的度数.
D
C
A1 B
(2)在下图所示的3个图中,a∥b,分别计
若∠1=120°,则∠2= (

∠3=
-∠1=


例3 如图,已知AB ∥ CD, AD ∥ BC。判断∠ 1与∠ 2是否相等,
并说明理由。
D
C
12
A
B
图 1—14
练一练:
如图,已知∠1=∠2 , ∠3 =65°, 求∠4的度数。
13
a
2
4 b
例4
如图1-15,已知∠ABC+∠C=180°,BD平 分∠ABC。∠CBD与∠D相等吗?请说明理由。
B
C
(2)
1.如图所示, 已知AB//CD ,AD//BC, BF平分 ∠ABC ,DE平分∠ADC,
则 DE//FB,请说明理由.
D
F
C
A
E
B
2、如图1,已知AD∥BC,∠BAD=∠BCD。判断 AB与CD是否平行,并说明理由
3、如图2,已知AB∥CD,AE∥DF。请说明 ∠BAE=∠CDF
A
B
D
C
A 图1
B
F E
C
图2
D
平行线的判定
平行线的性质
同位角相等,两直线平行. 两直线平行,同位角相等. 内错角相等,两直线平行. 两直线平行,内错角相等.

2020春浙教版七年级数学下册 第1章 1.4.2 平行线的内错角、同旁内角性质

2020春浙教版七年级数学下册 第1章 1.4.2  平行线的内错角、同旁内角性质
解:∵∠A=∠1,∴AE∥BF.∴∠E=∠2. ∵CE∥DF,∴∠2=∠F. ∴∠E=∠F.
15.如图,若∠1=∠2,DE∥BC,则①FG∥DC;②∠AED= ∠ACB;③CD 平分∠ACB;④∠1+∠B=90°;⑤∠BFG= ∠BDC,其中正确的结论是( ) A.①②③ B.①②⑤ C.①③④ D.③④
【点拨】∵a∥b,∴∠1+∠BCA+∠BAC+∠2=180°. ∵∠BAC=30°,∠BCA=90°,∠1=20°,∴∠2=40°.
17.如图,已知∠ABC=40°,∠ACB=60°,BO,CO 分别平分 ∠ABC,∠ACB,DE 过 O 点,且 DE∥BC,求∠BOC 的度 数.
解:因为 DE∥BC,所以∠DOB=∠OBC,∠EOC=∠OCB. 因为 BO,CO 分别平分∠ABC,∠ACB, 所以∠OBC=12∠ABC=20°,∠OCB=12∠ACB=30°, 所以∠DOB=20°,∠EOC=30°, 所以∠BOC=180°-∠DOB-∠EOC=130°.
【点拨】∵DE∥BC,∴∠DCB=∠1,∠AED=∠ACB,故② 正确;∵∠1=∠2,∴∠2=∠DCB,∴FG∥DC,故①正确; ∴∠BFG=∠BDC,故⑤正确;而 CD 不一定平分∠ACB,∠1 +∠B 不一定等于 90°,故③④错误,故选 B.
【答案】B
16.【2019·齐齐哈尔】如图,直线 a∥b,将一块含有 30°角(∠ BAC=30°)的直角三角板按图中方式放置,其中点 A 和点 C 分别落在直线 a 和 b 上,若∠1=20°,则∠2 的度数为( C ) A.20° B.30° C.40° D.50°
1=60°,则下列结论错误的是( D )
A.∠2=60°
B.∠3=60°
C.∠4=120°

1.4 平行线的性质定理 课件(冀教版八年级下)

1.4 平行线的性质定理 课件(冀教版八年级下)

A
D
B
C
中学学科网
请大家谈一谈本节课 有哪些收获与体会!
作业
1)复习1.4 2)课后作业题 1.2.3.4必做;5选做
A a
中学学科网
D
C B b
如图是一个平行四边形,请表示出图中的平 行线AD与BC之间的距离.
A
D
B
C
画一画
• 已知直线l,把这条直线平移,使经平移所得的 像与直线l的距离为1.5cm,求作直线l平移后 所得的像.
l
例2:如图,已知AD//BC,判断 S
是否相等,并说明理由。
ABC

SDBC
A
B
a
b
AC=DB
C
D
两条平行线中,一条直线 上的点到另一条直线的距 离处处相等。
A
B
abCຫໍສະໝຸດ D这个距离就叫做这两条平行线之间的距离。
课本做一做及 课内练习1
• • • • •
如图a∥b,AB⊥a于A,CD⊥b于C, 1)点B与点D的距离是指线段 的长; 2)点D到直线b的距离是指 ; 3)两平行线a,b的距离是 或 ; 4)线段AB的长可指 的距离.
北师大七年级 (下 ) ) 《数学》 (浙教版 .八年级 上册
4
A
B
连结两点的线段的长度叫两点间的距离 P
中学学科网
从直线外一点到这条直线的垂线段的长度, 叫做点到直线的距离。
合作学习
请任意画两条互相平行的直线a、b,在直线a上,
任意取两点A,B。然后量出点A、B到直线b的距
离,并加以比较,你能得到什么结果?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B
C
D
E
F
1 2
3 4
&1.4平行线的性质(2)
学习目标:
1. 经历平行线性质“两直线平行,内错角相等”、“两直线平行,同旁内角互补”的发现
过程;
2. 掌握平行线性质“两直线平行,内错角相等”、“两直线平行,同旁内角互补”;
3. 会用这两个性质进行简单的推理和判断,并学会表达. 学习重难点: 重点:平行线性质 难点:例4推理较为复杂。

学习过程: 一.回顾旧知
平行线性质1:两条__________被第三条直线所截,___________________; 简单地说:________________________。

二.探索新知 1、 合作学习:
如图:直线AB ∥CD,并被直线EF 所截。

∠2与∠3相等吗? ∠3与∠4的和是多少度? 建议从以下几方面思考:
①回顾我们已知道的平行线的性质,由此能得出图中哪一对相等。

②∠3与∠1有什么关系? ∠4与∠2呢? (1) 分析∠2与∠3是否相等: 理由如下: 已知AB ∥CD
根据( ),得∠1=∠2 又根据( ),得∠1=∠3 根据( ),得∠2=∠3
结论:平行线性质2:两条平行线被第三条直线所截,_______________________; 简单地说:__________________________________。

(2) 分析∠3与∠4的和是多少度
D 1 2 A
B
C
C
D
A B
理由如下:(请同学们按照上面推理格式自己尝试完成,写明依据)
结论:平行线性质3:两条平行线被第三条直线所截,_______________________; 简单地说:__________________________________。

【练习】完成P19作业题1,作业题2
二.例题讲解
1、自学书本P17例3,并试着独立写出推理过程。

例3:如图,已知AB ∥CD,AD ∥BC.判断∠1与∠2是否相等,并说明理由。

解:
2、自学书本P18例4,并试着独立写出证明过程。

例4:如图已知∠ABC +∠C =180o
,BD 平分∠ABC. ∠CBD 与∠D 相等吗?请说明理由。

三、巩固练习
1、如图,已知AD ∥BC ,∠BAD=∠BCD ,说明AB 与CD 平行的理由
2、如图,D 是BC 上一点,DE ∥AB ,交AC 于点E ,DF ∥AC ,交AB 于点F ,若∠B+∠
C=120°,求∠
FDE 的度数。

相关文档
最新文档