THE INFLUENCE OF NANOPARTICLES ON THE LUBRICATING PROPERTIES OF RAPESEED OIL
peg分子量的英文文献

peg分子量的英文文献Peg分子量的英文文献主要是指关于聚乙二醇(Polyethylene glycol,简称PEG)分子量的研究论文或文献资料。
PEG是一种具有多重应用领域的聚合物,常用于药物输送、生物化学实验、生物医学工程等方面。
PEG的分子量决定了其物理性质和应用效果,因此在PEG的研究中,分子量是一个重要的参数。
以下是22句双语例句:1. The influence of PEG molecular weight on drug release was investigated in this study.(本研究调查了PEG分子量对药物释放的影响)2. The effect of different PEG molecular weights on cell viability was evaluated.(评估了不同PEG分子量对细胞存活率的影响)3. The relationship between PEG molecular weight and protein adsorption was studied.(研究了PEG分子量与蛋白质吸附之间的关系)4. The impact of PEG molecular weight on drug loading efficiency was analyzed.(分析了PEG分子量对药物载荷效率的影响)5. The role of PEG molecular weight in enhancing the stability of nanoparticles was investigated.(调查了PEG分子量在增强纳米颗粒稳定性方面的作用)6. Different PEG molecular weights were synthesized and characterized in this study.(本研究合成并表征了不同PEG分子量的化合物)7. The effects of PEG molecular weight on controlled drug release were explored.(探究了PEG分子量对可控药物释放的影响)8. The relationship between PEG molecular weight and drug encapsulation efficiency was examined.(考察了PEG分子量与药物封装效率之间的关系)9. A method for determining PEG molecular weight was developed and validated.(开发并验证了一种测定PEG分子量的方法)10. The influence of PEG molecular weight on cellular uptake of nanoparticles was investigated.(研究了PEG分子量对纳米颗粒细胞摄取的影响)11. The effect of PEG molecular weight on the rheological properties of hydrogels was evaluated.(评估了PEG分子量对水凝胶流变性质的影响)12. The impact of PEG molecular weight on the release profile of loaded drugs was assessed.(评估了PEG分子量对已封装药物释放曲线的影响)13. The relationship between PEG molecular weight and drug solubility was investigated.(研究了PEG分子量与药物溶解度之间的关系)14. Different PEG molecular weights were compared in terms of their effects on nanoparticle stability.(通过比较不同PEG分子量在纳米颗粒稳定性方面的效果)15. The effects of PEG molecular weight on antibody conjugation efficiency were examined.(考察了PEG分子量对抗体结合效率的影响)16. The role of PEG molecular weight in the formation of drug-loaded micelles was investigated.(研究了PEG分子量在药物封装胶束形成中的作用)17. A correlation between PEG molecular weight and drug release kinetics was established.(建立了PEG分子量与药物释放动力学之间的相关性)18. The impact of PEG molecular weight on the thermodynamic properties of systems was analyzed.(分析了PEG 分子量对系统热力学性质的影响)19. The relationship between PEG molecular weight and the stability of protein formulations was studied.(研究了PEG分子量与蛋白质制剂稳定性之间的关系)20. The effect of PEG molecular weight on the permeability of hydrogels was investigated.(研究了PEG分子量对水凝胶渗透性的影响)21. The impact of PEG molecular weight on the mechanical properties of polymers was evaluated.(评估了PEG分子量对聚合物力学性质的影响)22. The role of PEG molecular weight in improving the stability of emulsions was examined.(考察了PEG分子量在提高乳液稳定性方面的作用)。
改性SiO2纳米颗粒对水基泡沫稳定性影响的研究

改性SiO2纳米颗粒对水基泡沫稳定性影响的研究摘要本文通过观察泡沫体积的衰减过程,以泡沫半衰期作为衡量泡沫稳定性的方式,考察了SDS、CTAB和C12E5三种表面活性剂的种类和浓度等因素对泡沫稳定性的影响规律和及各自稳定泡沫的机制。
在此基础上,本文对SiO2 纳米颗粒进行了表面疏水化修饰,将改性后的SiO2纳米颗粒和表面活性剂以1:1比例配置成不同浓度的溶液,研究了SiO2纳米颗粒的尺寸以及修饰方式等因素对泡沫稳定性的影响规律和机理。
结果显示不同种类的表面活性剂与SiO2纳米颗粒协同作用对泡沫稳定性的影响规律不同,表面疏水化改性后的SiO2纳米颗粒与C12E5共用时,泡沫的稳定性会下降,与SDS 和CTAB协同作用时,能够有效提高泡沫稳定性。
总体而言,复配体系浓度在临界胶束浓度时,泡沫的稳定性最好,在浓度不变的情况下,增大SiO2纳米颗粒的尺寸,会使得泡沫稳定性变差。
关键词:泡沫;稳定性;表面活性剂;表面张力;SiO2纳米颗粒Study on the effect of modified SiO2 nanoparticles on thestability of water-based foamAbstractIn this paper, by observing the decay process of the foam volume, and using the foam half-life as a measure of the stability of the foam, this article examines the influence of the types and concentrations of three surfactants, SDS, CTAB, and C12E5 on the foam stability and their respective principles. On this basis, the SiO2nanoparticles were surface-hydrophobized, and the modified SiO2 nanoparticles and surfactants were prepared in 1:1 ratios into solutions of different concentrations. The results showed that different surfactants and SiO2 nanoparticles had different effects on foam stability. When the surface hydrophobic modified SiO2nanoparticles share with C12E5, the stability of the foam will decrease, but combined with SDS and CTAB, the foam stability can be improved effectively. In general, the foam stability is best when the concentration of the complex system is at the critical micelle concentration, Under the condition of constant concentration, increasing the size of SiO2 nanoparticles will result in poor foam stability.Keywords:Foam;stability;Surfactant;Interfacial tension;SiO2 nanoparticles目录第1章绪论 (1)1.1 引言 (1)1.2 表面活性剂简介 (1)1.2.1 表面活性剂的定义 (1)1.2.2 表面活性剂的种类和应用 (2)1.2.3 表面活性剂的基本性质 (3)1.2.4 临界胶束浓度 (3)1.3 泡沫简介 (4)1.3.1 泡沫的结构和形成 (4)1.3.2 泡沫的衰变机理 (5)1.4 SiO2纳米颗粒简介 (5)1.4.1 SiO2纳米颗粒稳定泡沫的优势 (5)1.4.2 SiO2纳米颗粒的稳泡机理 (6)1.4.3 SiO2纳米颗粒稳泡的影响因素 (6)1.5 研究内容 (8)第2章单一表面活性剂对泡沫稳定性影响规律的研究 (9)2.1 实验材料及实验仪器 (9)2.1.1 实验材料 (9)2.1.2 实验仪器及装置 (9)2.2 单一表面活性剂泡沫液的泡沫半衰期测量 (10)2.3 单一表面活性剂泡沫液表面张力的测量 (10)2.4 泡沫衰变过程的形态记录 (11)2.5 结果与讨论 (11)2.5.1 单一表面活性剂浓度与泡沫半衰期和表面张力的关系分析 (11)2.5.2 泡沫形态随时间的变化 (14)2.6 本章小结 (16)第3章表面改性SiO2对泡沫稳定性影响规律的研究 (17)3.1 实验材料 (17)3.2 纳米SiO2的疏水化修饰及表征 (17)3.2.1 纳米SiO2的疏水化修饰 (17)3.2.1 表面改性纳米SiO2的表征 (18)3.3 改性SiO2对泡沫稳定性的影响研究 (18)3.4 结果与讨论 (18)3.4.1 疏水化修饰后纳米SiO2的红外光谱 (18)3.4.2 改性SiO2与SDS协同作用对泡沫稳定性的影响规律 (19)3.4.2 改性SiO2与CTAB协同作用对泡沫稳定性的影响规律 (21)3.4.3 改性SiO2与C12E5协同作用对泡沫稳定性的影响规律 (23)3.5 本章小结 (25)第4章结论 (26)致谢 (27)参考文献 (28)第1章绪论1.1 引言泡沫和表面活性剂被广泛应用于日常生活和工业生产的许多领域,日常生活中比较常见的作用是去除污垢、洗涤的作用,而更多的诸如增溶、分散、防腐、等一系列物理化学作用主要覆盖在精细化工领域,此外,三次采油中也经常使用泡沫驱的方法[1-7],多分散泡沫体系普遍存在的缺点是稳定性差。
氧气-阳极协同氧化体系中有机染料的降解行为

氧气-阳极协同氧化体系中有机染料的降解行为朱渊博; 寿王平; 石兆阳; 孙敏【期刊名称】《《工业水处理》》【年(卷),期】2019(039)011【总页数】4页(P62-65)【关键词】阳极氧化; 石墨碳毡; 染料; 降解途径【作者】朱渊博; 寿王平; 石兆阳; 孙敏【作者单位】合肥工业大学化学与化工学院安徽合肥230009【正文语种】中文【中图分类】X703; X788阳极氧化技术是一种代表性的电化学高级氧化技术,其以阳极电场为氧化动力使污染物得到氧化降解。
该技术不需要向废水额外加入新的化学试剂,避免了二次污染,并且反应装置简单,操作安全方便,因此在废水处理方面得到推广和应用〔1〕。
根据反应机理,阳极氧化主要分为直接阳极氧化和间接阳极氧化两种模式〔2〕。
在直接阳极氧化过程中,有机污染物首先被吸附在电极表面,然后通过与电极之间的直接电子传递而被氧化。
然而,有机污染物在电极上的直接电化学氧化会导致电极表面形成有机聚合物污染层而造成电极效率急剧下降。
此外,对于大部分有机污染物而言,其发生直接电化学氧化所要求的电位远高于水的电解析氧电位。
因此,人们更倾向于采用间接阳极氧化模式降解有机污染物,即利用水在阳极电解所产生的·OH、H2O2、HO2·等活性氧物种作为有机污染物的氧化剂。
间接阳极氧化体系通常采用PbO2和掺硼金刚石(BDD)作为阳极材料。
PbO2电极的主要问题是铅离子溶出而带来的潜在毒性。
BDD电极是近年来备受关注的新型电极材料,拥有优异的电化学性能,比较高的析氧过电位,相对低的背景电流,以及稳定的力学性能。
然而BDD电极制备工艺复杂,使用成本高,限制了其在废水处理方面的实际应用〔3-4〕。
本课题组在前期研究中发现,在石墨碳电极表面官能团的催化下,将氧气与阳极电场相协同可使染料等有机污染物在较低的电能消耗下获得深度降解〔5-6〕。
与直接阳极氧化或间接阳极氧化相比,这种协同氧化模式的优势在于其可使有机污染物在较低的阳极电位下降解,不仅节省了电能消耗,而且所用的石墨碳电极是一种廉价易得的电极材料。
The impact of nanoparticles on human health

The impact of nanoparticles on humanhealth随着科学技术的不断发展,纳米技术已经成为了目前世界上最热门的科技领域之一。
纳米技术是一种利用纳米级别的物质来制造、处理和控制材料和器件的技术,它可以改变原有材料的性质和特点,并为人类的生产和生活带来了更多的可能性。
但是,纳米技术所带来的好处,却伴随着一些令人担忧的问题,其中之一是:纳米颗粒对人类健康造成的影响。
纳米颗粒(NPs)指的是直径不超过100纳米的粒子,由于其小尺寸,与传统微米级颗粒相比,纳米颗粒具有更强的表面反应、较大的比表面积和更高的表面能,因此,具有更活跃并且不同于原有物质的特殊性质。
纳米颗粒可以通过吸入、皮肤接触、食物摄入等多种途径进入人体,并在人体内释放有毒或有害的化学物质。
首先需要注意的是,人类现有的关于纳米颗粒对健康危害的研究还很有限,纳米颗粒的危害性与其粒径、形态、表面化学性质、来源等因素有关,因此,纳米颗粒所带来的健康风险,可能只是我们认识范围内的冰山一角。
但是,近年来的研究表明,纳米颗粒与人类健康的关系十分紧密,下面对其中的几个方面进行阐述。
1. 呼吸系统危害纳米颗粒具有极强的渗透能力,可以通过肺部进入人体内部,并对人类呼吸系统造成危害。
一些研究表明,纳米颗粒可导致急性肺部炎症、肺纤维化、气道阻塞、运动能力减退等症状。
此外,纳米颗粒还具有夹带其他有害物质进入人体的能力,如氮氧化物、多环芳香烃、重金属等,这些有害物质对人体健康的影响更加严重。
2. 微生物生态系统影响纳米颗粒进入自然环境,不仅危害人类健康,还可能影响微生物生态系统。
微生物生态系统是人类生存不可或缺的一部分,纳米颗粒的存在会对微生物的生存和功能产生不良影响,从而引起环境恶化和生态平衡的破坏。
3. 神经系统影响一些研究发现,纳米颗粒可以通过血液-脑屏障(BBB)进入大脑,对神经系统造成危害。
纳米颗粒可以通过对神经细胞的直接作用,导致神经细胞的死亡,或者通过干扰神经细胞之间的信息传递,降低神经系统功能。
The Use of Nanoparticles in Medical Applications

The Use of Nanoparticles in MedicalApplicationsNanotechnology has revolutionized the field of medicine, enabling doctors to create and use nanoparticles for a variety of medical applications. These particles, which are hundreds of times smaller than a human cell, can be used to target cancer cells, deliver drugs and medications, and even act as diagnostic tools. In this article, we will explore the use of nanoparticles in medical applications, along with the benefits and potential risks associated with this technology.One of the primary uses of nanoparticles in medicine is for targeted drug delivery. Traditional drugs can have severe side effects, as they tend to affect healthy cells and tissues as well as cancerous ones. Nanoparticles, on the other hand, can be designed to target specific cells or tissues, allowing drugs to be delivered directly to the affected area without harming healthy ones. Research has shown that this targeted approach to drug delivery can improve treatment effectiveness while reducing the risk of adverse side effects.Another use of nanoparticles in medicine is as diagnostic tools. When nanoparticles are coated with specific molecules, they can be used to detect certain proteins or biomarkers in the body. For example, a nanoparticle coated with antibodies that bind to cancer cells could be injected into a patient's bloodstream. If the nanoparticle binds to cancer cells, doctors could use it to detect the presence of cancer cells in the patient's body.Beyond targeted drug delivery and diagnostics, nanoparticles can also be used to create new medical devices and implants. For example, nanoparticles can be used to improve the properties of existing materials. They can make implants more compatible with the human body, enhancing biocompatibility and reducing toxicity. In addition, nanoparticles can be used to create new materials with unique properties. For example,nanoparticles can be used to create scaffolds that support the growth of new cells and tissues in the body.Despite the benefits, there are also potential risks associated with the use of nanoparticles in medicine. For example, nanoparticles can accumulate in tissues, and if they reach certain concentrations, they could damage cells and tissues, leading to toxicity. Furthermore, the long-term effects of nanoparticles are not yet fully understood, and continued research is needed to determine their safety and efficacy.In conclusion, the use of nanoparticles in medicine has the potential to revolutionize the field of medicine. From targeted drug delivery and diagnostics to the creation of new medical devices and implants, nanoparticles offer a wide range of applications that can benefit patients. However, it is important to continue studying the long-term effects of nanoparticles, as well as their potential risks and benefits, to ensure that they are used effectively and safely in medical applications.。
The role of nanoparticles in catalysis

The role of nanoparticles in catalysis 纳米粒子在催化中的作用随着科技的进步和发展,纳米技术日益成熟。
纳米科技作为新兴的产业,被广泛应用于各领域,在生产和科研中都有重要作用。
其中,纳米粒子在催化领域的应用被越来越重视。
本文将从纳米粒子在催化中的作用、纳米催化剂的种类和制备方法三个方面探讨纳米技术在催化领域的应用。
一、纳米粒子在催化中的作用催化是一种能够促进化学反应的过程,催化剂是在化学反应中被添加进去的物质。
纳米技术中的纳米粒子,其粒径小于100nm,其表面积相对于体积大得多,所以比普通催化剂更容易提供活性位点,因此纳米粒子可以作为一种高效的催化剂。
纳米粒子在催化中的作用主要表现在三个方面:其一,提高反应速率。
纳米粒子具有大的比表面积和良好的分散性,这使其很容易吸附反应物,从而加速反应的进行。
同时,纳米粒子可以促进反应的表面扩散,并加速产物的失去,提高反应速率。
其二,改善选择性。
纳米粒子的表面积大,可以与反应物形成特定的配位键,或者在其表面形成空间位阻,从而使其具有不同于普通催化剂的特异性。
这意味着纳米粒子在化学反应中可以作为高选择性催化剂,以满足特殊催化反应的需要。
其三,降低反应温度。
传统的催化剂本身也可以降低反应温度,但通常的效果比较有限。
而纳米粒子在催化过程中不仅可以提高反应率和选择性,而且还可以降低催化反应的温度,使其适用于低温催化和绿色化工领域。
二、纳米催化剂的种类为了更好地了解纳米粒子在催化中的作用,我们需要进一步了解一下纳米催化剂的种类。
目前,纳米催化剂主要分为金属催化剂、金属氧化物催化剂、碳基催化剂和离子液体催化剂。
金属催化剂是最常见的催化剂之一,其主要成分是金属,如铂、钯、铜、铁和铑等。
纳米粒子化的金属催化剂比普通催化剂更容易提供活性位点,有着更高的反应速度和选择性。
金属氧化物催化剂是另一种常见的催化剂类型,如二氧化钛、氧化锌、氧化铝等。
这些纳米催化剂可以通过控制其晶体结构和粒径来改变其表面酸性和碱性,从而进一步调节其催化性质和活性位点。
我对纳米技术用在琥珀上的看法作文

我对纳米技术用在琥珀上的看法作文英文回答:Nanotechnology is a rapidly advancing field that has the potential to revolutionize various industries,including the jewelry industry. When it comes to amber, a fossilized tree resin known for its beauty and historical significance, nanotechnology can offer numerous benefits.First and foremost, nanotechnology can be used to enhance the appearance of amber. By manipulating the size and arrangement of nanoparticles on the surface of amber, scientists can create unique visual effects, such as iridescence or color-changing properties. This can make amber jewelry even more visually appealing and desirable.Additionally, nanotechnology can be employed to improve the durability and strength of amber. By incorporating nanoparticles into the resin matrix of amber, it can become more resistant to scratching and cracking. This wouldensure that amber jewelry remains in pristine condition for a longer period of time, increasing its longevity and value.Furthermore, nanotechnology can enable the developmentof self-cleaning amber. By coating the surface of amberwith a thin layer of nanoparticles that possess self-cleaning properties, dust, dirt, and other contaminants can be repelled. This would greatly reduce the need forfrequent cleaning and maintenance of amber jewelry, makingit more convenient for the wearer.Moreover, nanotechnology can facilitate the creation of smart amber jewelry. By integrating nanosensors into the amber, it can be transformed into a wearable device thatcan monitor various health parameters, such as heart rateor body temperature. This would not only add a unique functionality to amber jewelry but also contribute to the advancement of wearable technology.In conclusion, nanotechnology has the potential to greatly enhance the beauty, durability, and functionalityof amber jewelry. By manipulating nanoparticles, amber canbe made more visually appealing, durable, and even possess self-cleaning properties. Furthermore, the integration of nanosensors can transform amber into a smart jewelry piece. With all these potential benefits, it is clear that nanotechnology can revolutionize the use of amber in the jewelry industry.中文回答:纳米技术是一个快速发展的领域,有潜力改变各个行业,包括珠宝业。
聚乙二醇修饰对固体脂质纳米粒胃肠道转运和体内消除的影响

聚乙二醇修饰对固体脂质纳米粒胃肠道转运和体内消除的影响第32卷第1期2011年2月同济大学(医学版)JOURNALOFTONGJIUNIVERSITY(MEDICALSCIENCE)VOI_32No.1Feb.,2011doi:10.3969/j.issnl008—0392.2011.01.035?基础研究?聚乙二醇修饰对固体脂质纳米粒胃肠道转运和体内消除的影响高哲,陈建(浙江大学医学院附属第一医院药剂科,杭州310003)【摘要】目的阐明不同含量和聚合度PEG修饰对SLN在胃肠道转运和体内消除的影响.方法溶剂扩散法合成蓉光标记不同含量和聚合度PEG修饰SLN,建立血样中PEG—SLN检测方法学,对大鼠灌胃后对PEG—SLN体内浓度经时变化进行考察.结果口服后1~2h,PEG含量和聚合度越高,体内浓度越低;至8h后,PEG含量和聚合度越高,体内浓度越高.结论PEG含量和聚合度提高减慢SLN在胃肠道内吸收,延长SLN体循环时间,在设计PEG—SLN制备处方时须综合考虑吸收,药物释放以及体内消除等多方面因素. 【关键词】聚乙二醇;固体脂质纳米粒;胃肠道转运;体内消除【中图分类号】R94【文献标志码】A【文章编号】1008—0392(2011)01—0035—05 TheinferenceofPEGmodifiedsolidlipidnanoparticlesonbiotransportingastr0intestinaltractandeliminationinvivoGAOzhe,CHENJian(Dept.ofPharmacy,TheFirstAffiliatedHospital,CollegeofMedicine,ZhejiangUniversity, Hangzhou310003,China)【Abstract】ObjectiveToclarifytheinfluenceofSLNmodifiedbyPEGwithdifferentcontentsand polydispersityonbiotransportingastrointestinaltractandeliminationinvivo.MethodsDiffe rentcontentsandpolydispersityofPEG—modifiedfluorescentSLNweresynthesizedbysolventdiffusionmethod,andthebloodsampledetectionmethodologywasestablished.Theconcentration—timeinspectionchangesofPEG-SLNinvivoinratsafteroraladministrationwereinvestigated.ResultsThehi gherthePEGcontentandpolydispersity1~2hrsafteroraladministration,thelowertheconcentrationinvivo.For8hrs,thehigherthePEGcontentandpolydispersity,thehighertheconcentrationinvivo. ConclusionTheincreaseofcontentandpolydispersityofPEGslowsdowntheSLNabsorptio ninthegastrointestinaltractandextendsthetimeofSLNinvivo.Itisnecessarytotakeintoaccountabs orption, releaseandeliminationinvivowhenPEG—SLNprescriptionwasdesigned. 【Keywords】PEG;solidlipidnanoparticle;biotransport;elimination固体脂质纳米粒(solidlipidnanoparticles,SLN)是继微乳,脂质体,聚合物纳米粒之后,发展起来的一种新型毫微粒类给药系统.它具有物理稳定性高,可以控制药物的释放,避免药物的降解或泄漏的优势,收稿日期:2010—11—01作者简介:高哲(1984一),男,药剂师,学士.E—mail:~**************35?同济大学(医学版)第32卷毒性低,生理相容性好,是一种很有发展前景的药物给药系统-3J.但SLN在体内对单核细胞吞噬系统(mononuclearphagocytesystem,MPs)有趋向性,使其在网状内皮系统(reticuloendothelialsystem,RES) 的分布增加,体内循环时间减少J.有研究发现通过聚乙二醇(polyethyleneglycol,PEG)修饰SLN可以提高SLN在体内的循环时间,减慢消除].然而对于口服PEG修饰SLN后对胃肠道转运的影响还未见报道.本研究通过合成荧光标记不同含量和聚合度PEG—SLN,以SD大鼠为模型,检测口服PEG—SLN后在体内浓度变化,以期系统阐明PEG对SLN在胃肠道转运和体内消除的影响.1材料与方法1.1仪器硼旨酸(stearicacid,SA,上海化学试剂采购供应站),聚乙二醇一硬脂酸酯(PEG—SA,KaseiKogyCo., Japan),硬脂胺.异硫氰基荧光素嫁接物(Octadecy—lamine—fluoresceinisothiocyanate,ODA—FITC,自备, 制备方法见参考文献E6]),SD大鼠(浙江大学医学院实验动物中心),其他溶剂和试剂均为色谱纯或分析纯.荧光分光光度计(F一2500,HITACHICo., Japan),微粒粒度及表面电位分析仪(Zetasizer3000HS,Malvern,UK),冷冻干燥机(Freezone2.5plus, LabconocoCo.,USA),核磁共振仪(AC一80,Bruker Biospin,Germany).1.2方法1.2.1荧光标记PEG—SLN的制备精密称取硬脂酸60mg,ODA—FITC荧光嫁接物4.8mg,PEG 2000一SA(使与硬脂酸的比例分别为0.67%,1.3%, 2.0%,2.6%,mol/mo1),或不同聚合度的PEG—SA适量(使PEG1300一SA,PEG2000~SA和PEG2700一SA与硬脂酸的比例均为1.3%,moL/mo1),加入无水乙醇6mL,超声使完全溶解.以蒸馏水为分散介质,在70℃水浴,400r/min机械搅拌条件下,将有机相迅速注入60m1分散介质中,得PEG修饰荧光标记SLN分散液.以盐酸调节pH至1.2,使纳米粒絮凝,微孔滤膜过滤得到纳米粒沉淀.将纳米粒沉淀再分散至3ml0.1%泊洛沙姆188溶液中,探头超声处理,得到荧光标记不同修饰比例PEG2000一.36?SLN和不同聚合度PEG—SLN再分散液.1.2.2PEG—SEN核磁共振试验和修饰率取适量PEG—SLN溶于氘代氯仿中,作核磁共振检测得PEG—SLN的核磁共振氢谱.对PEG特征H峰(化学位移3.7)和CH特征'H峰(化学位移0.8)进行积分,并根据公式(1),(2)计算PEG含量摩尔百分比和修饰率:PEG特征.H峰面积PEG含量摩尔百分比i4xnx100%3(1)(n=PEG分子中(CHCH:O)基团数量)PEG修饰率=(PEG含量摩尔百~L/PEG用量摩尔百分比)x100%(2)1.2.3PEG—SLN粒径和Zeta电位取PEG—SLN再分散液,以蒸馏水稀释400倍,用微粒粒度与Zeta电位测定仪测定平均粒径和Zeta电位.1.2.4PEG—SLN血样测定标准曲线取适量PEG—SLN加至血液(含有肝素溶液抗凝)中形成脂质浓度为200ml的分散液.移取适量,用全血稀释至脂质浓度为5,10,25,50,100ml的标准分散液,水浴37℃孵育5min,加入同等体积乙腈,漩涡振荡3min混匀,8000r/rain,离心半径6cm,离心10min后取上清液,荧光分光光度法(Ex:495niil,Em:514am,slit:5nn1)测定,根据荧光值绘制标准曲线.'1.2.5PEG—SLN口服后胃肠道转运和体内消除取SD大鼠若干,随机分为两组,使每组大鼠为10只.实验前禁食12h.按照150mgPEG—SLN/kg的剂量分别给各实验组大鼠灌胃不同比例修饰(PEG2000一SA,0.67%,1.3%,2.0%,mol/mo1)和不同聚合度(PEG1300一SA,PEG2000一SA,PEG2700一SA,1.3%,mot/mo1)PEG修饰的SLN再分散液,分别于O,O.5,1,2,4,6,8,10,12h从尾静脉取血,肝素抗凝,按照1.2.4法分析测定.2结果PEG—SLN核磁共振氢谱,见图1.由图可见,经;PEG(Mwl300,2000,2700)修饰后的SLN图谱第1期高哲等:聚乙二醇修饰对固体脂质纳米粒胃肠道转运和体内消除的影响中同时有硬脂酸分子中CH,一基团特征峰(化学位移0.8)和PEG—SA分子中(CH2CH2O)基团特征峰(化学位移3.7),证明PEG已修饰到SLN表面.{1l.864208,,llII6420(b).'{86420.(e)图1PEG—SLN核磁共振氢谱(a:分子量1300PEG—SLN; b:分子量2000PEG—SLN;c:分子量2700PEG—SLN;d:硬脂酸;e:PEG2000一SA)Fig.1PEG—SLNNMR(a:Molecularweight1300PEG—SLN; b:Molecularweight2000PEG—SLN;c:Molecularweight 2700PEG—SLN:d:Stearicacid;e:PEG2000一SA)不同投量和聚合度PEG在SLN中修饰率计算结果见图2.采用溶剂扩散法制备对PEG—SA具有较高的修饰率.由图可见,PEG投量提高,PEG修饰率稳定为72%,当PEG投量增加到2.6%,mol/mol时,修饰率下降至58%,说明采用溶剂扩散法制备SLN对PEG—SA的包载有饱和趋势.PEG聚合度提高,修饰率略有下降,可能因为PEG的聚合度越大,空间位阻和在水中的运动黏度也就越大,不利于SLN对PEG的包裹.以溶剂扩散法制备的PEG—SLN,粒径和电位考察结果见表1.由表可见,随着制备处方中PEG2000一SA用量的增加,SLN粒径从200.3nm逐渐增至306.3nm.当PEG聚合度(Mw)逐渐变大, PEG—SLN粒径没有发生明显变化.SLN未经PEG修饰的粒径约为200nm,PEG链长的改变对SLN粒径影响不明显.SLN的粒径主要由所选用的脂质材料和制备方法本身性质所决定.各组的Zeta电位都也比较接近,约为一24mv左右.0.671-322.6AmountofPEG2000一SAadded(mo1%)(a)l30020002700MwofPEG—SAadded(1.3%.mol/mo1)(b)图2SLN对PEG的修饰率和PEG含量摩尔百分比Fig.2DecoraterateofSLNtoPEGandPEGcontent olpercentage,(a):DifferentdosagePEG—SAdecorate rate;(b):DifferentdegreesofpolymerizationPEG—SA decoraterate其中(a):不同用量PEG—SA的修饰率;(b1:不同聚合度PEG—SA的修饰率表1不同修饰l:l::ff1],不同聚合度PEG—SLN的粒径和Zeta电位Tab.1Differentmodificationproportion,differentdegree ofpolymerizationPEG—SLNparticlesize distributionandZetapotentialPEG修饰的SLN在血液中的平均回收率为32.1%,RSD<15%,具有良好的重现性.精密度测定RSD<15%,该血样处理方法满足后续试验要求.PEG—SLN在血样中标准曲线考察结果.由图37?一0_【III10苗0U64286421111OOOOO∞踮加∞∞∞如加加0/^0矗I.晤Qlu0IIIq日扛口_10昌IIlu0U64286421111OO0OO∞∞踟∞如∞如加m0/^0I10—0甚oIu∞吕导扫II同济大学(医学版)第32卷可见,PEG—SLN在血样中的线性方程分别为Y=3.56x一0.18(PEG2/XD—SA,0.67%,mol/mo1),Y=4.62x+8.11(PEG2(K10一SA,1.3%,mol/mo1),Y=6.96x一7.51(PEG2000一SA,2.0%,mol/mo1),Y=7.06x+7.61(PEG1300一SA,1.3%,moVmo1)和Y= 10.68x+1.84(PEG2700一SA,1.3%,mol/mo1).线性良好(,.>O.99),线性范围均为5—100II1l.大鼠口服不同含量(0.67%,1.3%,2.O%,mol/mo1)PEG修饰SLN后的体内浓度变化曲线见图3. 由图可见,PEG含量越低,口服1~2h后SLN浓度越高,说明PEG含量提高不利于SLN的胃肠道吸收. 因为PEG含量增加,覆盖于SLN表面的PEG侧链越多,越不利于SLN的淋巴转运,使吸收速率降低.至8h,PEG含量越高,其体内的消除速度越慢,说明PEG含量的提高有助于提高SLN的体循环时间.大鼠口服不同聚合度(Mw1300,Mw2000,Mw2700)PEG修饰SLN后的体内浓度变化曲线见图4.由图可见,PEG聚合度越大,在口服后1~4h,SLN浓度越小,说明PEG聚合度越大对SLN在胃肠道内吸收有阻碍.至12h,PEG聚合度越大,SLN消除越慢,表明PEG聚合度变大有利于PEG—SLN的"隐匿".图3口服后48h和12h不同含量PEG—SLN在血液中浓度变化曲线(=10)ig.3DifferentPEG—SLNcontentsinthebloodconcentrationchangeCalVEafter48hand12h(n=10)喜笔要薯lU墨耋U图4口服后48h和12h不同聚合度PEG—SLN在血液中浓度变化曲线(n=l0) Fig.4DifferentPEG—SLNdegreesinthebloodconcentrationchangecUrVEafter48hand12h(n=1013讨论本研究采用了一种新型的合成荧光素嫁接物——硬脂胺.异硫氰基荧光素作为荧光标记物.在38?N,N一二甲基甲酰胺(N,N—dimethylformamide,DMF)中,硬脂胺的氨基能与异硫氰基荧光素(fliaoresceinisothiocyanate,~rrc)发生加成反应,形成ODA.FITC.由于硬脂胺一FITC的疏水链和硬脂酸性质相近,具如加m0一..一_【II.∞i一\z∞0I10一丑IIDI10um8胁642O第1期高哲等:聚乙二醇修饰对固体脂质纳米粒胃肠道转运和体内消除的影响有较强亲和力,使两者能够紧密结合,不易分离,是理想的硬脂酸SLN荧光标记物J.通过水l生溶剂扩散法制备得到的PEG—SLN,其平均粒径为200.3~306.3nm,表面电位约为一24mv,与未经修饰的SLN相比,变化不显着.由于PEG亲水性较强,故在溶剂扩散法制备过程中更易趋向于极性较大的水性溶剂而富集于脂质表面.经核磁共振考察确认PEG成功嫁接到SLN表面.当PEG—SA的投量在12wt%以下时,PEG修饰率稳定在72%,说明通过溶剂扩散法制备PEG—SLN有效而简便.先前的研究已发现,PEG—SLN体内的循环时间较未经PEG修饰的SLN大大延长,具有长循环作用,而SLN主要通过淋巴吸收途径进入体循环J.外源性脂质通常在小肠内水解成脂肪酸和甘油酯,由肠黏膜一些脂蛋白结合形成乳糜微粒(cM)后,经淋巴吸收.脂质在淋巴液中的溶解度是影响淋巴转运效率和速度的重要因素.PEG作为一种亲水性较强的长链聚合物,对SLN修饰后使SLN表面亲水性增强,不利于SLN对脂蛋白的吸附,使SLN在淋巴液中溶解度降低,阻碍SLN的淋巴转运,导致SLN胃肠道吸收速度下降.PEG的含量越高,聚合度越大,胃肠道的吸收速度越低.经PEG修饰后微粒在体内具有长循环作用,主要与PEG修饰后SLN可以避免调理素等识别,防止被网状内皮系统(RES)的摄取有关.本研究表明,SLN表面PEG的含量越高,聚合度越大,其干扰蛋白吸附到SLN表面的能力越强,更有效地避免SLN被巨噬细胞吞噬.SLN中PEG含量和聚合度改变对药物的释放影响同样明显.已有报道,微粒中PEG含量的增大使药物的前期突释更为严重,释放的速率更快.主要由于PEG可以在微粒中构成一种分子核或分子通道,更有利于药物的扩散.PEG含量越多,这样的分子核或分子通道也就越多,则药物释放越快¨...综上所述,PEG含量和聚合度提高会减慢SLN在胃肠道内吸收,延长SLN体循环时间,加快药物的释放.因而对SLN进行PEG修饰须综合考虑吸收,药物释放以及体内循环时间等多方面因素,根据实际所载药物特性,选择一个最佳PEG聚合度和投量比例.【参考文献】BargoniA,CavalliR,CaputoO,eta1.Solidlipid nanoparticlesinlymphandplasmaafterduodenaladminis—trationtorats[J].PharmRes,1998,15:745—750. HuFQ,YuanH,ZhangHH,eta1.Preparationof solidlipidnanoparticleswithclobetasolpropionatebya novelsolventdiffusionmethodinaqueoussystemand physicochemicalcharacterization[J].IntJPharm, 2002,239:121—128.JurodoJM,BlancasI.Accuracyofsetinaellymphnode (SLN)biopsyafterneoadjuvantchemotherapy(NC)forbreastcancer[J].JClinOncol,2010,28(15):e11029. FlorenceA T,HilleryAM,HussainN,eta1.Nanoparticles ascardersfororalpeptideabsorption:studiesonparticles uptakeandfate[J].JControlRel,1995,36:38—46. OyewumiMO,Y okelRA,JayM,parison ofcelluptake,biodistributionandtumorretentionof folate?-coatedandPEG—coatedgadoliniumnanoparticles intumor—bearingmice[J].JControlRel,2004,95: 622—623.YuanH,ChenJ,DuYZ,eta1.Studiesonoral absorptionofstearicacidSLNbyanovelfluorometric method[J].ColloidsandSurfacesB:Biointerfaces, 2007,58:157—164.FlorenceA T,SakthivelT,TothI.Oraluptakeand translocationofapolylysinedendrimerwithalipidsm'face[J].JControlRel,2006,65:253—259.JanaP,AimanH.Lipidnanoparticlesincosmeticand pharmaceuticaldermalproducts[J].IntJPharm,2009,366(1—2):170—184.PercchiaMT,FattalE,DesmaeleD,eta1.Stealth PEGylatedpolycyanoacrylatenanoparticlesfor intravenousadministrationandsplenictargeting[J].J ControlRel,1999,60:128.邹耀邦,王璐,刘孝波.聚乙二醇(PEG)活化及其在药物释放和反应载体中的应用[J].世界科技研究与发展,2003,(25)2:63—68.1j1j]J1J]J1J1J]J1J1●_123456789rLrLrLrLrLrLrLrLrLrL。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010 STLE Annual Meeting & ExhibitionMay 16-20, 2010Las Vegas, USATHE INFLUENCE OF NANOPARTICLES ON THE LUBRICATING PROPERTIES OF RAPESEED OILT. MALIAR, H. CESIULIS , VILNIAUS UNIVERSITETAS, CHEMIJOS FAKULTETAS, NAUGARDUKO G.24, LT – 03225 VILNIUS S. ACHANTA, D.DREES, FALEX TRIBOLOGY N.V., WINGEPARK 23B, ROTSELAAR B-3110, BELGIUMINTRODUCTIONNowadays, many attempts are made to solve tribological issues related to lubricated contacts by the introduction of metallic and non-metallic nanopowders as additives. The main objective related with the usageof magnetic nanoparticles like Fe, Co, Ni in the tribocontact is to minimize friction. Another hypothesis is that these particles penetrate local microcracks thereby arresting them or even forming a protective tribolayer thus controlling wear and local temperature increase (this paper should appear in the introduction). Some other theories related to tribofilm formation and rolling effects were also reported. The present paper explores the effect of Fe based micro-/nano- particle additions on the tribological properties of lubricating oils when subjectedto unidirectional and bi-directional sliding conditions. The ranking of various unmodified (Base oil, rapeseed oil and mineral oil) and modified oils (with Fe particles) based on tribological peoperties was done by measuring friction and quantifying wear loss on the sliding surfaces. Further, a comparison between Fe micro-/nano- particle blended oil and commercially known glycerol monooleate (GMO) additive is also reported.MATERIALS AND METHODSIn all, 10 oils/suspensions with different combination of additives, surfactants, and Fe particles were prepared and tested. Such a study intended to study the effect of each additional chemical compound on the tribological properties of the oil. Finally, base oil with and without commercially known glycerol monooleate (0.5% wt) additive was used as a reference (see Table. 1). For convenience the prepared oils/suspensions are abbreviated as shown in Table 2 second column.Test samples AbbreviationBase oilBase oil + 0.5% GMORapeseed oil + 0.5% phenol antioxidantRapeseed oil + 0.5% phenol antioxidant + 0.5% OS-20 + 2.2% NaBH4 + 2.2% FeSO4Rapeseed oil + 0.5% phenol antioxidant + 0.5% OS-20 + 4.4% H2ORapeseed oil + 0.5% phenol antioxidant + 0.5% ENB 904 + 2.2% NaBH4 + 2.2% FeSO4Rapeseed oil + 0.5% phenol antioxidant + 0.5% ENB 904 + 4.4% H2OSAE 10 + 0.5% phenol antioxidantSAE 10 + 0.5% phenol antioxidant + 0.5% OS-20 + 2.2% NaBH4 + 2.2% FeSO4BOBO + GMO RORO + OS-20 + FeRO + OS-20 + H2ORO + ENB + FeRO + ENB + H2OSAE 10 SAE 10 + OS-20 + FeSAE 10 + 0.5% phenol antioxidant + 0.5% OS-20 + 4.4% H2OSAE 10 + 0.5% phenol antioxidant + 0.5% ENB 904 + 2.2% NaBH4 + 2.2% FeSO4SAE 10 + 0.5% phenol antioxidant + 0.5% ENB 904 + 4.4% H2O SAE 10 + OS-20 + H2O SAE 10 + ENB + Fe SAE 10 + ENB + H2OTable 1. List of tested oils (components expressed in wt %) * Base oil and base oil+GMO are used asreferencesTribological testsThe four ball wear experiments are commonly used to study the anti-wear properties of lubricants under uni-directional sliding contact [24]. For this study a four-ball wear test machine made by Falex Corporation, USA was used. The test set-up consists of a ½ inch diameter top steel ball rotating in the cavity of three identical steel balls in contact and clamped in a cup below, containing the test fluid. The test balls (100Cr6 steel, 12.7 mm diameter, 64–66Rc hardness) were thoroughly cleaned with acetone and ethanol before each experiment. Test fluid (15-20 ml) was poured in the test cup so that the bottom three balls remain immersed. The test speed was set at 1200 rpm and the test temperature was maintained at 75 0C. To understand the evolution in friction and wear, three tests were done on each oil at a load of 40 Kg for 1 hr, at 60Kg for 1 hour and final test at 60 kg for 2 hours. All these tests were duplicated. After the test, the circular wear scar diameters on the three stationary balls were measured with a Ziess® optical microscope. For each test, the six scar measurements were averaged and reported as Wear Scar Diameter (WSD).Reciprocating sliding tests at normal forces of micro- up to milliNewtons were done with a high precision microtribometer (MUST, Falex Tribology NV, Belgium) in a ball-on-flat contact configuration were performed. Reciprocating sliding tests were performed on vacuum arc remelted (AISI 52100 steel, 24 mm diameter, 7.85 mm thickness, 60 Rc hardness, roughness parameter is in range 0.5 µm< R2 < 0.65 µm ) against 3.175 mm 100Cr6 bearing steel ball. Before every test 2-3 ml of oil/suspension was dropped on the disk and spread uniformly using a spatula. The displacement amplitude during the tests was fixed at 5 mm. The normal force was varied 500 mN, 750 mN and 900 mN. Sliding speed were used 0.05 mm/s, 0.5 mm/s and 2.6 mm/s, respectively. Each combination of speed and load was executed thereby performing 9 experiments per oil. All experiments were carried out in ambient air at 23°C and 50 % relative humidity.RESULTSFour ball wear testsA summary of all the average coefficients of friction for oils/suspensions is summarized in Fig. 1a. The average scar diameters obtained after the four ball wear test at 40/60 Kg load is given in Fig. 1b. The modified rapeseed oil with iron particles showed the lowest average coefficient of friction which was lower than the Base oil containing GMO additive. The reason for the friction reduction could be attributed to the decrease in the effective shear strength in the contact due to the third-body effect e.g., rolling effect or the ability of the particles to carry the oil film deeper into the contact [1]. In the case of mineral oil, the addition of Fe particles led to an increase in the coefficient of friction. Especially modified SAE 10 + OS-20 + Fe blend caused some corrosion on the balls which was not noticed with untreated SAE10 oil (Fig. 2a). It is hypothesized that Fe particles with OS-20 surfactant in mineral oil forms some kind of active complexes which may have caused corrosion [2]. This result indicates that the selection of surfactant is very important for the application of micro-/ nano- particles as lubricating oil additives. Although there were contrasting effect of Fe particles on rapeseed and mineral oil, the addition of Fe particles has reduced wear loss for both the oils. This effect is more pronounced for the test done at 60 Kg load (see Fig. 2b).(a)(b)Fig. 1 (a) Calculated average CoF (b) average scar diameter on stationary balls measured with optic microscope at 50x . Test conditions: 75 0C, 1200 rpm, 12.7 mm diameter 100Cr6 bearing steel balls.(a) (b)Fig. 2 Wear scars after FBW test (a) non-modified SAE 10 oil at 40 Kg load, (b) modified SAE 10 oil withFe particles blended with OS-20 surfactant at 60 Kg load. Test conditions: 75 0C, 1200 rpm, 12.7 mmdiameter 100Cr6 bearing steel balls.The four ball wear test results obtained on all the oils/suspensions listed in Table.1 are given in Fig. 3. For convenience, the results are separated into mineral oil based and Rapeseed oil based. Fig. 3a shows that wear volume (WV) is relatively less for RO + OS-20 + Fe and RO + ENB + Fe suspensions compared to non-modified RO, BO, BO + GMO and RO+OS+20/ENB+H 2O. For a test at 60 Kg and 2 hours, the wear volumes of RO + OS-20 + Fe and RO + ENB + Fe converge although at 40Kg RO + OS-20 + Fe gives better wear protection than RO + ENB + Fe. This difference between RO + OS-20 + Fe and RO + ENB + Fe could have been due to of the difference in the synthesized Fe particle sizes. The details of the wear loss on mineral oil based oils/suspensions are shown in Fig. 3b. The SAE 10 + OS-20 + Fe suspension showed the least wear loss compared to SAE 10, BO and modified BO + GMO. The mineral oil suspension with OS-20/ENB + H 2O gave a better wear protection than the oil itself whereas for rapeseed oil such suspensions made no difference. In contrast the SAE 10 + ENB + Fe gave a higher wear loss than BO + GMO. On comparison with rapeseed oil Fe particle suspensions, the obtained wear loss with SAE 10 is significantly high. In general, OS-20 surfactant with Fe particles seems to deliver a better wear resistance to both the rapeseed and mineral oils. It is believed that the wear reduction by the Fe particles could be due to the formation of protective film formation in the contact which needs a further investigation.Reciprocating sliding testsA graph of the average coefficient of friction against Sommerfield number estimate [3] (velocity/load ratio) recorded during reciprocating sliding tests using a microtribometer is shown in Fig. 4. For the rapeseed oil (Fig. 4a), the lowest coefficient of friction (CoF) was measured for modified RO + OS-20 + H 2O and none of the Feparticle suspensions have shown significant reduction in coefficient of friction. At V/L ratio of 0.003, RO + OS-20 + Fe suspension seems to have slightly lower coefficient of friction than commercial GMO. In the case of mineral oil, addition of surfactants or surfactants + Fe particles has only led to an increase in the coefficient of friction. Especially with Fe particle suspensions the coefficient of friction exceeded 0.4. Thus under reciprocating sliding conditions modification of mineral oils with Fe particles does not improve the friction behaviour. The observed trend in the coefficient of friction is in good agreement with the four ball coefficient of friction data where an increase in the friction force was also recorded in SAE 10 based suspensions. On observing the disk after the test, only SAE 10 based suspensions showed some damage in the wear track. It is believed that the iron particles settle down (due to gravity) on the surface and act as abrasives thereby increasing the friction force.(a)(b)Fig. 3 Wear Volume results obtained from four ball wear tests on (a) rapeseed oil (b) mineral oil SAE 10based oils/suspensions and compared with Base oil + GMO. Test conditions: 75 0C, 1200 rpm, 12.7 mmdiameter 100Cr6 bearing steel ballsFig.4 Average coefficient of friction recorded in bi-directional sliding conditions on (a) rapeseed oils/suspensions (b) SAE 10 oils/suspensions compared with baseoil with and without GMO. Relativestandard error < 7.2%. V – Sliding speed, L – normal load.The possible presence of iron particles in the contact can be understood by observing the friction loops (tangential force versus distance) during the reciprocating tests. A comparison of friction loops for mineral SAE 10 oil and rapeseed oil with and without Fe particles is shown in Fig. 5. The friction loop recorded on SAE 10 oil with particles showed fluctuations compared to the untreated oil. The fluctuations in the friction force are known to arise due to different effects like third body effect, material/phase effects, and topographical effect [4]. In this case, the fluctuations could have been due to the Fe particles in the contact, and an evidence of such material/phase/third body effect is marked in Fig. 5a. It is interesting to notice that for rapeseed oil there is hardly any difference between the friction loops with and without iron particles. This definitely requires further research on how particles remain suspended in the oil through chemical interactions between surfactant and oils. The superior tribological performance of oils could be partly explained by bulky polymeric structure of(a)(b)monoalkyl polyethylene glycol ether compared to block copolymers. It is commonly known the positive tribological influence of metal-organic compounds which are bounded by surfactants of bulky chain structure [5].T a n g e n t i a l f o r c e (m n )Displacement (mm)(a) T a n g e n t i a l f o r c e (m n )Displacement (mm)(b)Fig. 5 Representative friction loops on (a) non-modified SAE 10 and modified SAE 10 with Fe particles suspended with OS-20 surfactant, (b) non-modified RO and modified RO with Fe particles suspended with OS-20 surfactant. Test conditions: vacuum arc remelted disc against 100Cr6 steel ball at 500 mNnormal load with 0.05 mm/s scan rateCONCLUSIONSIron micro-/ nano-particle were prepared in rapeseed and mineral oils using colloidal technique. The tribological properties of oils with and without surfactant/iron micro-/nano- particles were determined to verify the anti-wear and friction reduction offered by the iron micro-/nano-particle additives. In the four ball unidirectional tests, addition of Fe micro-/nano- particles has reduced the wear loss on the sliding surfaces. For rapeseed oil a decrease in the global coefficient of friction was obtained, but for mineral oil addition of surfactants and Fe micro-/nano- particles gave a higher coefficient of friction than the unmodified mineral oil. The exact reason for the increase in friction, but decrease in wear in the case of mineral oil must be further investigated. Rapeseed oil based suspensions gave a lower coefficient of friction and wear loss than the commercial base oil with glycerol monooleate (GMO) additive. It is hypothesised that Fe particles act as rolls and also provide lubrication locally in the contact acting as oil carriers. In summary, Fe micro-/nano- particles do reduce wear like anti-wear additives in high sped unidirectional test conditions.In the bi-directional tests, the addition of surfactants/Fe particles has no effect on the friction behaviour of the untreated rapeseed oil. For mineral oil a negative effect or an increase in friction was noticed, which was attributed to the abrasive activity of the iron particles which settle down in the absence of agitation. Some corrosion products were noticed on the disk with mineral oil /OS-20 based suspensions, which needs further investigation through analytical techniques. In the future work, surface analysis of the wear tracks using SEM, XPS, and XRD techniques is intended to investigate the formed reaction layers, role of surfactants, etc.REFERENCES[1] Wu YY, Tsui WC, Liu TC. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 262 (2007) 819–825.[2] Q. Sunqing, D. Junxiu and C. Guoxu, Tribological properties of CeF 3 nanoparticles as additives in lubricating oils, Wear 230 (1999), 35–38.[3] Bayer, R.G., , “Mechanical Wear Prediction and Prevention”, Marcel Dekker, USA, (1994) 657[4] Achanta.S, Liskiewicz.T, Drees.D, Celis.J.P. Friction Mechanisms at Microscale, Tribol. Intern., 42, (2009) 1792-1799. [5 Garkunov, D.N.: Scientific discoveries in tribotechnologies. No-wear effect under friction. Hydrogen wear of metals. Moscow: MAA Publishing house, 2007, p. 383。