高数下期末考试试题及答案解析
高数期末考试题及答案解析

高数期末考试题及答案解析一、选择题(每题2分,共10分)1. 函数 \( f(x) = \sin x + 2x^2 \) 在区间 \( [0,\frac{\pi}{2}] \) 上是:A. 单调递增B. 单调递减C. 先递增后递减D. 先递减后递增答案解析:首先求导数 \( f'(x) = \cos x + 4x \)。
在区间\( [0, \frac{\pi}{2}] \) 上,\( \cos x \) 始终大于等于0,而\( 4x \) 也是非负的,因此 \( f'(x) \geq 0 \),说明函数 \( f(x) \) 在该区间上单调递增。
所以答案是 A。
2. 若 \( \lim_{x \to 0} \frac{f(x)}{g(x)} = 0 \),则下列哪个选项是正确的?A. \( \lim_{x \to 0} f(x) = 0 \)B. \( \lim_{x \to 0} g(x) = 0 \)C. \( \lim_{x \to 0} f(x) = 1 \)D. \( \lim_{x \to 0} g(x) = 1 \)答案解析:根据极限的性质,如果 \( \lim_{x \to 0}\frac{f(x)}{g(x)} = 0 \),则 \( g(x) \) 不能趋向于0,否则分母为0,极限不存在。
同时,\( f(x) \) 趋向于0。
因此,选项 A 是正确的。
3. 曲线 \( y = x^3 - 3x \) 在点 \( (1, -2) \) 处的切线斜率是:A. 0B. 2C. -2D. 4答案解析:求导数 \( y' = 3x^2 - 3 \),将 \( x = 1 \) 代入得到 \( y' = 0 \)。
因此,曲线在点 \( (1, -2) \) 处的切线斜率为 0,答案是 A。
4. 若 \( \int_{0}^{1} x^2 dx = \frac{1}{3} \),则\( \int_{0}^{1} x^3 dx \) 的值是:A. \( \frac{1}{4} \)B. \( \frac{1}{3} \)C. \( \frac{1}{2} \)D. \( \frac{2}{3} \)答案解析:根据积分的基本公式,\( \int x^n dx =\frac{x^{n+1}}{n+1} + C \),所以 \( \int_{0}^{1} x^3 dx =\left[\frac{x^4}{4}\right]_{0}^{1} = \frac{1}{4} \)。
高等数学(下册)期末复习试题及答案

一、填空题(共21分 每小题3分)1.曲线⎩⎨⎧=+=012x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z .2.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{.4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.5.设周期函数在一个周期内的表达式为⎩⎨⎧≤<+≤<-=,0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π+.6.全微分方程0d d =+y x x y 的通解为 Cxy =.7.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共18分 每小题6分)1.求过点)1,2,1(-且垂直于直线⎩⎨⎧=+-+=-+-02032z y x z y x 的平面方程.解:设所求平面的法向量为n,则{}3,2,1111121=--=k j i n(4分)所求平面方程为 032=++z y x (6分) 2.将积分⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面)(222y x z +-=及22y x z +=所围成的区域.解: πθ20 ,10 ,2 :2≤≤≤≤-≤≤Ωr r z r (3分)⎰⎰⎰Ωv z y x f d ),,(⎰⎰⎰-=221020d ),sin ,cos (d d r rz z r r f r r θθθπ (6分)3.计算二重积分⎰⎰+-=Dy x y x eI d d )(22,其中闭区域.4:22≤+y x D解 ⎰⎰-=2020d d 2r r eI r πθ⎰⎰--=-20220)(d d 212r e r πθ⎰-⋅-=202d 221r e π)1(4--=e π 三、解答题(共35分 每题7分)1.设vue z =,而22y x u +=,xy v =,求z d .解:)2(232y y x x e y ue x e xv v z x u u z x z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (3分))2(223xy x y e x ue y e yv v z y u u z y z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分)2.函数),(y x z z =由方程0=-xyz e z所确定,求yzx z ∂∂∂∂,.解:令xyz e z y x F z-=),,(, (2分)则 ,yz F x -= ,xz F y -= ,xy e F zz -= (5分)xye yzF F x z zz x -=-=∂∂, xy e xz F F y z z z y -=-=∂∂. (7分) 3.计算曲线积分⎰+-Ly x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有向弧段.解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林公式⎰⎰⎰⎰+--=+-OA DL y x x y y x y x x y d d d d 2d d (5分)ππ=-⋅=022 (7分)4.设曲线积分⎰++Lx y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,求)(x f .解: 由xQ y P ∂∂=∂∂ 得 )()(x f x f e x'=+, 即xe xf x f =-')()( (3分)所以 )d ()(d d )1(C x e e e x f x x x+⋅=⎰⎰---⎰)(C x e x +=, (6分) 代入初始条件,解得1=C ,所以)1()(+=x e x f x . (7分)5.判断级数∑∞=12)!2()!(n n n 的敛散性.解: 因为 )!2()!()!22(])!1[(lim lim221n n n n u u n nn n ++=∞→+∞→ (3分) )12)(22()1(lim2+++=∞→n n n n 141<= (6分) 故该级数收敛. (7分)四、(7分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (6分)34213π⋅⋅=π2=. (7分)五、(6分)在半径为R 的圆的内接三角形中,求其面积为最大的三角形.解:设三角形各边所对圆心角分别为z y x ,,,则π2=++z y x ,且面积为)sin sin (sin 212z y x R A ++=, 令)2(sin sin sin πλ-+++++=z y x z y x F (3分)由 ⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=πλλλ20cos 0cos 0cos z y x z F y F x F z yx (4分)得32π===z y x .此时,其边长为R R 3232=⋅. 由于实际问题存在最大值且驻点唯一,故当内接三角形为等边三角形时其面积最大. (6分)六、(8分)求级数∑∞=1n nnx 的收敛域,并求其和函数.解: 1)1(lim lim1=+==∞→+∞→n n a a R n n n n ,故收敛半径为1=R . (2分) 当1-=x 时,根据莱布尼茨判别法,级数收敛; 当1=x 时, 级数为调和级数,发散.故原级数的收敛域为)1,1[-. (5分)设和为)(x S ,即∑∞==1)(n nnx x S ,求导得∑∞=-='11)(n n x x S x-=11, (6分) 再积分得 ⎰'=xx x S x S 0d )()(x xxd 110⎰-=)1ln(x --=,)11(<≤-x (8分) 七、(5分)设函数)(x f 在正实轴上连续,且等式⎰⎰⎰+=yx x yt t f x t t f y t t f 111d )(d )(d )(对任何0,0>>y x 成立.如果3)1(=f ,求)(x f . 解:等式两边对y 求偏导得)(d )()(1y f x t t f y x f x x+=⎰ (2分)上式对任何0,0>>y x 仍成立.令1=y ,且因3)1(=f ,故有⎰+=xx t t f x xf 13d )()(. (3分)由于上式右边可导,所以左边也可导.两边求导,得3)()()(+=+'x f x f x f x 即)0(3)(>='x xx f .故通解为 C x x f +=ln 3)(.当1=x 时,3)1(=f ,故3=C . 因此所求的函数为 )1(l n 3)(+=x x f . (5分)八. (5分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶线性非齐次微分方程的三个解,求此微分方程. 解1:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故可设此方程为 )(2x f y y y =-'-''将x xe y=代入上式,得x x xe e x f 2)(-=,因此所求的微分方程为x x xe e y y y 22-=-'-''解2:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故x x x e C e C xe y -++=221是所求微分方程的通解,从而有 x x x x e C e C xe e y --++='2212,x x x x e C e C xe e y -+++=''22142消去21,C C ,得所求的微分方程为x x xe e y y y 22-=-'-''06高数B一、填空题(共30分 每小题3分)1.xoy 坐标面上的双曲线369422=-y x 绕x 轴旋转一周所生成的旋转曲面方程为36)(94222=+-z y x .2.设函数22),,(z yz x z y x f ++=,则=-)1,0,1(grad f )2,1,2(--.3.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 4. 设Ω是曲面222y x z --=及22y x z +=所围成的区域积分,则⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分形式是⎰⎰⎰-22120d ),sin ,cos (d d r rz z r r f r r θθθπ.5. 设L 是圆周22x x y -=,取正向,则曲线积分=+-⎰Ly x x y d dπ2.6. 幂级数∑∞=--11)1(n nn n x 的收敛半径1=R .7.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.8.设周期函数在一个周期内的表达式为⎩⎨⎧≤<≤<-=,0,0,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于2π.9.全微分方程0d d =+y y x x 的通解为Cxy =.10.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共42分 每小题6分)1.求过点)1,2,1(且垂直于直线⎩⎨⎧=+-+=-+-03202z y x z y x 的平面方程.解:设所求平面的法向量为n ,则{}3,2,1111121=--=kj i n(4分) 所求平面方程为 032=++z y x (2分)2.函数),(y x z z =由方程z y x z y x 32)32sin(-+=-+所确定,求xz ∂∂. 解:令z y x z y x z y x F 32)32sin(),,(+---+=, (2分)则,1)32cos(--+=z y x F x 3)32cos(3+-+-=z y x F z . (2分))32c o s (33)32c o s (1z y x z y x F F x z z x -+--+-=-=∂∂ . (2分) 3.计算⎰⎰Dxy σd ,其中D 是由直线2 ,1==x y 及x y =所围成的闭区域.解法一: 原式⎰⎰=211d ]d [xx y xy (2分)x y x x d ]2[2112⎰⋅=x xx d )22(213⎰-= 811]48[2124=-=x x . (4分)解法二: 原式⎰⎰=212d ]d [y y x xy 811]8[2142=-=y y .(同上类似分)4.计算⎰⎰--Dy x y x d d 122,其中D 是由122=+y x 即坐标轴所围成的在第一象限内的闭区域.解: 选极坐标系原式⎰⎰-=2012d 1πθr r r d (3分))1(1)21(22102r d r ---⋅=⎰π6π= (3分) 5.计算⎰Γ-+-z x y yz x z y d d 2d )(222,其中Γ是曲线,t x =,2t y =3t z =上由01=t 到12=t 的一段弧.解:原式⎰⋅-⋅+-=122564d ]322)[(t t t t t t t (3分)⎰-=146d )23(t t t 1057]5273[t t -=351= (3分)6.判断级数∑∞=-1212n n n 的敛散性. 解: 因为 n n n nn n n n u u 2122)12(lim lim11-+=+∞→+∞→ (3分) 121<=, (2分) 故该级数收敛. (1分) 7.求微分方程043=-'-''y y y 满足初始条件,00==x y 50-='=x y 的特解. 解:特征方程 0432=--r r ,特征根 1,421-==r r通解为 x xe C e C y -+=241, (3分)x xe C e C y --='2414,代入初始条件得 1,121=-=C C ,所以特解x x e e y -+-=4.(3分)三、(8分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的 空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x ⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (2分)34213π⋅⋅=π2=. (2分) 四、(8分)设曲线积分⎰-+Ly x x xf x x yf d ])(2[d )(2在右半平面)0(>x 内与路径无关,其中)(x f 可导,且满足1)1(=f ,求)(x f .解:由xQy P ∂∂=∂∂, 得x x f x x f x f 2)(2)(2)(-'+=,即1)(21)(=+'x f xx f , (3分) 所以)d ()(d 21d 21C xeex f x x x x +=⎰⎰-⎰)(2121C dx x x+=⎰-)32(2321C x x+=-, (3分)代入初始条件,解得31=C ,所以xx x f 3132)(+=. (2分)五、(6分)求函数xy y x y x f 3),(33-+=的极值. 解:⎪⎩⎪⎨⎧=-==-=033),(033),(22x y y x f y x y x f y x 得驻点 )1,1(),0,0( (3分),6),(x y x f xx = ,3),(-=y x f xy y y x f yy 6),(=在点)0,0(处,,092>=-AC B 故)0,0(f 非极值;在点)1,1(处,,0272<-=-AC B 故1)1,1(-=f 是极小值. (3分)六、(6分)试证:曲面)(xyxf z =上任一点处的切平面都过原点.证:因),()(xyf x y x y f x z '-=∂∂ )(1)(x y f x x y f x y z '=⋅'=∂∂ (3分) 则取任意点),,(0000z y x M ,有)(0000x y f x z =,得切平面方程为))(())](()([)(00000000000000y y x yf x x x y f x y x y f x y f x z -'+-'-=- 即 0)()]()([0000000=-'+'-z y x y f x x y f x y x y f 故切平面过原点. (3分)07A一、 填空题(每小题3分,共21分).1.设向量}5,1,{},1,3,2{-==λb a ,已知a 与b垂直,则=λ1-2.设3),(,2,3π===b a b a ,则=-b a 6-3.yoz 坐标面上的曲线12222=+bz a y 绕z 轴旋转一周生成的旋转曲面方程为122222=++bz a y x4.过点)0,4,2(且与直线⎩⎨⎧=--=-+023012z y z x 垂直的平面方程0832=+--z y x5.二元函数)ln(y x x z +=的定义域为}0,0,({>+≥=y x x y x D6.函数)ln(),,(222z y x z y x f ++=,则=)1,0,1(gradf }1,0,1{7.设xy e z=,则=dz )(xdy ydx e xy +8.设),(x y x xf u =,f 具有连续偏导数,则=∂∂x u21f xyxf f -+ 9.曲线32,,t z t y t x ===上点)1,1,1(处的切向量=T}3,2,1{10.交换积分顺序:⎰⎰=ydx y x f dy 010),(⎰⎰110),(xdyy x f dx11.闭区域Ω由曲面222y x z+=及平面1=z 所围成,将三重积分⎰⎰⎰Ωdv z y x f ),,(化为柱面坐标系下的三次积分为⎰⎰⎰πθθθ20101),sin ,cos (r dz z r r f rdr d12.设L 为下半圆周21x y--=,则=+⎰ds y xL )(22π13.设L 为取正向圆周922=+y x,则=-+-⎰dy x x dx y xy L )4()22(2π18-14.设周期函数在一个周期内的表达式为⎩⎨⎧<≤≤<-=ππx xx x f 000)(则它的傅里叶级数在π=x 处收敛于2π15.若0lim ≠∞→nn u ,则级数∑∞=1n n u 的敛散性是 发散16.级数∑∞=1!2n n n nn 的敛散性是 收敛17.设一般项级数∑∞=1n n u ,已知∑∞=1n n u 收敛,则∑∞=1n n u 的敛散性是 绝对收敛18.微分方程05)(23=+'-''xy y y x 是 2 阶微分方程19.微分方程044=+'+''y y y 的通解=y xx xe C e C 2221--+20.微分方程x xe y y y 223=+'-''的特解形式为xe b ax x 2)(+二、(共5分)设xy v y x u v u z ===,,ln 2,求yz x z ∂∂∂∂,解:]1)ln(2[1ln 2222+=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂xy y x y v u y v u x v v z x u u z x z]1)ln(2[)(ln 23222--=⋅+-⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂xy yx x v u y x v u y v v z y u u z y z 三、(共5分) 设022=-++xyz z y x ,求xz∂∂ 解:令xyz z y x z y x F 22),,(-++=x y zyzxyz F x -=xyzxyxyz F z -=xyxyz xyz yz F F x zz x --=-=∂∂ 四、(共5分)计算⎰⎰⎰Ωxdxdydz ,其中Ω为三个坐标面及平面1=++z y x 所围成的闭区域解:y x z x y x --≤≤-≤≤≤≤Ω10,10,10:⎰⎰⎰⎰⎰⎰⎰⎰----Ω--==xyx xdy y x x dx xdz dy dx xdxdydz 1010101010)1(241)2(21)1(213102102=+-=-=⎰⎰dx x x x dx x x 五、(共6分)计算⎰-+-Lx x dy y e dx y y e )1cos ()sin (,其中L 为由点)0,(a A 到点)0,0(O 的上半圆周ax y x =+22解:添加有向辅助线段OA ,则有向辅助线段OA 和有向弧段OA 围成闭区域记为D ,根据格林 公式⎰-+-Lxx dy y e dx y y e )1cos ()sin ( ⎰⎰⎰-+--=DOAx x dy y e dx y y e dxdy )1cos ()sin (0)2(212-=a π 381a π= 六、(共6分)求幂级数∑∞=-13)3(n nn n x 的收敛域 解:对绝对值级数,用比值判敛法3313131lim 333)1(3lim lim 111-=-⋅+=-+-=∞→++∞→+∞→x x n n n x n x u u n n nn n n n n n 当1331<-x 时,即60<<x ,原级数绝对收敛 当1331>-x 时,即60><x x 或,原级数发散 当0=x 时,根据莱布尼兹判别法,级数∑∞=-1)1(n nn收敛当6=x时,级数∑∞=11n n发散,故收敛域为)6,0[七、(共5分) 计算dxdy z⎰⎰∑2,其中∑为球面1222=++z y x 在第一卦限的外侧解:∑在xoy 面的投影xy D :0,0,122≥≥≤+y x y xdxdy z ⎰⎰∑2dxdy y x xyD )1(22--+=⎰⎰rdr r d )1(20102⎰⎰-=πθ412⋅=π8π=八、(共7分)设0)1(=f ,求)(x f 使dy x f ydx x f x x )()](1[ln ++为某二元函数),(y x u 的全微分,并求),(y x u解:由x Q y P ∂∂=∂∂,得)()(1ln x f x f x x '=+,即x x f xx f ln )(1)(=-' 所以)ln 21()1ln ()ln ()(211C x x C dx x x x C ex ex f dxx dxx+=+⋅=+=⎰⎰⎰⎰---带入初始条件,解得0=C,所以x x x f 2ln 21)(=⎰++=),()0,0(22ln 21)ln 21(ln ),(y x xdy x ydx x x y x u⎰⎰+=xyxdy x 002ln 210x xy 2ln 21=07高数B一、(共60分 每题3分)1. 设向量}4 ,2 ,6{-=a ,}2 ,1 ,{-=λb ,已知a 与b平行,则=λ3-.2. yoz 坐标面上的曲线12222=-c z a y 绕z 轴旋转一周生成的旋转曲面方程为122222=-+bz a y x . 3.设3),(,1,2π===∧b a b a ,则a b -=3.4. 设一平面经过点)1,1,1(,且与直线⎩⎨⎧=+=--03042z y y x 垂直,则此平面方程为032=-+z y x .5. 二元函数12ln2+-=x y z 的定义域为{}012|),(2>+-x y y x .6. 设xye z =,则=z d )d d (y x x y e xy +.7. 函数)ln(),,(222z y x z y x f ++=,则=)1,0,1(grad f )1,0,1(.8.设(,)y u xf x x =,f 具有连续导数,则u x ∂=∂12yf xf f x''+-.9. 曲面1222=++z y x 在点)2,0,1(-处的法向量=n{}4,0,2-. 10. 交换积分顺序:⎰⎰=1d ),(d x y y x f x ⎰⎰101d ),(d yx y x f y .11.闭区域Ω由曲面22y x z +=及平面1=z 所围成,将三重积⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分为⎰⎰⎰11202d ),sin ,cos (d d rz z r r f r r θθθπ.12. 设∑是闭区域Ω的整个边界曲面的外侧,V 是Ω的体积,则 ⎰⎰∑++y x z x z y x y x d d d d d d =V 3.13. 设L 为上半圆周21x y -=,则=+⎰Ls y x d )(22π.14. 设周期函数在一个周期内的表达式为⎩⎨⎧≤<≤<-=,0,0,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于2π.15. 若lim 0n n u →∞≠,则级数∑∞=1n n u 的敛散性是 发散 . 16. 级数∑∞=1!5n n nn n 的敛散性是 收敛 .17.级数∑∞=12sin n nn的敛散性是 收敛 . 18. 微分方程06)(542=+'+''y y y x 是 2 阶微分方程. 19. 微分方程02=+'-''y y y 的通解为)(21x C C e x +.20.微分方程x xe y y y 2365-=+'+''的特解的形式xe bx ax y 22*)(-+=.三、(共5分)函数),(y x z z =由方程04222=-++z z y x 所确定,求xz∂∂. 解:令=),,(z y x F z z y x 4222-++, (1分)则 ,2x F x = ,42-=z F z (2分)zxF F x z z x -=-=∂∂2 (2分) 五、(共6分)计算曲线积分⎰+--Ly y x x y x d )sin (d )2(22,其中L 为由点)0,2(A 到点)0,0(O 的上半圆周x y x 222=+.解:添加有向辅助线段,它与上半圆周围成的闭区域记为D ,根据格林公式⎰+--Ly y x x y x d )sin (d )2(22⎰⎰⎰+---+-=OADy y x x y x y x d )sin (d )2(d d )21(22 (3分)⎰⎰=Dy x d d ⎰-22d x x 3823212132-=-⋅⋅=ππ (3分)七、(共6设0)1(=f ,确定)(x f 使y x f x xyx f x d )(d )]([sin +-为某二元函数(,)u x y 的全微分.解: 由xQy P ∂∂=∂∂ 得 )()(sin x f x x f x '=-, 即 xxx f x x f s i n )(1)(=+' (2分) 所以 )d sin ()(d x 1d 1C xe xx ex f x x x+⋅=⎰⎰⎰-)d sin (ln ln C x e xx e xx +⋅=⎰- (2分) )cos (1C x x+-=, (1分) 代入初始条件,解得1cos =C ,所以)cos 1(cos 1)(x xx f -=. (1分) 八、(共6分) 计算⎰⎰∑y x z d d 2,其中∑是球面1222=++z y x 外侧在,0≥x 0≥y 的部分.解:⎰⎰∑y x z d d ⎰⎰∑=1d d y x z ⎰⎰∑+2d d y x (2分)⎰⎰--=xyD y x y x d d )1(22⎰⎰----xyD y x y x d )d 1()1(22 (2分) ⎰⎰--=xyD y x y x d )d 1(222r r r d )1(d 21220⋅-=⎰⎰πθ 4π=(2分)08高数A一、选择题(共24分 每小题3分)1.设{}1111,,p n m s =,{}2221,,p n m s =分别为直线1L ,2L 的方向向量,则1L 与2L 垂直的充要条件是 (A )(A )0212121=++p p n n m m (B )212121p p n n m m ==(C )1212121=++p p n n m m (D )1212121=++p pn n m m 2.Yoz 平面上曲线12+=y z 绕z 轴旋转一周生成的旋转曲面方程为 ( C )(A )12+=y z (B )22x y z +=(C )122++=x y z (D )x y z +=23.二元函数12ln2+-=x y z 的定义域为 (B )(A ){}02|),(2>-x y y x (B ){}012|),(2>+-x y y x (C ){}012|),(2≤+-x y y x (D ){}0,0|),(≥>y x y x4.交换积分顺序:1d (,)d yy f x y x =⎰⎰ ( A )(A )dy y x f dx x ⎰⎰110),((B )dx y x f dy y ⎰⎰110),((C )dx y x f dy y⎰⎰110),((D )dy y x f dx x⎰⎰110),(5.空间闭区域Ω由曲面1=r 所围成,则三重积分⎰⎰⎰Ωv d 2= ( C ) (A )2 (B )2π (C )38π (D )34π 6.函数),(y x z z =由方程04222=-++z z y x 所确定,则xz∂∂= ( D ) (A )zy -2 (B )y x-2 (C )zz-2 (D )zx-27.幂级数∑∞=13n n nn x 的收敛域是 ( C )(A )][3,3- (B )](3,0(C ) [)3,3- (D )()3,3-8.已知微分方程xe y y y =-'+''2的一个特解为x xe y =*,则它的通解是( B )(A )x xe x C x C ++221(B )x x x xe e C e C ++-221(C )x e x C x C ++221(D )x x x xe e C e C ++-21二、填空题(共15分 每小题3分)1.曲面z y x =+22在点)1,0,1(处的切平面的方程是012=--z x . 2.若lim 0n n u →∞≠,则级数∑∞=1n n u 的敛散性是 发散 . 3.级数∑∞=12cos n nn的敛散性是 绝对收敛 . 4.二元函数2221sin)(),(xy x y x f +=,当()()0,0,→y x 时的极限等于 0 。
高等数学下期末试题(七套附答案)

高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数11z x y x y =++-的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( ) A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交(2)设是由方程2222xyz x y z +++=确定,则在点(1,0,1)-处的dz =( )A.dx dy +B.2dx dy +C.22dx dy +D.2dx dy - (3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()xy dvΩ+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D. 2252d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12 D. 2(5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分) 1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂得分阅卷人3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)xf x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑由圆锥面22z x y =+与上半球面222z x y =--所围成的立体表面的外侧 (10)'2、(1)判别级数111(1)3n n n n ∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数24x y z -=的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则Lyds =⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a -=确定,则z x ∂=∂( );A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D. 2xy z xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()xax b xe + C.2()x ax b ce ++ D.2()x ax b cxe ++(4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( ); A2220sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.200ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 122三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段. 6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1n n x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧得分阅卷人得分高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰ .5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡2、积分1⎰= .(A) ∞ (B)-∞(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。
2020-2021大学《高等数学》(下)期末课程考试试卷A2(含答案)

2020-2021《高等数学》(下)期末课程考试试卷A2适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 判断题(每小题2分,共10分)1.二元函数(),z f x y =在平面区域上的积分为二重积分。
( )2.二元函数(),z f x y =的极值点只能是使得0z zx y∂∂==∂∂的点。
( )3.二元函数z =在()0,0点连续但偏导数不存在。
( )4.闭区域上的二元连续函数一定存在最大最小值,且一定可积。
( )5.二元函数z =在()0,0点连续但偏导数不存在。
( )二.单项选择题(每小题2分,共20分)1.平面2y = ( ) A.垂直于xOz 平面 B.平行于xOy 平面 C.平行于xOz 平面 D. 平行于Oy 轴2. 二元函数(),z f x y =在某点()00,x y 连续,那么(),z f x y =在该点一定 ( )A .极限存在 B.两个偏导存在 C.可微 D.以上都不对3. 极限()(),0,0lim x y xyx y→+的结果为 ( )A.0B.∞C. 12D.不存在4.若区域D 是由1x y +≤与12x y +≥所围成,则积分()22ln Dx y d σ+⎰⎰的值( )A.大于零B. 小于零C.等于零D. 不存在 5.下列绝对收敛的级数是 ( )A.∑∞=--1n nn1n 23)1( B.∑∞=--1n 1n n )1(C.∑∞=--1n 51n n)1(D.∑∞=--1n n 21)1(6. 下列无穷级数中发散的无穷级数是 ( )A.∑∞=+1n 221n 3n B. ∑∞=+-1n n 1n )1(C. ∑∞=--3n 1n n ln )1(D. ∑∞=+1n 1n n32 7. 点(0,0,1)到平面z=1的距离为 ( ) A .0 B .1 C .2 D .38. 积分2011dx x +∞+⎰的结果为 ( )A.0B. 2πC. 2π-D.不存在9. 函数()arctan f x x =在 []0,1上,使拉格朗日中值定理成立的ξ是( )A.-10.设()f x 在(),a b 内满足()'0f x <,()''0f x >,则曲线()f x 在(),a b 内是( )A.单调上升且是凹的B. 单调下降且是凹的C.单调上升且是凸的D. 单调下降且是凸的三.填空题(每小题2分,共10分) 1. 设函数z x y =-,则xz∂∂=___________。
09级高数(下)期末考试题及参考答案

09级高数(下)期末考试题及参考答案一、选择题(每小题2分, 共计12分) 1. 微分方程 是( B )(A )可分离变量方程 (B )齐次方程 (C )一阶线性方程 (D )伯努利方程2. 函数 的定义域是( A )(A )}1),{(22<+=y x y x D (B )}1),{(22≥+=y x y x D (C )}1),{(22=+=y x y x D (D )}1),{(22≤+=y x y x D 3. 对于函数 , 在点 处下列陈述正确的是( C )(A )偏导数存在⇒连续 (B )可微⇔偏导数存在 (C )可微⇒连续 (D )可微⇔偏导数连续4. 设 : 则三重积分 等于( B )(A )4⎰⎰⎰202013cos sin ππρϕϕρϕθd d d (B )⎰⎰⎰ππρϕϕρϕθ202013cos sin d d d(C )⎰⎰⎰2012sin ππρϕρϕθd d d (D )⎰⎰⎰ππρϕϕρϕθ2013cos sin d d d5. 设有界闭区域D 由分段光滑曲线L 所围成, L 取负方向, 函数 在D 上具有一阶连续偏导数, 则 A (A )⎰⎰∂∂-∂∂Ddxdy x Q y P )((B )⎰⎰∂∂-∂∂Ddxdy x P y Q )( (C )⎰⎰∂∂-∂∂D dxdy y Q x P )( (D )⎰⎰∂∂-∂∂D dxdy y P x Q )( 二、填空题(每小题2分, 共计12分) 1. 微分方程 的通解为___ ____.2. 设函数 , 则 。
3. 交换积分次序后, ____ ____4. 设平面区域D : , 则5.设曲线L 是连接 和 的直线段, 则曲线积分 ____ 6. 函数 在 处的泰勒级数为____ _____. 三、求解下列问题(每题7分, 共63分) 1. 求微分方程 的通解 解:令 , 则 , , 分离变量: 两边积分, 得 即 , , 2.设 , 求222y xy x y x x z +++=∂∂,222y xy x y x y z +++=∂∂所以 =∂∂+∂∂y z y x z x 2222y xy x xy x +++2222yxy x y xy ++++2= 3. 设 , 且 具有二阶连续偏导数.求 解: , ,)(2221212112xf f y f xf f yx z++++=∂∂∂2221211)(xyf f f y x f ++++= 4. 求椭球面 在点(1, 1, 1)处的切平面方程和法线方程。
高等数学第二学期期末考试试题真题及完整答案(第2套)

高等数学第二学期期末考试试题真题及完整答案一、填空题(将正确答案填在横线上)(本大题共5小题,每小题4分,总计20分)1、设函数,则=2、曲面在点处的切平面方程为____3、= .4、曲面积分= ,其中,为与所围的空间几何形体的封闭边界曲面,外侧.5、幂级数的收敛域为。
二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,总计20分)1、函数在(1,1)点沿方向的方向导数为( )。
(A) 0 (B) 1 (C) 最小 (D)最大2、函数在处( ).(A)不连续,但偏导数存在 (B)不连续,且偏导数不存在(C)连续,但偏导数不存在 (D)连续,且偏导数存在3、计算=( ),其中为(按逆时针方向绕行).(A)0 (B)(C) (D)4、设连续,且,其中D由所围成,则( )。
(A)(B) (C) (D)5、设级数收敛,其和为,则级数收敛于( )。
(A)(B)(C)(D)三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、设函数由方程所确定,计算,。
2、计算,其中,为曲线,.3、求幂级数的和函数.三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、求内接于半径为的球面的长方体的最大体积.2、计算,其中平面区域.3、计算,其中为平面被柱面所截得的部分.五、解答下列各题(本大题共2小题,每小题6分,总计12分)1、计算其中为上从点到点.2、将函数展开成的幂级数.答案及评分标准一、填空题 (本大题分5小题,每小题4分,共20分)1、 2、3、 4、 5、二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,共20分)1、C2、A3、B4、D5、B三、解答下列各题(本大题共3小题,每小题8分,共24分)1、解:方程两端同时对分别求偏导数,有,………………6分解得:.…………………………………………8分2、解:作图(略)。
原式=………………………2分.………………………8分3、解:经计算,该级数的收敛域为。
高数下册 期末试题及答案

高数下册期末试题及答案第一题:已知函数 f(x) = 2x^3 - 4x^2 + 3x + 1,求 f(x) 的导函数。
解析:要求 f(x) 的导函数,即求 f'(x)。
根据求导法则,对于多项式函数 f(x) = ax^n:1. 当 n 不等于 0 时,f'(x) = anx^(n-1)。
2. 当 n 等于 0 时,f'(x) = 0(常数项的导数为 0)。
所以,对于 f(x) = 2x^3 - 4x^2 + 3x + 1:f'(x) = d/dx (2x^3 - 4x^2 + 3x + 1)= 6x^2 - 8x + 3。
答案:f'(x) = 6x^2 - 8x + 3。
第二题:已知函数 f(x) = e^x * ln(x),求其不定积分。
解析:要求函数 f(x) 的不定积分,即求∫ f(x) dx。
根据积分法则,对于函数 f(x) = e^x * ln(x):1. 对于∫ e^x dx,由指数函数的积分法则得知∫ e^x dx = e^x + C1(其中 C1 为常数)。
2. 对于∫ ln(x) dx,由对数函数的积分法则得知∫ ln(x) d x = x * ln(x) - x + C2(其中 C2 为常数)。
所以,对于 f(x) = e^x * ln(x):∫ f(x) dx = ∫ (e^x * ln(x)) dx= ∫ e^x dx * ∫ ln(x) dx= (e^x + C1) * (x * ln(x) - x + C2)= xe^x * ln(x) - xe^x + e^x * ln(x) - e^x + C(x)(其中 C(x) 为常数)。
答案:∫ f(x) d x = xe^x * ln(x) - xe^x + e^x * ln(x) - e^x + C(x)。
第三题:已知函数 f(x) = sin^2(x) + cos^2(x),证明 f'(x) = 0。
高数下期末考试试题及答案解析

WORD 格式整理⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯封号序密超号班要学教不卷答⋯学⋯大峡.三⋯⋯⋯⋯⋯⋯⋯⋯2017 学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)注意:1、本试卷共3页;2、考试时间110 分钟; 3 、姓名、学号必须写在指定地方题号一二三四总分得分阅卷人得分一、单项选择题( 8 个小题,每小题 2 分,共 16 分)将每题的正确答案的代号A、 B、 C或 D 填入下表中.号12345678答案1.已知 a 与b都是非零向量,且满足a b a b ,则必有().(A)a b 0(B)a b0(C) a b0(D)a b02. 极限lim( x2y2 )sin12().x0x2yy0(A) 0(B) 1(C) 2(D)不存在3.下列函数中,df f 的是().( A)f (x, y)xy( B)f (x, y)x y c0 ,c0为实数( C)f (x, y)x2y2( D)f (x, y)e x y4.函数f ( x, y)xy (3x y) ,原点 (0,0)是 f ( x, y) 的().( A)驻点与极值点( B)驻点,非极值点( C)极值点,非驻点( D)非驻点,非极值点5 .设平面区域D : (x1)2( y 1)22,若I1x y d, I 2x yd ,D4D4I 33x y,则有() .dD4(A)I1I 2I 3(B)I1I 2I 3(C)I2I1I 3(D)I3I1I 26.设椭圆L:x2y 21的周长为l,则(3x2 4 y2 )ds() .43L(A)l(B)3l(C)4l(D)12l7.设级数a n为交错级数,a n0 (n) ,则().n 1(A) 该级数收敛(B)该级数发散(C) 该级数可能收敛也可能发散(D)该级数绝对收敛8. 下列四个命题中,正确的命题是().( A)若级数a n发散,则级数a n2也发散n 1n 1( B)若级数a n2发散,则级数a n也发散n 1n 1( C)若级数a n2收敛,则级数a n也收敛n 1n 1( D)若级数| a n |收敛,则级数a n2也收敛n 1n 1阅卷人得分二、填空题 (7 个小题,每小题2分,共 14分).3x 4 y2z60a 为.1. 直线3y z a与 z 轴相交,则常数x02.设f ( x, y)ln( xy), 则f y(1,0)___________.x3.函数f (x, y)x y 在 (3, 4) 处沿增加最快的方向的方向导数为.4.设D : x2y22x ,二重积分( x y)d=.D5.设f x是连续函数,{( x, y ,z) | 0z9x2y2 } , f ( x2y2 )dv 在的三次积分为.6. 幂级数( 1)n 1x n的收敛域是.n!n 17. 将函数 f ( x)1,x01x2,0 x以 2为周期延拓后,其傅里叶级数在点于.⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯封号序密超号班要学教不卷答⋯学⋯大峡.三⋯⋯⋯⋯⋯⋯⋯⋯阅卷人得分三、综合解答题一( 5 个小题,每小题7 分,共 35 分,解答题应写出文字说明、证明过程或演算步骤)1.设 u xf ( x,x) ,其中 f 有连续的一阶偏导数,求u ,u.y x y解:4.设是由曲面z xy, y x, x 1及z0 所围成的空间闭区域,求 I解:2.求曲面 e z z xy 3 在点 (2,1,0) 处的切平面方程及法线方程.解:5.求幂级数nx n 1的和函数 S(x) ,并求级数nn的和.n 1n 12解:3. 交换积分次序,并计算二次积分dxxsin y dy.0y解:⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯封号序密超号班要学教不卷答⋯学⋯大峡.三⋯⋯⋯⋯⋯⋯⋯⋯阅卷人得分四、综合解答题二( 5 个小题,每小题7 分,共 35 分,解答题应写出文字说明、证明过程或演算步骤)1.从斜边长为 1 的一切直角三角形中,求有最大周长的直角三角形.解4.计算xdS ,为平面x y z 1在第一卦限部分.解:2.计算积分( x2y2 )ds ,其中L为圆周 x2y2ax (a0 ).L解:5.利用高斯公式计算对坐标的曲面积分蝌dxdy + dydz + dzdx,S其中为圆锥面 z2x2y2介于平面z0 及 z 1 之间的部分的下侧.解:3.利用格林公式,计算曲线积分I(x2y2)dx (x 2xy)dy ,其中 L 是由抛物线y x2和Lx y2所围成的区域D的正向边界曲线.y y x2x y22017 学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)答案及评分标准一、单项选择题(8 个小题,每小题 2 分,共 16 分)题号12345678答案D A B B A D C D1.已知a 与b都是非零向量,且满足a b a b ,则必有(D)(A) a b0 ;(B)a b 0 ;(C) a b0 ;(D)a b0 .2. 极限lim( x2y2 )sin212( A )x0x yy0(A) 0;(B) 1;(C) 2;(D)不存在 . 3.下列函数中,df f 的是( B );( A) f ( x, y)xy ;( B)f ( x, y)x y c0 , c0为实数;( C) f (x, y)x2y2;( D)f (x, y)e x y .4.函数f ( x, y)xy (3x y) ,原点 (0,0)是 f ( x, y) 的( B).(A)驻点与极值点;(B)驻点,非极值点;(C)极值点,非驻点;( D)非驻点,非极值点 .5 .设平面区域 D:( x 1)2( y 1)22,若I1x yd ,I2x y dD4D4WORD 格式整理3xyd,则有( A)I 34D(A)I1I 2I3;(B) I1I 2I 3;(C)I2I1I3;(D)I36.设椭圆L:x2y 21的周长为l,则(3x24y2 )ds( D)43L(A) l;(B)3l;(C)4l ;(D)127.设级数a n为交错级数, a n0 (n) ,则(C)n 1(A) 该级数收敛;(B)该级数发散;(C) 该级数可能收敛也可能发散;(D)该级数绝对收敛.8. 下列四个命题中,正确的命题是(D)( A)若级数a n发散,则级数a n2也发散;n1n 1( B)若级数n1a n2发散,则级数n 1a n也发散;( C)若级数a n2收敛,则级数a n也收敛;n1n 1( D)若级数| a n |收敛,则级数a n2也收敛.n1n1二、填空题 (7 个小题,每小题 2 分,共14 分).3x 4 y2z60a 为31. 直线3y z a与 z 轴相交,则常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A )注意:1、本试卷共 3 页;2、考试时间110分钟;3、姓名、学号必须写在指定地方一、单项选择题(8个小题,每小题2分,共16分)将每题的正确答案的代号A 、B 、C 或D 填入下表中.1.已知a 与b都是非零向量,且满足-=+a b a b ,则必有( ). (A)-=0a b (B)+=0a b (C)0⋅=a b (D)⨯=0a b 2.极限2222001lim()sinx y x y x y→→+=+( ). (A) 0 (B) 1 (C) 2 (D)不存在 3.下列函数中,d f f =∆的是( ).(A )(,)f x y xy = (B )00(,),fx y x y c c =++为实数(C )(,)f x y =(D )(,)e x yf x y +=4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( ).(A )驻点与极值点 (B )驻点,非极值点 (C )极值点,非驻点 (D )非驻点,非极值点 5.设平面区域22:(1)(1)2D x y -+-≤,若1d 4D x y I σ+=⎰⎰,2DI σ=,3DI σ=,则有( ). (A )123I I I << (B )123I I I >> (C )213I I I << (D )312I I I <<6.设椭圆L :13422=+y x 的周长为l ,则22(34)d L x y s +=⎰Ñ( ). (A) l (B) l 3 (C) l 4 (D) l 127.设级数∑∞=1n na为交错级数,0()n a n →→+∞,则( ).(A)该级数收敛 (B)该级数发散(C)该级数可能收敛也可能发散 (D)该级数绝对收敛 8.下列四个命题中,正确的命题是( ). (A )若级数1nn a∞=∑发散,则级数21nn a∞=∑也发散 (B )若级数21nn a∞=∑发散,则级数1nn a ∞=∑也发散 (C )若级数21nn a∞=∑收敛,则级数1nn a∞=∑也收敛(D )若级数1||nn a∞=∑收敛,则级数21n n a ∞=∑也收敛二、填空题(7个小题,每小题2分,共14分).1.直线3426030x y z x y z a -+-=⎧⎨+-+=⎩与z 轴相交,则常数a 为 .2.设(,)ln(),y f x y x x=+则(1,0)y f '=______ _____.3.函数(,)f x y x y =+在(3,4)处沿增加最快的方向的方向导数为 .4.设22:2D x y x +≤,二重积分()d Dx y σ-⎰⎰= .5.设()f x 是连续函数,22{(,,)|09}x y z z x y Ω=≤≤--,22()d f x y v Ω+⎰⎰⎰在柱面坐标系下的三次积分为 . 6.幂级数11(1)!nn n x n ∞-=-∑的收敛域是 . 7.将函数21,0()1,0x f x x x ππ--<≤⎧⎪=⎨+<≤⎪⎩以2π为周期延拓后,其傅里叶级数在点x π=处收敛于 .三峡大学 试卷纸 教学班号 序号 学号 姓名…………………….……答 题 不 要 超 过 密 封 线………….………………………………三、综合解答题一(5个小题,每小题7分,共35分,解答题应写出文字说明、证明过程或演算步骤) 1.设(,)x u xf x y =,其中f 有连续的一阶偏导数,求ux∂∂,u y ∂∂.解: 2.求曲面e 3z z xy ++=在点(2,1,0)处的切平面方程及法线方程. 解:3.交换积分次序,并计算二次积分0sin d d xyx y yππ⎰⎰. 解:4.设Ω是由曲面1,,===x x y xy z 及0=z 所围成的空间闭区域,求23d d d I xy z x y z Ω=⎰⎰⎰. 解:5.求幂级数11n n nx∞-=∑的和函数()S x ,并求级数12nn n ∞=∑的和. 解:三峡大学 试卷纸 教学班号 序号 学号 姓名…………………….……答 题 不 要 超 过 密 封 线………….………………………………四、综合解答题二(5个小题,每小题7分,共35分,解答题应写出文字说明、证明过程或演算步骤)1.从斜边长为1的一切直角三角形中,求有最大周长的直角三角形. 解2.计算积分22()d Lx y s +⎰Ñ,其中L 为圆周22x y ax += (0a >). 解:3.利用格林公式,计算曲线积分22()d (2)d LI xy x x xy y =+++⎰Ñ,其中L 是由抛物线2y x =和2x y =所围成的区域D 的正向边界曲线.4. 计算d x S ∑⎰⎰,∑为平面1=++z y x 在第一卦限部分.解:5.利用高斯公式计算对坐标的曲面积分d d d d d d x y y z z x S++蝌,其中∑为圆锥面222z x y =+介于平面0z =及1z =之间的部分的下侧. 解:三峡大学 试卷纸 教学班号 序号 学号 姓名…………………….……答 题 不 要 超 过 密 封 线………….………………………………xO2y x =2x y =y D2017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)答案及评分标准一、单项选择题(8个小题,每小题2分,共16分)1.已知a 与b 都是非零向量,且满足-=+a b a b ,则必有(D ) (A)-=0a b ; (B)+=0a b ; (C)0⋅=a b ; (D)⨯=0a b .2.极限2222001lim()sin x y x y x y →→+=+ ( A ) (A) 0; (B) 1; (C) 2; (D)不存在. 3.下列函数中,d f f =∆的是( B );(A ) (,)f x y xy =; (B )00(,),f x y x y c c =++为实数;(C )(,)f x y =(D )(,)e x y f x y +=.4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( B ).(A )驻点与极值点; (B )驻点,非极值点; (C )极值点,非驻点; (D )非驻点,非极值点. 5.设平面区域D :22(1)(1)2x y -+-≤,若1d 4D x y I σ+=⎰⎰,2DI σ=,3DI σ=,则有( A ) (A )123I I I <<; (B )123I I I >>; (C )213I I I <<; (D )312I I I <<.6.设椭圆L :13422=+y x 的周长为l ,则22(34)d L x y s +=⎰Ñ(D ) (A) l ; (B) l 3; (C) l 4; (D) l 12.7.设级数∑∞=1n na为交错级数,0()n a n →→+∞,则( C )(A)该级数收敛; (B)该级数发散;(C)该级数可能收敛也可能发散; (D) 该级数绝对收敛. 8.下列四个命题中,正确的命题是( D ) (A )若级数1nn a∞=∑发散,则级数21nn a∞=∑也发散; (B )若级数21nn a∞=∑发散,则级数1nn a ∞=∑也发散; (C )若级数21nn a∞=∑收敛,则级数1nn a∞=∑也收敛;(D )若级数1||nn a ∞=∑收敛,则级数21n n a ∞=∑也收敛.二、填空题(7个小题,每小题2分,共14分).1.直线3426030x y z x y z a -+-=⎧⎨+-+=⎩与z 轴相交,则常数a 为 3 。
2.设(,)ln(),y f x y x x=+则(1,0)y f '=_______1_____3.函数(,)f x y x y =+在(3,4)4.设22:2D x y x +≤,二重积分()d Dx y σ-⎰⎰=π .5.设()f x 是连续函数,22{(,,)|09}x y z z x y Ω=≤≤--,22()d f x y v Ω+⎰⎰⎰在柱面坐标系下的三次积分为 223920d d ()d f z πρθρρρ-⎰⎰⎰6.幂级数11(1)!nn n x n ∞-=-∑的收敛域是 (,)-∞+∞ . 7.函数21,0()1,0x f x xx ππ--<≤⎧⎪=⎨+<≤⎪⎩,以2π为周期延拓后,其傅里叶级数在点x π=处收敛于22π .三、综合解答题一(5个小题,每小题7分,共35分.解答题应写出文字说明、证明过程或演算步骤)1.设(,)x u xf x y =,其中f 有连续的一阶偏导数,求ux∂∂,u y ∂∂.解:12u x f xf f x y ∂''=++∂ ………………4分222u x f y y∂'=-∂ . ………………7分 2.求曲面3z e z xy ++=在点(2,1,0)处的切平面方程及法线方程. 解:令(),,e 3z F x y z z xy =++-,………………2分(,,)(,,e 1)zx y z F F F y x n ==+,(2,1,0)(1,2,2)n= ,………………4分所以在点(2,1,0)处的切平面方程为 (2)2(1)20x y z -+-+=, 即 2240x y z ++-=;………………6分法线方程为21122x y z--==. ………………7分3.交换积分次序,并计算二次积分0sin d d xyx y yππ⎰⎰; 解:0sin d d xyx y y ππ⎰⎰=00sin d d y y y x yπ⎰⎰ ………………4分=0sin d 2y y π=⎰………………7分4.设Ω是由曲面1,,===x x y xy z 及0=z 所围成的空间区域,求23d d d I xy z x y z Ω=⎰⎰⎰解:注意到曲面z xy =经过x 轴、y 轴,………………2分Ω={(,,):0,0,01}x y z z xy y x x ≤≤≤≤≤≤ ………………4分故12323000d d d d d d x xy I xy z x y z x y xy z z Ω==⎰⎰⎰⎰⎰⎰=3641. ………………7分5.求幂级数11n n nx∞-=∑的和函数()S x ,并求级数12n n n ∞=∑的和.解:11()n n S x nx∞-==∑, (0)1S =,由已知的马克劳林展式:11,||11n n x x x ∞==<-∑,………………2分有11()()(1)1n n S x x x ∞===-''-∑=21(1)x -,||1x <,………………5分 12nn n ∞=∑=11122n n n ∞-=∑=11()22S =2 ………………7分 四、综合解答题二(5个小题,每小题7分,共35分.解答题应写出文字说明、证明过程或演算步骤)1.从斜边长为1的一切直角三角形中,求有最大周长的直角三角形.解 设两个直角边的边长分别为x ,y ,则221x y +=,周长1C x y =++, 需求1C x y =++在约束条件221x y +=下的极值问题. ………………2分设拉格朗日函数22(,,)1(1)L x y x y x y λλ=++++-,………………4分令22120,120,1,x y F x F y x y λλ=+=⎧⎪=+=⎨⎪+=⎩解方程组得2x y ==为唯一驻点, ………………6分又最大周长一定存在,故当x y ==. ………………7分2.计算积分22()d Lx y s +⎰Ñ,其中L 为圆周22x y ax += (0a >).解:L 的极坐标方程为 cos a ρθ=,22ππθ-≤≤;………………2分则d d s a θθ==,………………4分所以3222322222()d d cos d 2La x y s a a πππππρθθθ--+===⎰⎰⎰Ñ.………………7分或解:L 的形心(,)(,0)2ax y =,L 的周长a π,22()d Lxy s +⎰Ñ=d Lax s ⎰Ñ=ax a π=32a π3.利用格林公式,计算曲线积分22()d (2)d LI x y x x xy y =+++⎰Ñ,其中L 是由抛物线2y x =和2x y =所围成的区域D 的正向边界曲线. 解:22()d (2)d LI xy x x xy y =+++⎰ÑDdxdy =⎰⎰ ………………3分21d xx y =⎰………………5分13= ………………7分4. 计算d x S ∑⎰⎰,∑为平面1=++z y x 在第一卦限部分.解:∑在xoy 面上的投影区域为)0,0(1:≥≥≤+y x y x D xy ,………………2分又,1,1,1:-=∂∂-=∂∂--=∑yzx z y x z 故dxdy dS 3=,………………4分 xO 2y x =2x y =yD所以1100xyxDxdS xdxdy dx xdy-∑===⎰⎰⎰. ………………7分或解:由对称性,11()33xdS x y z dS dS∑∑∑=++==⎰⎰⎰⎰⎰⎰5.利用高斯公式计算对坐标的曲面积分d d d d d dx y y z z xS++蝌,其中∑为锥面222z x y=+介于平面0z=及1z=之间的部分的下侧。