2020年江苏省淮安市中考数学模拟试卷 (含答案解析)
2020年江苏省淮安市中考数学试卷(含解析)

2020年江苏省淮安市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(本大题共有8小题,每小题3分,共24分)1.2的相反数是()A.2 B.﹣2 C.D.﹣2.计算t3÷t2的结果是()A.t2B.t C.t3D.t53.下列几何体中,主视图为圆的是()A.B.C.D.4.六边形的内角和为()A.360°B.540°C.720°D.1080°5.在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)6.一组数据9、10、10、11、8的众数是()A.10 B.9 C.11 D.87.如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.27°C.36°D.108°8.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205 B.250 C.502 D.520二、填空题(本大题共有8小题,每小题3分,共24分)9.分解因式:m2﹣4=.10.2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为.11.已知一组数据1、3、a、10的平均数为5,则a=.12.方程+1=0的解为.13.已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为.14.菱形的两条对角线长分别为6和8,则这个菱形的边长为.15.二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.16.如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=(x<0)的图象于点D,动点P从点D出发,沿射线CD 方向运动3个单位长度,到达反比例函数y=(x>0)图象上一点,则k2=.三、解答题(本大题共有11小题,共102分)17.(10分)计算:(1)|﹣3|+(π﹣1)0﹣;(2)÷(1+).18.(8分)解不等式2x﹣1>.解:去分母,得2(2x﹣1)>3x﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是(填“A”或“B”).A.不等式两边都乘(或除以)同一个正数,不等号的方向不变;B.不等式两边都乘(或除以)同一个负数,不等号的方向改变.19.(8分)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?20.(8分)如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF (填“是”或“不是”)平行四边形.21.(8分)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了学生,扇形统计图中C选项对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?22.(8分)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.23.(8分)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB=30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.(参考数据:≈1.4,≈1.7,结果精确到1千米).24.(8分)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.25.(10分)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.26.(12分)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM 与BM的数量关系为;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求的取值范围.27.(14分)如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A(﹣1,2)、B(3,n)两点.点P是x 轴上的一个动点,过点P作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=,n=;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC =45°,直接写出直线OF与该二次函数图象交点的横坐标.参考答案与试题解析一、选择题1.【解答】解:2的相反数为:﹣2.故选:B.2.【解答】解:t3÷t2=t.故选:B.3.【解答】解:正方体的主视图为正方形,球的主视图为圆,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:B.4.【解答】解:根据多边形的内角和可得:(6﹣2)×180°=720°.故选:C.5.【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:C.6.【解答】解:一组数据9、10、10、11、8的众数是10,故选:A.7.【解答】解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,∴∠ABO=∠BAO=(180°﹣∠AOB)=36°,故选:C.8.【解答】解:设较小的奇数为x,较大的为x+2,根据题意得:(x+2)2﹣x2=(x+2﹣x)(x+2+x)=4x+4,若4x+4=205,即x=,不为整数,不符合题意;若4x+4=250,即x=,不为整数,不符合题意;若4x+4=502,即x=,不为整数,不符合题意;若4x+4=520,即x=129,符合题意.故选:D.二、填空题9.【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).10.【解答】解:3000000=3×106,故答案为:3×106.11.【解答】解:依题意有(1+3+a+10)÷4=5,解得a=6.故答案为:6.12.【解答】解:方程+1=0,去分母得:3+x﹣1=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2.13.【解答】解:∵在△ACB中,∠ACB=90°,CD是斜边AB上的中线,AB=16,∴CD=AB=8,故答案为:8.14.【解答】解:∵菱形ABCD中,AC=6,BD=8,∴AC⊥BD,OA=AC=3,OB=BD=4,∴AB==5.即这个菱形的边长为:5.故答案为:5.15.【解答】解:∵y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4).故答案为:(﹣1,4).16.【解答】解:把A(﹣1,﹣4)代入y=中得,k1=4,∴反比例函数y=为,∵A(﹣1,﹣4)、B(﹣4,﹣1),∴AB的垂直平分线为y=x,联立方程驵,解得,或,∵AC=BC,CD⊥AB,∴CD是AB的垂直平分线,∵CD与反比例函数y=(x<0)的图象于点D,∴D(﹣2,﹣2),∵动点P从点D出发,沿射线CD方向运动3个单位长度,到达反比例函数y=(x>0)图象上一点,∴设移动后的点P的坐标为(m,m)(m>﹣2),则,∴x=1,∴P(1,1),把P(1,1)代入y=(x>0)中,得k2=1,故答案为:1.三、解答题17.【解答】解:(1)|﹣3|+(π﹣1)0﹣=3+1﹣2=2;(2)÷(1+)===.18.【解答】解:(1)去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,(2)本题“去分母”这一步的变形依据是:不等式两边都乘(或除以)同一个正数,不等号的方向不变;故答案为A.19.【解答】解:设中型汽车有x辆,小型汽车有y辆,依题意,得:,解得:.答:中型汽车有12辆,小型汽车有18辆.20.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA)(2)解:四边形AECF是平行四边形,理由如下:由(1)得:△AOF≌△COE,∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形;故答案为:是.21.【解答】解:(1)24÷40%=60(名),360°×=108°,故答案为:60名,108;(2)60×25%=15(人),补全条形统计图如图所示:(3)1200×=60(人),答:该校1200名学生中选择“不了解”的有60人.22.【解答】解:(1)共有3种可能出现的结果,其中是A的只有1种,因此第1次摸到A的概率为,故答案为:;(2)用树状图表示所有可能出现的结果如下:共有9种可能出现的结果,其中从左到右能构成“OK”的只有1种,∴P(组成OK)=.23.【解答】解:过点C作CD⊥AB于点D,如图所示.在Rt△ACD中,AC=8千米,∠CAD=30°,∠CAD=90°,∴CD=AC•sin∠CAD=4千米,AD=AC•cos∠CAD=4千米≈6.8千米.在Rt△BCD中,CD=4千米,∠BDC=90°,∠CBD=45°,∴∠BCD=45°,∴BD=CD=4千米,∴AB=AD+BD=6.8+4≈11千米.答:A、B两点间的距离约为11千米.24.【解答】解:(1)由图象可知,休息前汽车行驶的速度为80千米/小时;故答案为:80;(2)休息后按原速继续前进行驶的时间为:(240﹣80)÷80=(小时),∴点E的坐标为(3.5,240),设线段DE所表示的y与x之间的函数表达式为y=kx+b,则:,解得,∴线段DE所表示的y与x之间的函数表达式为:y=80x﹣40;(3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290÷80+0.5=4.125(小时),12:00﹣8:00=4(小时),4.125>4,所以接到通知后,汽车仍按原速行驶不能准时到达.25.【解答】解:(1)CB与⊙O相切,理由:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵CP=CB,∴∠CPB=∠CBP,在Rt△AOP中,∵∠A+∠APO=90°,∴∠OBA+∠CBP=90°,即:∠OBC=90°,∴OB⊥CB,又∵OB是半径,∴CB与⊙O相切;(2)∵∠A=30°,∠AOP=90°,∴∠APO=60°,∴∠BPD=∠APO=60°,∵PC=CB,∴△PBC是等边三角形,∴∠PCB=∠CBP=60°,∴∠OBP=∠POB=30°,∴OP=PB=PC=1,∴BC=1,∴OB==,∴图中阴影部分的面积=S△OBC﹣S扇形OBD=1×﹣=﹣.26.【解答】解:(1)如图①中,∵△ABC折叠,使点B与点C重合,折痕为MN,∴MN垂直平分线段BC,∴CN=BN,∵∠MNB=∠ACB=90°,∴MN∥AC,∵CN=BN,∴AM=BM.故答案为AM=BM.(2)如图②中,∵CA=CB=6,∴∠A=∠B,由题意MN垂直平分线段BC,∴BM=CM,∴∠B=∠MCB,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴=,∴=,∴BM=,∴AM=AB﹣BM=10﹣=,∴==.(3)①如图③中,由折叠的性质可知,CB=CB′=6,∠BCM=∠ACM,∵∠ACB=2∠A,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴==∴=,∴BM=4,∴AM=CM=5,∴=,∴AC=.②如图③﹣1中,∵∠A=∠A′=∠MCF,∠PFA′=∠MFC,PA=PA′,∴△PFA′∽△MFC,∴=,∵CM=5,∴=,∵点P在线段OB上运动,OA=OC=,AB′=﹣6=,∴≤PA′≤,∴≤≤.27.【解答】解:(1)将点A(﹣1,2)代入二次函数y=﹣x2+bx+4中,得﹣1﹣b+4=2,∴b=1,∴二次函数的解析式为y=﹣x2+x+4,将点B(3,n)代入二次函数y=﹣x2+x+4中,得n=﹣9+3+4=﹣2,故答案为:1,﹣2;(2)设直线AB的解析式为y=kx+a,由(1)知,点B(3,﹣2),∵A(﹣1,2),∴,∴,∴直线AB的解析式为y=﹣x+1,由(1)知,二次函数的解析式为y=﹣x2+x+4,∵点P(m,0),∴M(m,﹣m+1),N(m,﹣m2+m+4),∵点N在点M的上方,且MN=3,∴﹣m2+m+4﹣(﹣m+1)=3,∴m=0或m=2;(3)①如图1,由(2)知,直线AB的解析式为y=﹣x+1,∴直线CD的解析式为y=﹣x+1+4=﹣x+5,令y=0,则﹣x+5=0,∴x=5,∴C(5,0),∵A(﹣1,2),B(3,﹣2),∴直线AC的解析式为y=﹣x+,直线BC的解析式为y=x﹣5,过点N作y轴的平行线交AC于K,交BC于H,∵点P(m,0),∴N(m,﹣m2+m+4),K(m,﹣m+),H(m,m﹣5),∴NK=﹣m2+m+4+m﹣=﹣m2+m+,NH=﹣m2+9,∴S2=S△NAC=NK×(x C﹣x A)=(﹣m2+m+)×6=﹣3m2+4m+7,S1=S△NBC=NH×(x C﹣x B)=﹣m2+9,∵S1﹣S2=6,∴﹣m2+9﹣(﹣3m2+4m+7)=6,∴m=1+(由于点N在直线AC上方,所以,舍去)或m=1﹣;∴S2=﹣3m2+4m+7=﹣3(1﹣)2+4(1﹣)+7=2﹣1,S1=﹣m2+9=﹣(1﹣)2+9=2+5;②如图2,记直线AB与x轴,y轴的交点为I,L,由(2)知,直线AB的解析式为y=﹣x+1,∴I(1,0),L(0,1),∴OL=OI,∴∠ALD=∠OLI=45°,∴∠AOD+∠OAB=45°,过点B作BG∥OA,∴∠ABG=∠OAB,∴∠AOD+∠ABG=45°,∵∠FBA=∠ABG+∠FBG,∠FBA+∠AOD﹣∠BFC=45°,∴∠ABG+∠FBG+∠AOD﹣∠BFC=45°,∴∠FBG=∠BFC,∴BG∥CF,∴OA∥CF,∵A(﹣1,2),∴直线OA的解析式为y=﹣2x,∵C(5,0),∴直线CF的解析式为y=﹣2x+10,过点A,F分别作过点M平行于x轴的直线的垂线,交于点Q,S,∵∠AQM=∠MSF=90°,∵点M在直线AB上,m>﹣1,∴M(m,﹣m+1),∴A(﹣1,2),∴MQ=m+1,设点F(n,﹣2n+10),∴FS=﹣2n+10+m﹣1=﹣2n+m+9,由旋转知,AM=MF,∠AMF=90°,∴∠MAQ+∠AMQ=90°=∠AMQ+∠FMS,∴∠MAQ=∠FMS,∴△AQM≌△MSF(AAS),∴FS=MQ,∴﹣2n+m+9=m+1,∴n=4,∴F(4,2),∴直线OF的解析式为y=x①,∵二次函数的解析式为y=﹣x2+x+4②,联立①②解得,或,∴直线OF与该二次函数图象交点的横坐标为或.。
2020年江苏省淮安市中考数学模拟检测试卷附解析

2020年江苏省淮安市中考数学模拟检测试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,坡角为30的斜坡上两树间的水平距离AC 为2m ,则两树间的坡面距离AB 为( )A .4mB .3mC .43m 3D .43m2.下列图形“等边三角形、平行四边形、正方形、圆、线段、角”,其中是既是轴对称图 形,又是中心对称图形的有( )A .2个B .3个C .4个D .5个 3.根据右边流程图中的程序,当输入数值x 为2-时,输出数值y 为( )A .4B .6C .8D .10 4.如图是甲、乙在同一条道路上跑步时路程s 与时间t 之间的关系图.甲追上乙后8s 到达终点,这时乙离终点还有( )A .3 mB .4 mC .5 mD .6 m5.已知一个三角形的周长为39 cm ,一边长为12 cm ,另一边长为l5 cm ,则该三角形是( )A .直角三角形B .钝角三角形C .等腰三角形D .无法确定 6.下列多项式中,含有因式)1(+y 的多项式是( ) A .2232x xy y --B .22)1()1(--+y yC .)1()1(22--+y yD .1)1(2)1(2++++y y7. 计算32()x 的结果是( )A .5xB .6xC .8xD .9x 8.下列计算中,正确的是( ) A .23523x x x +=B .223(3)x x -=-C .236(2)6x x -=D .2224()ay a y = 9.如图所示,在Rt △ABC 中,∠BAC=90°,AD 是高,则图中互余的角有( ) A . 2对 B .3对 C .4对 D .5对10.三角形的三边长都是整数,并且唯一的最长边是5,则这样的三角形共有( )A 1个B .2个C .3个D .4个11.过线段AB 的中点画直线l ⊥AB ,若AB=2 cm ,则点A 到直线l 的距离是( )A .1 cmB .3.2 cmC .4 cmD .无法计算12.下列方程的变形是移项的是( )A .由723x =,得67x =B .由x=-5+2x, x =2x-5C .由2x-3=x+5, 得2x+x=5-3D .由111223y y -=+,得112123y y -=+ 13.某市出租车的收费标准是:起步价7元(即行驶距离不超过3 km 都需付7元车费),超过3 km 以后,每增加l km ,加收2.4元(不足l km 按1 km 计).某人乘这种出租车从甲地到乙地共付车费19元,设此人从甲地到乙地的路程是x (km ),那么x 的最大值是 ( )A .11B .8C .7D .5 14. 一个底面为正方形的水池蓄水量为 4.86 m 3. 如果水池深1.5m ,那么这个水池底面的边长为( )A . 3.24 mB . 1.8 mC .0.324 mD . 0.18 m15.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是 ( )A .0.6 B.0.5 C.0.4 D.0.3 二、填空题16. 如图是一几何体的三视图,那么这个几何体是 .17.若α=30°,则sin tan αα⋅= .18.如图,设在小孔 0前 24 cm 处有一支长16.8 cm 的蜡烛 AB ,经小孔成像,在小孔0后面 10 cm 的屏幕上所成像 A ′B ′的长是 ㎝.19.若代数式29x m ++是完全平方式,那么m . 20.将三粒质地均匀的分别标有 1、2、3、4、5、6的正六面体骰子同时掷出,出现的数字分别为a 、b 、c ,则a 、b 、c 正好都相同的概率是 .解答题21.如图,在△ABC 中,∠BAC=45,现将△ABC 绕点A 逆时针旋转30至△ADE 的位置.则∠DAC= .22.已知22a b =,即523()ab a b a b a --的值为 .23.如图所示,已知AC=AD ,BC=BD ,说明△ABC ≌△ABD 的理由.解:在△ABC 和△ABD 中, ( ),BC=BD( ),( ),∴△ABC ≌△△ABD( ).24.将一付常规三角板拼成如图所示的图形,则∠ABC =_______度.25.如图,为测量学校旗杆的高度,小丽用长为3.2m 的竹竿做测量工具.移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m ,与旗杆相距22米,则旗杆的高为________m .三、解答题26.如图,□ABCD 中,AQ ,BM ,CM ,DQ 分别是∠DAB ,∠ABC ,∠BCD,∠CDA 的平分线,AQ 与BM 交于点P ,CM 与DQ 交于点N ,求证:MQ=PN .27.求证:三角形的三个内角的平分线交于一点.28. 已知2310x x -+=,求分式24231x x x ++的值. 11029.仅用一块没有刻度的直角三角板能画出任意角的平分线吗?(1)小明想出了这样的方法:如图所示,先将三角板的一个顶点和角的顶点0重合,一条直角边与OA 重合,沿另一条直角边画出直线1l ,再将三角板的同一顶点与0重合,同一条直角边与0B 重合,又沿另一条直角边画出直线2l ,1l 与2l 交于点P ,连结OP ,则0P 为∠AOB 的平分线,你认为小明的方法正确吗?为什么?(2)你还有别的方法吗?请叙述过程并说明理由.30.如图,已知CD ∥AB ,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF 与AB 有怎样的位置关系?并说明理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.B5.C6.C7.B8.D9.C10.D11.AD13.B14.B15.C二、填空题16.圆锥17..719.6 20.121.3615°22.223.AC=AD,已知,已知,AB=AB,公共边,SSS 24.135º25.12三、解答题26.证四边形PQNM是矩形27.略129.10(1)正确,理由略;(2)略30.EF∥AB,理由略。
2020年江苏省淮安市中考数学测试试卷附解析

2020年江苏省淮安市中考数学测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.若正比例函数2y x =-与反比例函数ky x=的图象交于点A ,且A 点的横坐标是1-,则此反比例函数的解析式为( ) A .12y x=B .12y x=-C .2y x= D .2y x=-2.如图所示,点 B 在圆锥母线V A 上,且13VB VA =,过点B 作平行于底面的平面截得一个小圆锥,若小圆锥的侧面积为 S 1, 原圆锥的侧面积为S ,则下列判断中正确的是( ) A .113S S =B .114S S =C .116S S =D .119S S =3.如图,在梯形ABCD 中,AD ∥BC,AD=AB,BC=BD, ∠A=120°,则∠C 等于( ) A .75° B .60° C .45° D .30° 4.如图,在△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,则∠A 的度数是( ) A .30°B .36°C .45°D .54°5.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的一个根为0,则m 的值等于( ) A .1 B .2C .1或2D .06.如果两个数的积为零,那么这两个数( )A . 都为0B .至多有一个为 0C .不都为0D .至少有一个为0二、填空题7.如图,⊙O 的圆心坐标为(04),,若⊙O 的半径为3,则直线y x =与⊙O 的位置关系是 .8.如图,□ABCD 中,E 是BC 中点,F 是BE 中点,AE 与 DF 交于 H ,则:EFH ADH s S ∆∆的值是 .9.一水池内储水 20m3,设放完这池水所需的时间为 T(h),每小时流水量为 W(m3/h),规定放水时间不得超过10h,则 T关于W的函数解析式为,自变量W的取值范围.10.生物兴趣小组在温箱里培育 A.B 两种菌种,A 种菌种的生长温度 x(℃)的范围是≤≤,B种菌种的生长温度 y(℃)的范围是3436x3538≤≤,那么温箱里的温度T(℃)应y该设定的范围是.11.如图,(1)直线BD截直线AB、CD得到内错角为,同位角为,同旁内角为;(2)直线AB,CD被直线BC所截得到内错角为.12.把多项式322-+分解因式,结果为 .44x x y xy13.二元一次方程270y=-.-+=,若x= 3,则y= ;若x= ,则3x yl14.轴对称图形和轴对称的区别在于前者是对个图形而言的,而后者是对个图形而言的.15.一个数是 6,另一个数比6 的相反数大 2,则这两个数的和为.16.某校为了解八年级学生的体能情况,抽取了一部分学生进行1•分钟跳绳次数测试,将所得数据整理后,画出频数分布直方图中各小组的长方形的面积之比是:•2:4:17:15:9:3.第2•组的频数是12,则第2•组的频率是,这次调查共抽取了名学生.三、解答题17.已知:如图所示,某商场设立了一个可以自由转动的转盘,并规定顾客购物10元以上就能获得一次转动转盘的机会. 转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345564701落在“铅笔”的频率m n(1)计算并完成表格;(2)请估计,当 n很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角大约是多少(精确到 1°)?18.如图,已知线段 AB,延长 AB 至 D,使 BD =13AB,再反向延长线段AB至C,使AC=12AB,求 BC:CD.19.如图,已知一抛物线形大门,其地面宽度AB=l8m,一同学站在门内,在离门角 B点 lm 远处垂直地面立起一根长为 1. 7 m木杆,其顶端恰好顶在抛物线形门上C 处,根据这些条件:(1)请你建立合适的直角坐标系,并求出这扇大门的抛物线解析式;(2)求出该大门的高 h.20.已知:如图,在△ABC中,D是AB的中点,E是AC上一点,且AE=2EC,BE,CD交于点F,求证:BE=4EF.ABCDE F21.如图所示,把一张长方形纸条按如下方法折叠2次后,沿图③中的虚线剪下,展开后的多边形的内角和是多少度?22.如图是一张等腰直角三角形彩色纸,AC=AB=40 cm ,将斜边上的高 AD 四等分,然后裁出三张宽度相等的长方形纸条.分别求出这三张长方形纸条的长度.23.解不等式: (1)1223i x x x +-<-;(2)22(2)12x x +->24.某中学开展“八荣八耻”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示. (1)根据左图填写下表(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好?(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,说明理由.25. 先化简,再求值:22[(37)(5)](424)a a a --+÷-,其中150a =26.如图所示,操场的两端为半圆形,中间是矩形,已知半圆的半径为r ,直跑道的长为 l ,用关干r ,l 的多项式表示这个操场的面积. 这个多项式能分解因式吗?若能,请把它分解因式,并计算当4r a =m ,30l π=m 时操场的面积. (结果保留π)27.如图.已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点. (1)若线段AC=6,BC=4,求线段MN 的长度. (2)若AC+BC=a ,求线段MN 的长度.平均分(分) 中位数(分) 众数(分) 九(1)班 8585九(2班8580(3)在(1)中“点C 在线段AB 上”,若改为“点C 在直线AB 上”,(1)中结果会有变化吗?若有,求出MN 的长度.28.利用计算器计算: 441 3343- 1115结果保留3个有效数字) 358-结果保留3个有效数字)352结果保留3个有效数字)29.工商部门抽查了一批标准质量为每袋500克的味精,检查是否够秤. 检查记录如下(单位:克):1.0, -1.5, 1.3 , -2.0, -1.8, 1.5 , -3.1 ,2.4, -2.5, -0.5, -1.4,-0.9. 这里的正、负数分别表示什么?这些数据,你能获得哪些信息?30.(1)试比较下列各组数的大小:12-与23-,23-与34-,34-与45-,45-与56-,1n n -+与12n n +-+ (2)你能模仿上面(1)得出21n n +-+与1n n+-两者的大小关系吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.A4.C5.B6.D二、填空题7.相交8.19.1620T,W≥2W10.35≤T≤36(1)∠7与∠ABD,∠1与∠4,∠4与∠ABD ;(2)∠2与∠C12.2(2)x x y -13.13,-514.1,215.216.0.08,150三、解答题 17. (1)见表格:(2)随看频数的增大,频率接近于 0.70;(3)当频数很大时,频率约等于事件的概率,即获得铅笔的概率约0.70; (4)圆心角应是003600.7252⨯≈.18.9:1119.(1)以 A 为坐标原点,AB 为横坐标,建立直角坐标系.A(0,0),B(18,0) ,C(17, 1.7).∴设抛物线的解析式为2y ax bx =+,把B 、C 两点代入得22181801717 1.7a b a b ⎧+=⎨+=⎩,化简得0.11.8a b =-⎧⎨=⎩,∴20.1 1.8y x x =-+ (2)201 1.8y x x =-⋅+201(9)8.1x =-⋅-+,∴顶点坐标(9,8.1),即该大门的高为 8.1 m .20.提示:取AE 的中点M ,连结DM .展开后的图形为八边形,其内角和为1080°22.EF =,GH=cm ,MN=cm23.(1)x<-1;(2)x>224.(1)85;100.(2)解:∵两班的平均数相同,初三(1)班的中位数高,初三(1)班的复赛成绩好些. (3)解:∵初三(1)班、初三(2)班前两名选手的平均分分别为92.5,100分, ∴在每班参加复赛的选手中分别选出2人参加决赛,初三(2)班的实力更强一些.25.21a -,2425- 26.22(2)r rl r r l ππ+=+,4000πm 227.(1)5 (2)12a (3)5或228.(1)21 (2)-7 (3)0. 856 (4)-0.721 (5)0.29629.正数表示超过标准质量(500克)的克数,负数表示少于标准质量的克数. 由这些数据,可以得到以下信息:一共抽查了12袋味精,其中不足500克的有8袋,足秤的只有4袋,个别不足秤达到 3.1 克,说明这批味精包装不合格.30.(1)1223->-,2334->-,3445->-,4556->-,112n n n n +->-++ (2)211n n n n++->-+。
淮安市淮安区2020年中考数学模拟试题(四)有答案精析

2020年江苏省淮安市淮安区中考数学模拟试卷(四)一、选择题:本大题共8小题,每小题3分,共24分1.在0,﹣2,1,这四个数中,最小的数是()A.0 B.1 C.﹣2 D.2.下列图形中,是轴对称图形的为()A. B. C. D.3.在平面直角坐标系中,将二次函数y=2x2的图象向上平移2个单位,所得图象的解析式为()A.y=2x2﹣2 B.y=2x2+2 C.y=2(x﹣2)2D.y=2(x+2)24.地球的表面积约是510 000 000千米2,用科学记数法表示为()A.51×107千米2 B.5.1×107千米2C.5.1×108千米2D.0.51×109千米25.如图所示几何体的主视图是()A. B. C. D.6.如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是()A.15° B.30° C.45° D.60°7.如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米8.二次函数y=ax2+bx+c的图象如图所示,则下列关系式中错误的是()A.a<0 B.c>0 C.b2﹣4ac>0 D.a+b+c>0二、填空题:每小题3分,共30分9.等腰三角形的两边长分别为2cm和5cm,则它的周长是.10.点A(3,﹣4)到原点O的距离是.11.如图是一个正方体的展开图,折叠成正方体后与“中”字相对的一面上的字是.12.如图,DE∥BC,CF为BC的延长线,若∠A DE=50°,∠ACF=110°,则∠A= .13.分解因式:a3﹣a= .14.如果抛物线y=x2﹣x+k(k为常数)与x轴只有一个公共点,那么k= .15.一扇形的半径为60cm,圆心角为150°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为cm.16.当a=2020时,分式的值是.17.在3□2□(﹣2)的两个空格□中,任意填上“+”或“﹣”,则运算结果为3的概率是.18.如图,已知双曲线y=(k>0)经过Rt△OAB的直角边AB的中点C,与斜边OB相交于点D,若OD=1,则BD= .三、解答题:本大题共96分19. |﹣3|﹣()﹣1+π0﹣2cos60°.20.解不等式组,并把它的解集在所给的数轴上表示出来.21.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?22.如图,在▱ABCD中,E、F为边BC上两点,且BE=CF,AF=DE.(1)求证:△ABF≌△DCE;(2)四边形ABCD是矩形吗?为什么?23.为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分)统计如下:学业考试体育成绩(分数段)统计表分数段人数(人)频率A 48 0.2B a 0.25C 84 0.35D 36 bE 12 0.05根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为,b的值为,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?(填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?24.有三张卡片上面分别写着,()﹣1,|﹣3|,把它们背面(背面完全相同)朝上洗匀后,小军从中抽取一张,记下这个数后放回洗匀,小明又从中抽出一张,李刚为他们俩设计了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小军获胜,否则小明获胜,你认为这个游戏规则对谁有利?请用列表法或画树状图进行分析说明.25.如图,已知:△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠D=30度.(1)求证:AD是⊙O的切线;(2)若AC=6,求AD的长.26.如图,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠BPC为30°,窗户的一部分在教室地面所形成的影长PE为3.5米,窗户的高度AF为2.5米.求窗外遮阳蓬外端一点D到教室窗户上椽的距离AD.(参考数据:≈1.7,结果精确0.1米)27.一辆轿车从甲地出发开往乙地,同时,一辆客车从乙地开往甲地,一开始两车的速度相同,出发半小时后,客车因出现故障维修了一段时间,修好后为了不耽误乘客的时间,客车加快速度前进,结果与轿车同时到达各自的目的地.设轿车出发th后,与客车的距离为Skm,图中的折线(A→B→C→D→E)表示S与t之间的函数关系.(1)甲、乙两地相距km,轿车的速度为km/h;(2)求m与n的值;(3)求客车修好后行驶的速度;(4)求线段DE所对应的函数关系式,并注明自变量的取值范围.28.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点D从点C出发,以2cm/s的速度沿折线C→A→B 向点B运动,同时,点E从点B出发,以1cm/s的速度沿BC边向点C运动,设点E运动的时间为ts(0<t<8).(1)AB= cm,sinB= ;(2)当△BDE是直角三角形时,求t的值;(3)若四边形CDEF是以CD、DE为一组邻边的平行四边形,①设▱CDEF的面积为Scm2,求S于t的函数关系式;②是否存在某个时刻t,使▱CDEF为菱形?若存在,求出t的值;若不存在,请说明理由.2020年江苏省淮安市淮安区中考数学模拟试卷(四)参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.在0,﹣2,1,这四个数中,最小的数是()A.0 B.1 C.﹣2 D.【考点】有理数大小比较.【分析】根据正数大于负数,两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:∵﹣2<0<<1,∴最小的数是﹣2,故选:C.【点评】本题考查了有理数大小比较,两个负数比较大小,绝对值大的负数反而小.2.下列图形中,是轴对称图形的为()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.在平面直角坐标系中,将二次函数y=2x2的图象向上平移2个单位,所得图象的解析式为()A.y=2x2﹣2 B.y=2x2+2 C.y=2(x﹣2)2D.y=2(x+2)2【考点】二次函数图象与几何变换.【分析】按照“左加右减,上加下减”的规律解答.【解答】解:二次函数y=2x2的图象向上平移2个单位,得y=2x2+2.故选B.【点评】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.4.地球的表面积约是510 000 000千米2,用科学记数法表示为()A.51×107千米2 B.5.1×107千米2C.5.1×108千米2D.0.51×109千米2【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:510 000 000=5.1×108.故选C.【点评】用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上零).5.如图所示几何体的主视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】实物图的主视图为下面一个长方形和上面右侧有一个圆,再选择即可.【解答】解:几何体的主视图是,,故选A.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.6.如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是()A.15° B.30° C.45° D.60°【考点】三角形的外接圆与外心.【分析】连接OA,由圆周角定理,易求得∠COA的度数,在等腰△OAC中,已知顶角∠COA的度数,即可求出底角∠CAO的度数.【解答】解:连接OC,由圆周角定理,得∠AOC=2∠B=120°,△OAC中,OA=OC,∴∠CAO=∠ACO=30°.故选B.【点评】此题综合考查了圆周角定理和三角形的内角和定理.7.如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米【考点】相似三角形的应用.【专题】应用题.【分析】由已知得△ABP∽△CDP,则根据相似形的性质可得,解答即可.【解答】解:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==8(米).故选:B【点评】本题综合考查了平面镜反射和相似形的知识,是一道较为简单的题,考查相似三角形在测量中的应用.8.二次函数y=ax2+bx+c的图象如图所示,则下列关系式中错误的是()A.a<0 B.c>0 C.b2﹣4ac>0 D.a+b+c>0【考点】二次函数图象与系数的关系.【专题】压轴题;数形结合.【分析】根据二次函数的开口方向,与y轴的交点,与x轴交点的个数,当x=1时,函数值的正负判断正确选项即可.【解答】解:A、二次函数的开口向下,∴a<0,正确,不符合题意;B、二次函数与y轴交于正半轴,∴c>0,正确,不符合题意;C、二次函数与x轴有2个交点,∴b2﹣4ac>0,正确,不符合题意;D、当x=1时,函数值是负数,a+b+c<0,∴错误,符合题意,故选D.【点评】考查二次函数图象与系数的关系;用到的知识点为:二次函数的开口向下,a<0;二次函数与y轴交于正半轴,c>0;二次函数与x轴有2个交点,b2﹣4ac>0;a+b+c的符号用当x=1时,函数值的正负判断.二、填空题:每小题3分,共30分9.等腰三角形的两边长分别为2cm和5cm,则它的周长是12cm .【考点】等腰三角形的性质;三角形三边关系.【分析】根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为2cm,只能为5cm,然后即可求得等腰三角形的周长【解答】解:∵等腰三角形的两条边长分别为2cm,5cm,∴由三角形三边关系可知;等腰三角形的腰长不可能为2,只能为5,∴等腰三角形的周长=5+5+2=12cm.故答案为:12cm.【点评】此题主要考查学生对等腰三角形的性质和三角形三边关系等知识点的理解和掌握,难度不大,属于基础题.要求学生应熟练掌握.10.点A(3,﹣4)到原点O的距离是 5 .【考点】勾股定理;坐标与图形性质.【分析】根据勾股定理列式计算即可得解.【解答】解:∵点A(3,﹣4),∴点A到原点O的距离==5.故答案为:5.【点评】本题考查了勾股定理、坐标与图形性质;熟练掌握坐标与图形性质,根据勾股定理进行计算是解决问题的关键.11.如图是一个正方体的展开图,折叠成正方体后与“中”字相对的一面上的字是顺.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“利”是相对面,“你”与“考”是相对面,“中”与“顺”是相对面.故答案是:顺.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.12.如图,DE∥BC,CF为BC的延长线,若∠ADE=50°,∠ACF=110°,则∠A= 60°.【考点】平行线的性质.【分析】根据平行线的性质得到∠B=∠ADE=50°,再根据三角形任意一外角等于与之不相邻两内角的和得到∠ACF=∠B+∠A,然后代值计算即可.【解答】解:∵DE∥BC,∴∠B=∠ADE=50°,∵∠ACF=∠B+∠A,∠ACF=110°,∴∠A=110°﹣50°=60°.故答案为60°.【点评】本题主要考查了平行线的性质,解答本题的关键是根据平行线的性质求出∠B的度数,此题难度不大.13.分解因式:a3﹣a= a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.14.如果抛物线y=x2﹣x+k(k为常数)与x轴只有一个公共点,那么k= .【考点】抛物线与x轴的交点.【分析】令y=0,则关于x的一元二次方程x2﹣x+k=0的根的判别式△=0,据此列出关于k的新方程,通过解新方程即可求得k的值.【解答】解:令y=0,则当抛物线y=x2﹣x+k与x轴只有一个公共点时,关于x的一元二次方程x2﹣x+k=0的根的判别式△=0,即(﹣1)2﹣4×1×k=0,解得:k=.故答案为:.【点评】本题考查了抛物线与x轴的交点.解题时,运用“二次函数y=ax2+bx+c与x轴的交点个数与系数的关系:当b2﹣4ac=0时,只有一个交点”求解即可.15.一扇形的半径为60cm,圆心角为150°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为25 cm.【考点】弧长的计算.【分析】利用底面周长=展开图的弧长可得.【解答】解:=2πr,解得r=25cm.【点评】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.16.当a=2020时,分式的值是2020 .【考点】分式的值.【专题】计算题;推理填空题.【分析】首先化简分式,然后把a=2020代入化简后的算式,求出算式的值是多少即可.【解答】解:当a=2020时,=﹣===a+1=2020+1=2020.故答案为:2020.【点评】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.17.在3□2□(﹣2)的两个空格□中,任意填上“+”或“﹣”,则运算结果为3的概率是.【考点】概率公式.【专题】压轴题.【分析】根据分类法:在两个空格中,任意填上“+”或“﹣”,有四种情况;其中有两种可使运算结果为3;故运算结果为3的概率是=.【解答】解:∵共有4种情况,而结果为3的有:3+2+(﹣2)=3,3﹣2﹣(﹣2)=3,∴P(3)=.故本题答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.如图,已知双曲线y=(k>0)经过Rt△OAB的直角边AB的中点C,与斜边OB相交于点D,若OD=1,则BD= ﹣1 .【考点】反比例函数图象上点的坐标特征;反比例函数的定义;相似三角形的判定与性质.【分析】先设D的坐标为(a,b),BD=x,过D作DE⊥AO,再判定△OED∽△OAB,根据相似三角形的对应边成比例,求得B(a+ax,b+bx),再根据点C为AB的中点求得C(a+ax, b+bx),最后点C、D都在反比例函数y=的图象上,得到关于x的方程,求得x的值即可.【解答】解:设D的坐标为(a,b),BD=x过D作DE⊥AO于E,则OE=a,DE=b由DE∥BA可得,△OED∽△OAB∴,即∴AO=a+ax,AB=b+bx∴B(a+ax,b+bx)又∵点C为AB的中点∴C(a+ax, b+bx)∵点C、D都在反比例函数y=的图象上∴k=a×b=(a+ax)×(b+bx)整理得,(1+x)2=2解得x=﹣1∴BD的长为:﹣1故答案为:﹣1【点评】本题主要考查了反比例函数图象上点的坐标特征以及相似三角形的判定与性质,难度较大,解决问题的关键是作辅助线构造相似三角形,并根据数形结合的思想方法求解.三、解答题:本大题共96分19.|﹣3|﹣()﹣1+π0﹣2cos60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3﹣2+1﹣1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解不等式组,并把它的解集在所给的数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出即可.【解答】解:,∵解不等式①得:x>﹣3;解不等式②得:x≤3,∴不等式组的解集为﹣3<x≤3,在数轴上表示不等式组的解集为:【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.21.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?【考点】分式方程的应用.【专题】压轴题.【分析】设原计划每天加工x套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【解答】解:设原计划每天加工x套,由题意得:+=18.解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,设出未知数,以时间做为等量关系列方程.22.如图,在▱ABCD中,E、F为边BC上两点,且BE=CF,AF=DE.(1)求证:△ABF≌△DCE;(2)四边形ABCD是矩形吗?为什么?【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【分析】(1)首先根据平行四边形的性质得到AB=CD,然后结合已知条件利用SSS判定两三角形全等即可;(2)根据全等三角形的性质得到∠B=∠C=90°,从而判定矩形.【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∵BE=CF,∴BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE;(2)四边形ABCD是矩形;证明:∵△ABF≌△DCE,∴∠B=∠C,∵在平行四边形ABCD中,∠B+∠C=180°,∴∠B=∠C=90°,∴四边形ABCD是矩形;【点评】本题考查了全等三角形的判定及矩形的判定的知识,解题的关键是了解有关的判定定理,难道不大.23.为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分)统计如下:学业考试体育成绩(分数段)统计表分数段人数(人)频率A 48 0.2B a 0.25C 84 0.35D 36 bE 12 0.05根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为60 ,b的值为0.15 ,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内? C (填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)首先根据:频数÷总数=频率,由表格A中的数据可以求出随机抽取部分学生的总人数,然后根据B中频率即可求解a,同时也可以求出b;(2)根据中位数的定义可以确定中位数的分数段,然后确定位置;(3)首先根据频率分布直方图可以求出样本中在25分以上(含25分)的人数,然后利用样本估计总体的思想即可解决问题.【解答】解:(1)随机抽取部分学生的总人数为:48÷0.2=240,∴a=240×0.25=60,b=36÷240=0.15,如图所示:(2)∵总人数为240人,∴根据频率分布直方图知道中位数在C分数段;(3)0.8×10440=8352(名)答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.【点评】本题考查了频数分布直方图,训练了学生读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.有三张卡片上面分别写着,()﹣1,|﹣3|,把它们背面(背面完全相同)朝上洗匀后,小军从中抽取一张,记下这个数后放回洗匀,小明又从中抽出一张,李刚为他们俩设计了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小军获胜,否则小明获胜,你认为这个游戏规则对谁有利?请用列表法或画树状图进行分析说明.【考点】列表法与树状图法;负整数指数幂.【专题】应用题.【分析】项计算出()﹣1=2,|﹣3|=3,再画树状图展示所有9种等可能的结果数,则可找出两人抽取的卡片上两数之积是有理数的结果数为5,然后根据概率公式分别计算出小军获胜的概率和小明获胜的概率,再根据概率的大小判断这个游戏规则对谁有利.【解答】解:()﹣1=2,|﹣3|=3,画树状图为:共有9种等可能的结果数,其中两人抽取的卡片上两数之积是有理数的结果数为5,所以小军获胜的概率=,小明获胜的概率=1﹣=,而>,所以这个游戏规则对小军有利.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了负整数整数幂.25.(2020•福州)如图,已知:△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠D=30度.(1)求证:AD是⊙O的切线;(2)若AC=6,求AD的长.【考点】切线的判定.【专题】几何综合题.【分析】(1)要证明AD是⊙O的切线,只要证明∠OAD=90°即可;(2)根据已知可得△AOC是等边三角形,从而得到OA=AC=6,则可以利用勾股定理求得AD的长.【解答】(1)证明:如图,连接OA;∵sinB=,∴∠B=30°,∵∠AOC=2∠B,∴∠AOC=60°;∵∠D=30°,∴∠OAD=180°﹣∠D﹣∠AOD=90°,∴AD是⊙O的切线.(2)解:∵OA=OC,∠AOC=60°,∴△AOC是等边三角形,∴OA=AC=6,∵∠OAD=90°,∠D=30°,∴AD=•AO=.【点评】本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.26.如图,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠BPC为30°,窗户的一部分在教室地面所形成的影长PE为3.5米,窗户的高度AF为2.5米.求窗外遮阳蓬外端一点D到教室窗户上椽的距离AD.(参考数据:≈1.7,结果精确0.1米)【考点】解直角三角形的应用;平行投影.【分析】根据平行线的性质,可得在Rt△PEG中,∠P=30°;已知PE=3.5m.根据三角函数的定义,解三角形可得EG的长,进而在Rt△BAD中,可得tan30°=,解可得AD的值.【解答】解:过E作EG∥AC交BP于G,∵EF∥DP,∴四边形BFEG是平行四边形.在Rt△PEG中,PE=3.5m,∠P=30°,tan∠EPG=,∴EG=EP•tan∠P=3.5×tan30°≈2.02(m).又∵四边形BFEG是平行四边形,∴BF=EG=2.02m,∴AB=AF﹣BF=2.5﹣2.02=0.48(m).又∵AD∥PE,∠BDA=∠P=30°,在Rt△BAD中,tan30°=,∴AD==0.48×≈0.8(米).答:窗外遮阳蓬外端一点D到教室窗户上椽的距离AD为0.8m.【点评】此题主要考查了解直角三角形的应用.要求学生应用数学知识解决问题,在正确分析题意的基础上建立数学模型,把实际问题转化为数学问题.27.一辆轿车从甲地出发开往乙地,同时,一辆客车从乙地开往甲地,一开始两车的速度相同,出发半小时后,客车因出现故障维修了一段时间,修好后为了不耽误乘客的时间,客车加快速度前进,结果与轿车同时到达各自的目的地.设轿车出发th后,与客车的距离为Skm,图中的折线(A→B→C→D→E)表示S与t之间的函数关系.(1)甲、乙两地相距120 km,轿车的速度为60 km/h;(2)求m与n的值;(3)求客车修好后行驶的速度;(4)求线段DE所对应的函数关系式,并注明自变量的取值范围.【考点】一次函数的应用.【分析】(1)结合函数图象,可知当t=0时,S的值即为甲、乙两地之间的距离,再由“速度=路程÷时间”即可得出轿车的速度;(2)根据B点的横坐标结合“两车间减少的距离=两车速度和×行驶时间”即可得出m的值,再由B、C两点间的纵坐标,利用“时间=纵坐标之差÷轿车的速度”可得出点B、C横坐标之差,再加上0.5即可得出n的值;(3)由(2)可知客车修车耽误的时间,根据客车原来的速度可算出该时间段应该行驶的路程,将这段距离平摊到剩下的1.2小时中再加上原来的速度,即可得出客车修好后的速度;(4)利用“时间=路程÷两车速度和”得出点C、D横坐标之差,结合点C的横坐标即可得出点D的坐标,设线段DE所对应的函数关系式为S=kt+b,根据点D、E的坐标利用待定系数法即可得出结论.【解答】解:(1)当t=0时,S=120,故甲、乙两地相距为120千米;轿车的速度为:120÷2=60(千米/时).故答案为:120;60.(2)当t=0.5时,m=120﹣(60+60)×0.5=60.在BC段只有轿车在行驶,∴n=0.5+(60﹣42)÷60=0.8.故m=60,n=0.8.(3)客车维修的时间为:0.8﹣0.5=0.3(小时),客车修好后行驶的速度为:0.3×60÷(2﹣0.8)+60=75(千米/时).(4)∵42÷(60+75)=,∴点D的横坐标为:0.8+=,即点D的坐标为(,0).设线段DE所对应的函数关系式为S=kt+b,将点D(,0)、点E(2,120)代入函数解析式得:∴线段DE所对应的函数关系式为S=135t﹣150(≤t≤2).【点评】本题考查了一次函数的应用以及待定系数法求函数解析式,解题的关键是:(1)(2)结合图形找出点的坐标,利用数量关系直接求解;(3)将修车耽误的时间内该行驶的路程平摊到剩下的行驶时间中;(4)利用待定系数法求出函数解析式.本题属于中档题,难度不大,但稍显繁琐,解决该题型题目时,结合函数图象,找出点的坐标,再利用待定系数法求出函数解析式是关键.28.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点D从点C出发,以2cm/s的速度沿折线C→A→B 向点B运动,同时,点E从点B出发,以1cm/s的速度沿BC边向点C运动,设点E运动的时间为ts(0<t<8).(1)AB= 10 cm,sinB= ;(2)当△BDE是直角三角形时,求t的值;(3)若四边形CDEF是以CD、DE为一组邻边的平行四边形,①设▱CDEF的面积为Scm2,求S于t的函数关系式;②是否存在某个时刻t,使▱CDEF为菱形?若存在,求出t的值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)直接利用勾股定理和三角函数计算;(2)当△BDE是直角三角形时,∠B不可能为直角,所以分两种情况讨论:i)图1,当∠BE D=90°时;ii)图2,当∠EDB=90°时;利用相似求边,再利用同角三角函数值列等式计算求出t的值;(3)①根据点D的位置分两种情况讨论:点D在边AC上时,0<t≤3;点D在边AB上时,3<t<8;▱CDEF的面积都等于△CDE面积的二倍;②当▱CDEF为菱形,对角线CE和DF互相垂直且平分,利用BH=BE+EH列式计算.【解答】解:(1)由勾股定理得:AB==10,sinB==,故答案为:10,;(2)如图1,当∠BED=90°时,△BDE是直角三角形,则BE=t,AC+AD=2t,∴BD=6+10﹣2t=16﹣2t,∵∠BED=∠C=90°,。
淮安市淮安区2020年中考数学模拟试题(三)有答案精析

江苏省淮安市淮安区2020年中考数学模拟试卷(三)(解析版)一、选择题(本大题共有8小题,每小题3分,共24分)1.﹣的相反数是()A. B. C.0 D.32.据统计,清明小长假首日,某景区共接待游客115600人次,同比增长10.48%,将数据115600用科学记数法表示为()A.1.156×103B.0.1156×104C.1.156×105D.1.156×1043.下列运算中,结果是a6的是()A.a2•a3B.a12÷a2C.(a3)3D.(﹣a)64.下列立体图形中,俯视图是正方形的是()A. B. C. D.5.下列数据是2020年3月7日6点公布的中国六大城市的空气污染指数情况:城市北京合肥南京哈尔滨成都南昌污染指数342 163 165 45 227 163则这组数据的中位数和众数分别是()A.164和163 B.105和163 C.105和164 D.163和1646.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.97.直线y=2x﹣1不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…则32020的末位数字是()A.9 B.1 C.3 D.7二、填空题(本大题共10小题,每小题3分,共30分)9.2的平方根是.10.有意义,x的取值范围是.11.因式分解:a3﹣4a=.12.已知圆锥的底面直径为2cm,母线长为3cm,则其侧面积为cm2.(结果保留π).13.直角坐标平面上将二次函数y=﹣2(x﹣1)2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为.14.将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.15.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为.16.如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是.17.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB 上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.18.已知:直线(n为整数)与两坐标轴围成的三角形面积为s n,则s1+s2+s3+…s n=.三、解答题(共10大题,总计96分)19.计算:(1)(﹣2020)0+(﹣)﹣2(2)|1﹣|﹣2cos45°.20.解不等式组:,并把解集表示在数轴上.21.先化简:,并从0,﹣1,2中选一个合适的数作为a的值代入求值.22.如图,四边形ABCD是⊙O的内接四边形,AC为直径,=,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)若CE=1,AC=4,求阴影部分的面积.23.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)24.(9分)(2020邗江区一模)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)请将条形图补充完整;(3)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?25.某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B处测得宣传牌底部C的仰角为30°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.26.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF,取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;(2)请判断线段MD与MN的数量与位置关系,并证明;(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则第(2)题中的结论还成立吗?请直接回答“成立”或“不成立”.27.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?28.已知二次函数图象的顶点坐标为A(2,0),且与y轴交于点(0,1),B点坐标为(2,2),点C为抛物线上一动点,以C为圆心,BC为半径的圆交x轴于M、N两点(M在N 的左侧).(1)求此二次函数的表达式;(2)当点C与点A重合时,求此时点M、N的坐标;(3)当点C在抛物线上运动时,弦MN的长度是否发生变化?若变化,说明理由;若不发生变化,求出弦MN的长.2020年江苏省淮安市淮安区中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分)1.﹣的相反数是()A. B. C.0 D.3【考点】相反数.【分析】求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣的相反数是.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.2.据统计,清明小长假首日,某景区共接待游客115600人次,同比增长10.48%,将数据115600用科学记数法表示为()A.1.156×103B.0.1156×104C.1.156×105D.1.156×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:115600=1.156×103,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算中,结果是a6的是()A.a2•a3B.a12÷a2C.(a3)3D.(﹣a)6【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法、同底数幂的除法、幂的乘方、积的乘方,即可解答.【解答】解:A、a2a3=a5,故错误;B、a12÷a2=a10,故错误;C、(a3)3=a9,故错误;D、(﹣a)6=a6,正确;故选:D.【点评】本题考查了同底数幂的乘法、同底数幂的除法、幂的乘方、积的乘方,解决本题的关键是熟记相关法则.4.下列立体图形中,俯视图是正方形的是()A. B. C. D.【考点】简单几何体的三视图.【分析】俯视图是从物体上面看,所得到的图形.【解答】解:A、圆柱的俯视图是圆,故此选项错误;B、正方体的俯视图是正方形,故此选项正确;C、三棱锥的俯视图是三角形,故此选项错误;D、圆锥的俯视图是圆,故此选项错误;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.下列数据是2020年3月7日6点公布的中国六大城市的空气污染指数情况:城市北京合肥南京哈尔滨成都南昌污染指数342 163 165 45 227 163则这组数据的中位数和众数分别是()A.164和163 B.105和163 C.105和164 D.163和164【考点】众数;中位数.【分析】根据众数定义:一组数据中出现次数最多的数据叫做众数.中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.可以直接算出答案.【解答】解:把数据从小到大排列:45,163,163,165,227,342,位置处于中间的数是163和165,故中位数是(163+165)÷2=164,163出现了两次,故众数是163;故答案为:A.【点评】此题主要考查了众数和中位数,关键是掌握两种数的定义.6.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选C.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.7.直线y=2x﹣1不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵直线y=2x﹣1中,k=2>0,b=﹣1<0,∴此函数的图象经过一三四象限,不经过第二象限.故选B.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.8.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…则32020的末位数字是()A.9 B.1 C.3 D.7【考点】尾数特征.【分析】通过观察给出的数据,可知末位数字为3,9,7,1;3,9,7,1,即每四个一个循环,然后用2020÷4,看结果,即可判断32020的末位数字是什么.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,2020÷4=504,∴32020的末位数字是1,故选B.【点评】本题考查尾数特征,解题的关键是通过观察题目中的数据,发现其中的规律.二、填空题(本大题共10小题,每小题3分,共30分)9.2的平方根是±.【考点】平方根.【分析】直接根据平方根的定义求解即可(需注意一个正数有两个平方根).【解答】解:2的平方根是±.故答案为:±.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.有意义,x的取值范围是x≤3.【考点】二次根式有意义的条件.【分析】依据二次根式被开方数大于等于零求解即可.【解答】解:∵有意义,∴3﹣x≥0.解得:x≤3.故答案为:x≤3.【点评】本题主要考查的是二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.11.因式分解:a3﹣4a=a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.12.已知圆锥的底面直径为2cm,母线长为3cm,则其侧面积为3πcm2.(结果保留π).【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面直径为2cm,则底面周长=2π,侧面积=×2π×3=3πcm2.故答案为:3π.【点评】本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.13.直角坐标平面上将二次函数y=﹣2(x﹣1)2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为(0,﹣1).【考点】二次函数图象与几何变换.【分析】只需看顶点坐标是如何平移得到的即可.【解答】解:原抛物线的顶点为(1,﹣2),向左平移1个单位,再向上平移1个单位,那么新抛物线的顶点为(0,﹣1).【点评】讨论两个二次函数的图象的平移问题抓住点的变化特点.14.将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是75°.【考点】三角形的外角性质;三角形内角和定理.【分析】根据含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,得出平行线,再利用平行线的性质和对顶角相等得出∠2=45°,再利用三角形的外角性质解答即可.【解答】解:如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB∥CD,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°,故答案为:75°.【点评】此题考查三角形外角性质,关键是利用平行线性质和对顶角相等得出∠2的度数.15.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为55°.【考点】等腰三角形的性质.【分析】由等腰三角形的三线合一性质可知∠BAC=70°,再由三角形内角和定理和等腰三角形两底角相等的性质即可得出结论.【解答】解:AB=AC,D为BC中点,∴AD是∠BAC的平分线,∠B=∠C,∵∠BAD=35°,∴∠BAC=2∠BAD=70°,∴∠C=(180°﹣70°)=55°.故答案为:55°.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形三线合一的性质是解答此题的关键.16.如图,在△ABC中,DE∥BC,AD:DB=1:2,DE=2,则BC的长是6.【考点】相似三角形的判定与性质.【分析】由平行可得对应线段成比例,即AD:AB=DE:BC,再把数值代入可求得BC.【解答】解:∵DE∥BC,∴,∵AD:DB=1:2,DE=2,∴,解得BC=6.故答案为:6.【点评】本题主要考查平行线分线段成比例的性质,掌握平行线分线段成比例中的对应线段是解题的关键.17.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB 上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE ⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=ACBC=ABCE,∴ACBC=ABCE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE=,∴DF=EF﹣ED=,∴B′F=.故答案为:.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.18.已知:直线(n为整数)与两坐标轴围成的三角形面积为s n,则s1+s2+s3+…s n=.【考点】一次函数图象上点的坐标特征.【分析】依次求出S1、S2、…,即可发现规律:S n=,最后计算s1+s2+s3+…+s n即可.【解答】解:当n=1时,y=﹣x+,此时,A(0,),B(,0),∴S1=××=,同理可得,S2=××=,…∴S n=××=,∴s1+s2+s3+…+s n=××…×=1﹣+﹣+…+﹣=1﹣=,故答案为:.【点评】本题考查了一次函数图象上点的坐标特征.注意发现规律:S n==﹣是解此题的关键.三、解答题(共10大题,总计96分)19.计算:(1)(﹣2020)0+(﹣)﹣2(2)|1﹣|﹣2cos45°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可得到结果;(2)原式利用绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:(1)原式=1+9=10;(2)原式=﹣1﹣2×=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解不等式组:,并把解集表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先对不等式组进行化简,然后在数轴上分别画出x的取值,它们的公共部分就是不等式组的解集.【解答】解:由①得x≤2,由②得x>,不等式组的解集为<x≤2,不等式得解集在数轴上表示为【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.21.先化简:,并从0,﹣1,2中选一个合适的数作为a的值代入求值.【考点】分式的化简求值.【分析】首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.【解答】解:=×,=×=﹣,当a=0时,原式=1.【点评】此题考查的是分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.22.如图,四边形ABCD是⊙O的内接四边形,AC为直径,=,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)判断直线ED与⊙O的位置关系,并说明理由;(3)若CE=1,AC=4,求阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)根据圆周角定理,由=得到∠BAD=∠ACD,再根据圆内接四边形的性质得∠DCE=∠BAD,所以∠ACD=∠DCE;(2)连结OD,如图,利用内错角相等证明OD∥BC,而DE⊥BC,则OD⊥DE,于是根据切线的判定定理可得DE为⊙O的切线;(3)作OH⊥BC于H,易得四边形ODEH为矩形,所以OD=EH=2,则CH=HE﹣CE=1,于是有∠HOC=30°,得到∠COD=60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S﹣S△OCD进行计算.扇形OCD【解答】(1)证明:∵=,∴∠BAD=∠ACD,∵∠DCE=∠BAD,∴∠ACD=∠DCE,即CD平分∠ACE;(2)解:直线ED与⊙O相切.理由如下:连结OD,如图,∵OC=OD,∴∠OCD=∠ODC,而∠OCD=∠DCE,∴∠DCE=∠ODC,∴OD∥BC,∵DE⊥BC,∴OD⊥DE,∴DE为⊙O的切线;(3)解:作OH⊥BC于H,则四边形ODEH为矩形,∴OD=EH,∵CE=1,AC=4,∴OC=OD=2,∴CH=HE﹣CE=2﹣1=1,在Rt△OHC中,∠HOC=30°,∴∠COD=60°,﹣S△OCD∴阴影部分的面积=S扇形OCD=﹣22=π﹣.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形的计算.23.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)【考点】列表法与树状图法.【分析】先画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;即可知道棋子走到哪一点的可能性最大,根据概率的概念也可求出棋子走到该点的概率.【解答】解:画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;所以棋子走E点的可能性最大,棋子走到E点的概率==.【点评】本题考查了概率的概念:用列举法展示所有等可能的结果数n,找出某事件所占有的结果数m,则这件事的发生的概率P=.24.(9分)(2020邗江区一模)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560名学生;(2)请将条形图补充完整;(3)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数;(2)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(3)利用6000乘以对应的比例即可.【解答】解:(1)调查的总人数是:224÷40%=560(人),(2)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).(3)在试卷评讲课中,“独立思考”的初三学生约有:6000×=1800(人).【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°比.25.某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B处测得宣传牌底部C的仰角为30°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】过B分别作AE、DE的垂线,设垂足为F、G.分别在Rt△ABF和Rt△ADE中,通过解直角三角形求出BF、AF、DE的长,进而可求出EF即BG的长;在Rt△CBG中,∠CBG=30°,求出CG的长;根据CD=CG+GE﹣DE即可求出宣传牌的高度.【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.在Rt△ABF中,i=tan∠BAF==,∴∠BAF=30°,∴BF=AB=5,AF=5.∴BG=AF+AE=5+15.在Rt△BGC中,∵∠CBG=30°,∴CG:BG=,∴CG=5+5.在Rt△ADE中,∠DAE=45°,AE=15,∴DE=AE=15,∴CD=CG+GE﹣DE=5+5+5﹣15=(5﹣5)m.答:宣传牌CD高约(5﹣5)米.【点评】此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.26.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF,取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;(2)请判断线段MD与MN的数量与位置关系,并证明;(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则第(2)题中的结论还成立吗?请直接回答“成立”或“不成立”.【考点】四边形综合题.【分析】(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,证明出△AEF是等腰三角形;(2)依据直角三角形斜边上中线的性质以及三角形的中位线的性质可得到MN与MD的数量关系,然后三角形的外角的性质和全等三角形的性质证明∠DMF=∠BAE+∠DAF,从而可证明∠DMN=∠DAB=90°;(3)连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,再由(1)的结论以及角角之间的数量关系得到∠DMN=∠DGE=90°.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°.∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF.∴BC﹣CE=CD﹣CF,即BE=DF.∵在△ABE和△ADF中,∴△ABE≌△ADF.∴AE=AF.∴△AEF是等腰三角形.(2)DM=MN,DM⊥MN.理由:∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM.∵MN是△AEF的中位线,∴AE=2MN.∵AE=AF,∴DM=MN.∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠BAD=90°,∴DM⊥MN.(3)成立.理由:连接AE,交MD于点G.∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE.∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°.∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF.∴BC+CE=CD+CF,即BE=DF.∵在△ABE和△ADF中,∴△ABE≌△ADF.∴AE=AF,∠1=∠2.∵在Rt△ADF中,点M为AF的中点,∴DM=AF.∴DM=MN.∵AB∥DF,AD∥BE,∴∠1=∠3,∠2=∠4.∴∠3=∠4.∵DM=AM,∴∠MAD=∠5.∴∠DGE=∠5+∠4=∠MAD+∠3=90°.∵MN∥AE,∴∠DMN=∠DGE=90°.∴DM⊥MN.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了正方形的性质、等腰直角三角形的性质、直角三角形斜边上的中线的性质、三角形的中位线的性质以及全等三角形的性质和判定,证得∠DMN=90°是解题的关键.27.“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?【考点】分式方程的应用.【分析】设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.【解答】解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.【点评】本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.28.已知二次函数图象的顶点坐标为A(2,0),且与y轴交于点(0,1),B点坐标为(2,2),点C为抛物线上一动点,以C为圆心,BC为半径的圆交x轴于M、N两点(M在N 的左侧).(1)求此二次函数的表达式;(2)当点C与点A重合时,求此时点M、N的坐标;(3)当点C在抛物线上运动时,弦MN的长度是否发生变化?若变化,说明理由;若不发生变化,求出弦MN的长.【考点】二次函数综合题.【分析】(1)设抛物线的表达式为y=a(x﹣2)2,然后将(0,1)代入可求得a的值,从而可求得二次函数的表达式;(2)根据两点间的距离公式可求圆的半径,再根据两点间的距离公式可求点M、N的坐标;(3)过点C作CH⊥x轴,垂足为H,连接BC、CN,由勾股定理可知HC2=CN2﹣CH2=BC2﹣CH2,依据两点间的距离公式可求得HN=2,结合垂径定理可求得MN的长;【解答】解:(1)设抛物线的表达式为y=a(x﹣2)2.∵将(0,1)代入得:4a=1,解得a=,∴抛物线的解析式为y=(x﹣2)2.(2)AB==2,M的坐标为(2﹣2,0),即(0,0),N的坐标为(2+2,0),即(4,0);(3)MN的长不发生变化.理由:如图所示,过点C作CH⊥x轴,垂足为H,连接BC、CN.设点C的坐标为(a,(a﹣2)2).∵CH⊥MN,∴MH=HN.∵HN2=CN2﹣CH2=CB2﹣CH2,∴HN2=[2﹣(a﹣2)2]2+(a﹣2)2﹣[(a﹣2)2]2=4.∴HN=2.∴MN=4.∴MN不发生变化.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数函数的解析式、垂径定理、两点间的距离公式、勾股定理,综合性较强,难度中等.。
2020年江苏省淮安市中考数学试卷(附答案详解)

2020年江苏省淮安市中考数学试卷一、选择题(本大题共8小题,共24.0分)1.(2021·辽宁省本溪市·历年真题)2的相反数是()A. 2B. −2C. 12D. −122.(2020·江苏省淮安市·历年真题)计算t3÷t2的结果是()A. t2B. tC. t3D. t53.(2021·安徽省·其他类型)下列几何体中,主视图为圆的是()A. B. C. D.4.(2021·安徽省芜湖市·单元测试)六边形的内角和为()A. 360°B. 540°C. 720°D. 1080°5.(2021·安徽省芜湖市·单元测试)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A. (2,3)B. (−3,2)C. (−3,−2)D. (−2,−3)6.(2020·安徽省蚌埠市·单元测试)一组数据9、10、10、11、8的众数是()A. 10B. 9C. 11D. 87.(2021·贵州省贵阳市·单元测试)如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A. 54°B. 27°C. 36°D. 108°8.(2021·陕西省西安市·月考试卷)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A. 205B. 250C. 502D. 520二、填空题(本大题共8小题,共24.0分)9.(2020·北京市市辖区·期末考试)分解因式:m2−4=______.10.(2020·江苏省淮安市·期中考试)2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为______.11.(2021·全国·单元测试)已知一组数据1、3、a、10的平均数为5,则a=______.12.(2021·广东省·其他类型)方程3x−1+1=0的解为______.13.(2021·浙江省·单元测试)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为______.14.(2020·江苏省·单元测试)菱形的两条对角线长分别为6和8,则这个菱形的边长为______.15.(2020·河南省洛阳市·月考试卷)二次函数y=−x2−2x+3的顶点坐标为______ .16.(2021·河南省新乡市·单元测试)如图,等腰△ABC的两个顶点A(−1,−4)、B(−4,−1)在反比例函数y=k1x(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=k1x(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x(x>0)图象上一点,则k2=______.三、解答题(本大题共11小题,共102.0分)17.(2020·江苏省淮安市·历年真题)计算:(1)|−3|+(π−1)0−√4;(2)x+12x÷(1+1x).18.(2021·浙江省·单元测试)解不等式2x−1>3x−1.2解:去分母,得2(2x−1)>3x−1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是______(填“A”或“B”).A.不等式两边都乘(或除以)同一个正数,不等号的方向不变;B.不等式两边都乘(或除以)同一个负数,不等号的方向改变.19.(2021·广东省广州市·期中考试)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?20.(2020·山东省青岛市·单元测试)如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF______(填“是”或“不是”)平行四边形.21.(2021·江苏省常州市·模拟题)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了______学生,扇形统计图中C选项对应的圆心角为______度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?22.(2021·辽宁省沈阳市·模拟题)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为______;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.23.(2021·湖南省邵阳市·期末考试)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB=30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.(参考数据:√2≈1.4,√3≈1.7,结果精确到1千米).24.(2020·江苏省·单元测试)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为______千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.25.(2021·辽宁省沈阳市·模拟题)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.26.(2021·山东省·其他类型)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为______;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使的值;点B与点C重合,折痕为MN,求AMBM[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得的取值范围.到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求PFMF27.(2020·江苏省淮安市·历年真题)如图①,二次函数y=−x2+bx+4的图象与直线l交于A(−1,2)、B(3,n)两点.点P是x轴上的一个动点,过点P作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=______,n=______;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1−S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>−1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD−∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.答案和解析1.【答案】B【知识点】相反数【解析】【分析】本题考查了相反数的知识,根据相反数的定义求解即可.【解答】解:2的相反数为:−2.故选B.2.【答案】B【知识点】同底数幂的除法【解析】解:t3÷t2=t.故选:B.根据同底数幂的除法法则计算即可,同底数幂相除,底数不变,指数相减.本题主要考查了同底数幂的除法,熟记幂的运算法则是解答本题的关键.3.【答案】B【知识点】作图-三视图、简单几何体的三视图【解析】解:正方体的主视图为正方形,球的主视图为圆,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:B.根据各个几何体的主视图的形状进行判断.考查简单几何体的三视图,明确各个几何体的三视图的形状是正确判断的前提.4.【答案】C【知识点】多边形内角与外角【解析】解:根据多边形的内角和可得:(6−2)×180°=720°.故选:C.利用多边形的内角和=(n−2)⋅180°即可解决问题.本题需利用多边形的内角和公式解决问题.5.【答案】C【知识点】中心对称中的坐标变化【解析】解:点(3,2)关于原点对称的点的坐标是:(−3,−2).故选:C.直接利用关于原点对称点的性质得出答案.此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.6.【答案】A【知识点】众数【解析】解:一组数据9、10、10、11、8的众数是10,故选:A.根据在一组数据中出现次数最多的数叫做这组数据的众数解答即可.本题考查众数的概念.在一组数据中出现次数最多的数叫做这组数据的众数.7.【答案】C【知识点】圆周角定理、圆心角、弧、弦的关系【解析】解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,×(180°−∠AOB)=36°,∴∠ABO=∠BAO=12故选:C.根据圆周角定理求出∠AOB,根据等腰三角形的性质求出∠ABO=∠BAO,根据三角形内角和定理求出即可.本题考查了圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能求出圆心角∠AOB的度数是解此题的关键.8.【答案】D【知识点】平方差公式【解析】解:设较小的奇数为x,较大的为x+2,根据题意得:(x+2)2−x2=(x+2−x)(x+2+x)=4x+4,若4x+4=205,即x=201,不为整数,不符合题意;4,不为整数,不符合题意;若4x+4=250,即x=2464,不为整数,不符合题意;若4x+4=502,即x=4984若4x+4=520,即x=129,符合题意.故选:D.设较小的奇数为x,较大的为x+2,根据题意列出方程,求出解判断即可.此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.9.【答案】(m+2)(m−2)【知识点】因式分解-运用公式法【解析】解:m2−4=(m+2)(m−2).故答案为:(m+2)(m−2).本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2−b2= (a+b)(a−b).本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.10.【答案】3×106【知识点】科学记数法-绝对值较大的数【解析】解:3000000=3×106,故答案为:3×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【答案】6【知识点】算术平均数【解析】解:依题意有(1+3+a+10)÷4=5,解得a=6.故答案为:6.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.本题考查了算术平均数,正确理解算术平均数的意义是解题的关键.12.【答案】x=−2【知识点】分式方程的一般解法+1=0,【解析】解:方程3x−1去分母得:3+x−1=0,解得:x=−2,经检验x=−2是分式方程的解.故答案为:x=−2.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.【答案】8【知识点】直角三角形斜边上的中线【解析】解:∵在△ACB中,∠ACB=90°,CD是斜边AB上的中线,AB=16,∴CD=1AB=8,2故答案为:8.AB,代入求出即可.根据直角三角形斜边上的中线性质得出CD=12本题考查了直角三角形斜边上的中线性质,能熟记直角三角形斜边上的中线性质的内容是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半.14.【答案】5【知识点】菱形的性质【解析】解:∵菱形ABCD 中,AC =6,BD =8, ∴AC ⊥BD ,OA =12AC =3,OB =12BD =4, ∴AB =√OA 2+OB 2=5. 即这个菱形的边长为:5. 故答案为:5.首先根据题意画出图形,由菱形ABCD 中,AC =6,BD =8,即可得AC ⊥BD ,OA =12AC =3,OB =12BD =4,然后利用勾股定理求得这个菱形的边长.此题考查了菱形的性质以及勾股定理.注意菱形的对角线互相平分且垂直.15.【答案】(−1,4)【知识点】二次函数的性质 【解析】 【分析】本题考查了二次函数的性质,熟练掌握利用顶点式解析式求顶点坐标是解题的关键.把二次函数解析式转化成顶点式形式,然后写出顶点坐标即可. 【解答】解:∵y =−x 2−2x +3, =−(x 2+2x +1−1)+3, =−(x +1)2+4, ∴顶点坐标为(−1,4). 故答案为(−1,4).16.【答案】1【知识点】反比例函数图象上点的坐标特征、等腰三角形的性质 【解析】解:把A(−1,−4)代入y =k 1x中得,k 1=4,∴反比例函数y =k 1x为y =4x , ∵A(−1,−4)、B(−4,−1), ∴AB 的垂直平分线为y =x ,联立方程驵{y =4xy =x,解得{x =−2y =−2,或{x =2y =2,∵AC =BC ,CD ⊥AB ,∴CD是AB的垂直平分线,∵CD与反比例函数y=k1x(x<0)的图象于点D,∴D(−2,−2),∵动点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x(x> 0)图象上一点,∴设移动后的点P的坐标为(m,m)(m>−2),则(x+2)2+(x+2)2=(3√2)2,∴x=1,∴P(1,1),把P(1,1)代入y=k2x(x>0)中,得k2=1,故答案为:1.用待定系数求得反比例函数y=k1x,再与直线y=x联立方程组求得D点坐标,再题意求得运动后P点的坐标,最后将求得的P点坐标代入y=k2x(x>0)求得结果.本题主要考查了反比例函数的图象与性质,等腰三角形的性质,求反比例函数图象与一次函数图象的交点坐标,待定系数法,关键是确定直线CD的解析式.17.【答案】解:(1)|−3|+(π−1)0−√4=3+1−2=2;(2)x+12x÷(1+1x)=x+12x÷x+1x=x+12x⋅xx+1=12.【知识点】零指数幂、实数的运算、分式的混合运算【解析】(1)根据绝对值、零指数幂可以解答本题;(2)根据分式的除法和加法可以解答本题.本题考查分式的混合运算、零指数幂,解答本题的关键是明确它们各自的计算方法.18.【答案】A【知识点】一元一次不等式的解法【解析】解:(1)去分母,得:4x −2>3x −1, 移项,得:4x −3x >2−1, 合并同类项,得:x >1,(2)本题“去分母”这一步的变形依据是:不等式两边都乘(或除以)同一个正数,不等号的方向不变; 故答案为A .(1)根据不等式的基本性质去分母、去括号、移项可得不等式的解集; (2)不等式两边都乘(或除以)同一个正数,不等号的方向不变.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.【答案】解:设中型汽车有x 辆,小型汽车有y 辆,依题意,得:{x +y =3015x +8y =324,解得:{x =12y =18.答:中型汽车有12辆,小型汽车有18辆.【知识点】一元一次方程的应用、二元一次方程组的应用【解析】设中型汽车有x 辆,小型汽车有y 辆,根据“停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴AD//BC , ∴∠OAF =∠OCE ,在△AOF 和△COE 中,{∠OAF =∠OCEAO =CO ∠AOF =∠COE ,∴△AOF≌△COE(ASA) (2)是.【知识点】平行四边形的判定与性质、全等三角形的判定与性质【解析】(1)证明:∵四边形ABCD是平行四边形,∴AD//BC,∴∠OAF=∠OCE,在△AOF和△COE中,{∠OAF=∠OCE AO=CO∠AOF=∠COE,∴△AOF≌△COE(ASA)(2)解:四边形AECF是平行四边形,理由如下:如图,由(1)得:△AOF≌△COE,∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形;故答案为:是.(1)由ASA证明△AOF≌△COE即可;(2)由全等三角形的性质得出FO=EO,再由AO=CO,即可得出结论.本题考查了平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.21.【答案】60名108【知识点】扇形统计图、用样本估计总体、条形统计图【解析】解:(1)24÷40%=60(名),360°×1860=108°,故答案为:60名,108;(2)60×25%=15(人),补全条形统计图如图所示:(3)1200×360=60(人),答:该校1200名学生中选择“不了解”的有60人.(1)“B 比较了解”的有24人,占调查人数的40%,可求出调查人数,进而求出“C 一般了解”所占的百分比,进而计算其相应的圆心角的度数, (2)求出“A 非常了解”的人数,即可补全条形统计图;(3)样本估计总体,样本中“D 不了解”的占360,因此估计总体1200名学生的360是“不了解”的人数.本题考查扇形统计图、条形统计图的意义和制作方法,从两个统计图中获取数量和数量关系是正确解答的关键.22.【答案】13【知识点】用列举法求概率(列表法与树状图法)【解析】解:(1)共有3种可能出现的结果,其中是A 的只有1种, 因此第1次摸到A 的概率为13, 故答案为:13;(2)用树状图表示所有可能出现的结果如下:共有9种可能出现的结果,其中从左到右能构成“OK”的只有1种,∴P(组成OK)=19.(1)共有3种可能出现的结果,其中是A的只有1种,可求出概率;(2)用树状图表示所有可能出现的结果,进而求出相应的概率.本题考查树状图或列表法求随机事件发生的概率,列举出所有等可能出现的结果情况是得出正确答案的关键.23.【答案】解:过点C作CD⊥AB于点D,如图所示.在Rt△ACD中,AC=8千米,∠CAD=30°,∠CAD=90°,∴CD=AC⋅sin∠CAD=4千米,AD=AC⋅cos∠CAD=4√3千米≈6.8千米.在Rt△BCD中,CD=4千米,∠BDC=90°,∠CBD=45°,∴∠BCD=45°,∴BD=CD=4千米,∴AB=AD+BD=6.8+4≈11千米.答:A、B两点间的距离约为11千米.【知识点】解直角三角形的应用【解析】过点C作CD⊥AB于点D,在Rt△ACD中,通过解直角三角形可求出AD,CD 的长,在Rt△BCD中,由∠BDC=90°,∠CBD=45°可得出BD=CD,再结合AB=AD+ BD即可求出A、B两点间的距离.本题考查了解直角三角形以及等腰直角三角形,通过解直角三角形以及利用等腰直角三角形的性质,找出AD,BD的长是解题的关键.24.【答案】解:(1)80;(2)休息后按原速继续前进行驶的时间为:(240−80)÷80+1.5=3.5(小时), ∴点E 的坐标为(3.5,240),设线段DE 所表示的y 与x 之间的函数表达式为y =kx +b ,则:{1.5k +b =803.5k +b =240, 解得{k =80b =−40, ∴线段DE 所表示的y 与x 之间的函数表达式为:y =80x −40,其中1.5≤x ≤3.5; (3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290÷80+0.5=4.125(小时),12:00−8:00=4(小时), 4.125>4,所以接到通知后,汽车仍按原速行驶不能准时到达.【知识点】待定系数法求一次函数解析式、一次函数的应用 【解析】 【分析】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.(1)观察图象即可得出休息前汽车行驶的速度;(2)根据题意求出点E 的坐标,再利用待定系数法解答即可;(3)求出到达乙地所行驶的时间,与4小时(8:00∼12:00)进行比较即可解答. 【解答】解:(1)由图象可知,休息前汽车行驶的速度为80千米/小时; 故答案为:80; (2)见答案; (3)见答案.25.【答案】解:(1)CB 与⊙O 相切,理由:连接OB , ∵OA =OB , ∴∠OAB =∠OBA , ∵CP =CB ,∴∠CPB=∠CBP,在Rt△AOP中,∵∠A+∠APO=90°,∴∠OBA+∠CBP=90°,即:∠OBC=90°,∴OB⊥CB,又∵OB是半径,∴CB与⊙O相切;(2)∵∠A=30°,∠AOP=90°,∴∠APO=60°,∴∠BPD=∠APO=60°,∵PC=CB,∴△PBD是等边三角形,∴∠PCB=∠CBP=60°,∴∠OBP=∠POB=30°,∴OP=PB=PC=1,∴BC=1,∴OB=√OC2−BC2=√3,∴图中阴影部分的面积=S△OBC−S扇形OBD =12×1×√3−30⋅π×(√3)2360=√32−π4.【知识点】扇形面积的计算、含30°角的直角三角形、圆周角定理、直线与圆的位置关系【解析】(1)根据等边对等角得∠CPB=∠CBP,根据垂直的定义得∠OBC=90°,即OB⊥CB,则CB与⊙O相切;(2)根据三角形的内角和定理得到∠APO=60°,推出△PBD是等边三角形,得到∠PCB=∠CBP=60°,求得BC=1,根据勾股定理得到OB=√OC2−BC2=√3,根据三角形和扇形的面积公式即可得到结论.本题考查了直线与圆的位置关系,切线的判定,等边三角形的判定和性质,解直角三角形,扇形面积的计算,正确的作出辅助线是解题的关键.26.【答案】AM=BM【知识点】翻折变换(折叠问题)、相似三角形的判定与性质、几何变换综合【解析】解:(1)如图①中,∵△ABC折叠,使点B与点C重合,折痕为MN,∴MN垂直平分线段BC,∴CN=BN,∵∠MNB=∠ACB=90°,∴MN//AC,∵CN=BN,∴AM=BM.故答案为AM=BM.(2)如图②中,∵CA=CB=6,∴∠A=∠B,由题意MN垂直平分线段BC,∴BM=CM,∴∠B=∠MCB,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴BCBA =BMBC,∴610=BM6,∴BM=185,∴AM=AB−BM=10−185=325,∴AMBM =325185=169.(3)①如图③中,由折叠的性质可知,CB=CB′=6,∠BCM=∠ACM,∵∠ACB=2∠A,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴BCAB=BMBC=CMAC∴69=BM6,∴BM=4,∴AM=CM=5,∴69=5AC,∴AC=152.②如图③−1中,∵∠A=∠A′=∠MCF,∠PFA′=∠MFC,PA=PA′,∴△PFA′∽△MFC ,∴PF FM =PA′CM ,∵CM =5,∴PF FM =PA′5,∵点P 在线段OB 上运动,OA =OC =154,AB′=152−6=32, ∴32≤PA′≤154, ∴310≤PF FM ≤34. (1)利用平行线的方向的定理解决问题即可.(2)利用相似三角形的性质求出BM ,AM 即可.(3)①证明△BCM∽△BAC ,推出BC AB =BM BC =CM AC ,由此即可解决问题. ②证明△PFA′∽△MFC ,推出PF FM =PA′CM ,因为CM =5,推出PF FM =PA′5即可解决问题.本题属于几何变换综合题,考查了相似三角形的判定和性质,解直角三角形,等腰三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.27.【答案】1 −2【知识点】二次函数综合【解析】解:(1)将点A(−1,2)代入二次函数y =−x 2+bx +4中,得−1−b +4=2, ∴b =1,∴二次函数的解析式为y =−x 2+x +4,将点B(3,n)代入二次函数y =−x 2+x +4中,得n =−9+3+4=−2,故答案为:1,−2;(2)设直线AB 的解析式为y =kx +a ,由(1)知,点B(3,−2),∵A(−1,2),∴{−k +a =23k +a =−2, ∴{k =−1a =1, ∴直线AB 的解析式为y =−x +1,由(1)知,二次函数的解析式为y =−x 2+x +4,∵点P(m,0),∴M(m,−m+1),N(m,−m2+m+4),∵点N在点M的上方,且MN=3,∴−m2+m+4−(−m+1)=3,∴m=0或m=2;(3)①如图1,由(2)知,直线AB的解析式为y=−x+1,∴直线CD的解析式为y=−x+1+4=−x+5,令y=0,则−x+5=0,∴x=5,∴C(5,0),∵A(−1,2),B(3,−2),∴直线AC的解析式为y=−13x+53,直线BC的解析式为y=x−5,过点N作y轴的平行线交AC于K,交BC于H,∵点P(m,0),∴N(m,−m2+m+4),K(m,−13m+53),H(m,m−5),∴NK=−m2+m+4+13m−53=−m2+43m+73,NH=−m2+9,∴S2=S△NAC=12NK×(x C−x A)=12(−m2+43m+73)×6=−3m2+4m+7,S1=S△NBC=12NH×(x C−x B)=−m2+9,∵S1−S2=6,∴−m2+9−(−3m2+4m+7)=6,∴m=1+√3(由于点N在直线AC上方,所以,舍去)或m=1−√3;∴S2=−3m2+4m+7=−3(1−√3)2+4(1−√3)+7=2√3−1,S1=−m2+9=−(1−√3)2+9=2√3+5;②如图2,记直线AB与x轴,y轴的交点为I,L,由(2)知,直线AB的解析式为y=−x+1,∴I(1,0),L(0,1),∴OL=OI,∴∠ALD=∠OLI=45°,∴∠AOD+∠OAB=45°,过点B作BG//OA,∴∠ABG=∠OAB,∴∠AOD+∠ABG=45°,∵∠FBA=∠ABG+∠FBG,∠FBA+∠AOD−∠BFC=45°,∴∠ABG+∠FBG+∠AOD−∠BFC=45°,∴∠FBG=∠BFC,∴BG//CF,∴OA//CF,∵A(−1,2),∴直线OA的解析式为y=−2x,∵C(5,0),∴直线CF的解析式为y=−2x+10,过点A,F分别作过点M平行于x轴的直线的垂线,交于点Q,S,∵∠AQM=∠MSF=90°,∵点M在直线AB上,m>−1,∴M(m,−m+1),∴A(−1,2),∴MQ=m+1,设点F(n,−2n+10),∴FS=−2n+10+m−1=−2n+m+9,由旋转知,AM=MF,∠AMF=90°,∴∠MAQ +∠AMQ =90°=∠AMQ +∠FMS ,∴∠MAQ =∠FMS ,∴△AQM≌△MSF(AAS),∴FS =MQ ,∴−2n +m +9=m +1,∴n =4,∴F(4,2),∴直线OF 的解析式为y =12x①,∵二次函数的解析式为y =−x 2+x +4②,联立①②解得,{x =1+√654y =1+√658或{x =1−√654y =1−√658, ∴直线OF 与该二次函数图象交点的横坐标为1+√654或1−√654.(1)将点A 坐标代入二次函数解析式中,求出b ,进而得出二次函数解析式,再将点B 坐标代入二次函数中,即可求出n 的值;(2)先表示出点M ,N 的坐标,进而用MN =3建立方程求解,即可得出结论;(3)①先求出点C 坐标,进而求出直线AC 的解析式,再求出直线BC 的解析式,进而表示出S 1,S 2,最后用S 1−S 2=6建立方程求出m 的值;②先判断出CF//OA ,进而求出直线CF 的解析式,再利用三垂线构造出△AQM≌△MSF ,得出FS =MQ ,进而建立方程求出点F 的坐标,即可求出直线OF 的解析式,最后联立二次函数解析式,解方程组即可得出结论.此题是二次函数综合题,主要考查了待定系数法,三角形面积的计算方法,全等三角形的判定和性质,解方程组,构造出全等三角形是解本题的关键.。
2020年淮安市淮安区中考数学模拟试卷(一)含答案解析

2020年江苏省淮安市淮安区中考数学模拟试卷(一)一、选择题(本大题共8小题,每小题3分,共计24分,在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填在答题卡上)1.﹣5的倒数是()A.B.C.﹣5 D.52.a2•a3等于()A.3a2B.a5C.a6D.a83.下列事件为必然事件的是()A.打开电视机,它正在播广告B.某彩票的中奖机会是1%,买1张一定不会中奖C.抛掷一枚硬币,一定正面朝上D.投掷一枚普通的正方体骰子,掷得的点数小于74.如图是一个圆柱体,则它的主视图是()A.B.C.D.5.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)6.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A.B.C.D.7.下列各式中与是同类二次根式的是()A.B. C. D.8.下列说法中①若式子有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.③已知x=2是方程x2﹣6x+c=0的一个实数根,则c的值为8.④在反比例函数y=中,若x>0时,y随x的增大增大,则k的取值范围是k>2.其中正确命题有()A.1个B.2个C.3个D.4个二、填空题(本大题共10小题,每小题3分,共计30分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上)9.根据淮安市委、市政府实施“十大工程”的工作部署,全市重点工程计划投资3653000000元,将3653000000用科学记数法表示为______.10.在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的中位数是______.11.分解因式:x2﹣16=______.12.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为______.13.圆锥底面半径为,母线长为2,它的侧面展开图的面积是______.14.若关于x的一元二次方程kx2+2(k+1)x+k﹣1=0有两个实数根,则k的取值范围是______.15.“校园手机”现象受社会普遍关注,某校针对“学生是否可带手机”的问题进行了问卷调查,并绘制了扇形统计图.从调查的学生中,随机抽取一名恰好是持“无所谓”态度的学生的概率是______.16.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=______.17.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是______.18.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中作内接正方形A3B3C3D3;…;依次作下去,则第2020个正方形A2020B2020C2020D2020的边长是______.三、解答题(本大题共10小题,共计96分,请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)19.(1)计算:()﹣1+2cos45°﹣(2)化简:÷.20.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.21.如图,方格纸中的每个小方格是边长为1个单位长度的正方形.(1)画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1.(2)再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C2,并求出旋转过程中点A1所走过的路线长(结果保留π)22.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.23.心理健康是一个人健康的重要标志之一.为了解学生对心理健康知识的掌握程度,某校从800名在校学生中,随机抽取200名进行问卷调查,并按“优秀”、“良好”、“一般”、“较差”四个等级统计,绘制成如下的频数分布表和频数分布直方图.程度频数频率优秀60 0.3良好100 a一般 b 0.15较差 c 0.05请根据图表提供的信息,解答下列问题:(1)求频数分布表中a、b、c的值.并补全频数分布直方图;(2)请你估计该校学生对心理健康知识掌握程度达到“优秀”的总人数.24.现有数字﹣1、1、2各若干,随机拿两个数组成点的坐标(两个数可以重复).请用画树状图或列表的方法罗列所有可能情况,并求组成坐标的点是抛物线y=x2+1上的点的概率.25.九(一)班课题学习小组,为了了解大树生长状况,去年在学校门前点A处测得一棵大树顶点C的仰角为30°,树高5m;今年他们仍在原点A处测得大树D的仰角为37°,问这棵树一年生长了多少m?(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.732)26.如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)27.某班将举行“趣味数学知识竞赛”活动,班长安排小明购买奖品,下面是小明买回奖品时与班长的对话情况:小明:买了两种不同的笔记本共40本,单价分别为5元和8元,我领了300元,现在找回68元.班长:你肯定搞错了!小明:哦!我把自己口袋里的13元一起当作找回的钱款了.班长:这就对了!请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?28.如图①,点A′、B′的坐标分别为(4,0)和(0,﹣8),将△A′B′O绕点O按逆时针方向旋90°转后得△ABO,点A′的对应点是A,点B′的对应点是点B.(1)写出A、B两点的坐标,并求出直线AB的解析式;(2)将△ABO沿着垂直于x轴的线段CD折叠(点C在x轴上,点D在线段AB上,点D 不与A、B重合)如图②,使点B落在x轴上,点B的对应点为点E,设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.①试求出S与x之间的函数关系式(包括自变量x的取值范围);②当x为何值时,S的面积最大?最大值是多少?(3)当4<x<8时,是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.2020年江苏省淮安市淮安区中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共计24分,在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填在答题卡上)1.﹣5的倒数是()A.B.C.﹣5 D.5【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣5)×(﹣)=1,∴﹣5的倒数是﹣.故选:A.2.a2•a3等于()A.3a2B.a5C.a6D.a8【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则进行计算即可.【解答】解:原式=a2•a3=a2+3=a5.故选B.3.下列事件为必然事件的是()A.打开电视机,它正在播广告B.某彩票的中奖机会是1%,买1张一定不会中奖C.抛掷一枚硬币,一定正面朝上D.投掷一枚普通的正方体骰子,掷得的点数小于7【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:打开电视机,它正在播广告是随机事件,A错误;某彩票的中奖机会是1%,买1张一定不会中奖是随机事件,B错误;抛掷一枚硬币,一定正面朝上是随机事件,C错误;投掷一枚普通的正方体骰子,掷得的点数小于7是必然事件,D正确,故选:D.4.如图是一个圆柱体,则它的主视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】找到从物体的正面看,所得到的图形即可.【解答】解:一个直立在水平面上的圆柱体的主视图是长方形,故选A5.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2).故选:A.6.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A.B.C.D.【考点】不等式的解集.【分析】由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x≥﹣1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为﹣1≤x<2,从而得出正确选项.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是实心圆,表示x ≥﹣1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为﹣1≤x<2,即:.故选:C.7.下列各式中与是同类二次根式的是()A.B. C. D.【考点】同类二次根式.【分析】根据二次根式的性质,可得最简二次根式,根据被开方数相同的二次根式是同类二次根式,可得答案.【解答】解:=2,A、与2不是同类二次根式,故A错误;B、=4与2不是同类二次根式,故B错误;C、=3与2不是同类二次根式,故C错误;D、=5与2是同类二次根式,故D正确;故选:D.8.下列说法中①若式子有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.③已知x=2是方程x2﹣6x+c=0的一个实数根,则c的值为8.④在反比例函数y=中,若x>0时,y随x的增大增大,则k的取值范围是k>2.其中正确命题有()A.1个B.2个C.3个D.4个【考点】反比例函数的性质;二次根式有意义的条件;一元二次方程的解;余角和补角.【分析】分别根据二次根式有意义的条件、补角的定义、一元二次方程的解及反比例函数的性质对各小题进行逐一解答即可.【解答】解:①若式子有意义,则x≥1,故本小题错误;②若∠α=27°,则∠α的补角=180°﹣27°=153°,故本小题正确;③已知x=2是方程x2﹣6x+c=0的一个实数根,则22﹣12+c=0,解得c=8,故本小题正确;④在反比例函数y=中,若x>0时,y随x的增大增大,则k﹣2<0,解得k<2,故本小题错误.故选:B.二、填空题(本大题共10小题,每小题3分,共计30分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上)9.根据淮安市委、市政府实施“十大工程”的工作部署,全市重点工程计划投资3653000000元,将3653000000用科学记数法表示为 3.653×109.【考点】科学记数法—表示较大的数.【分析】科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.科学记数法形式:a×10n,其中1≤a<10,n为正整数.【解答】解:将3653000000用科学记数法表示为3.653×109.故答案为:3.653×109.10.在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的中位数是8.5.【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:题目中数据共有8个,按从小到大排列后为:7、7、8、8、9、9、9、10.故中位数是按从小到大排列后第4,第5两个数的平均数作为中位数,故这组数据的中位数是×(8+9)=8.5.故答案为:8.5.11.分解因式:x2﹣16=(x﹣4)(x+4).【考点】因式分解-运用公式法.【分析】运用平方差公式分解因式的式子特点:两项平方项,符号相反.直接运用平方差公式分解即可.a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣16=(x+4)(x﹣4).12.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为36°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出∠ABE,最后根据∠EBC=∠ABC﹣∠ABE代入数据进行计算即可得解.【解答】解:∵AB=AC,∠A=36°,∴∠ABC==×=72°,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=72°﹣36°=36°.故答案为:36°.13.圆锥底面半径为,母线长为2,它的侧面展开图的面积是π.【考点】圆锥的计算.【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【解答】解:圆锥的侧面展开图的面积是π××2=π.故答案为π.14.若关于x的一元二次方程kx2+2(k+1)x+k﹣1=0有两个实数根,则k的取值范围是k≥﹣,且k≠0.【考点】根的判别式.【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac≥0,建立关于k的不等式,求出k的取值范围.还要注意二次项系数不为0.【解答】解:∵a=k,b=2(k+1),c=k﹣1,∴△=4(k+1)2﹣4×k×(k﹣1)=3k+1≥0,解得:k≥﹣,∵原方程是一元二次方程,∴k≠0.故本题答案为:k≥﹣,且k≠0.15.“校园手机”现象受社会普遍关注,某校针对“学生是否可带手机”的问题进行了问卷调查,并绘制了扇形统计图.从调查的学生中,随机抽取一名恰好是持“无所谓”态度的学生的概率是9%.【考点】概率公式;扇形统计图.【分析】根据扇形统计图求出持“无所谓”态度的学生所占的百分比,即可求出持“无所谓”态度的学生的概率.【解答】解:恰好是持“无所谓”态度的学生的概率是1﹣35%﹣56%=9%.故答案为:9%.16.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=.【考点】锐角三角函数的定义;勾股定理.【分析】首先由勾股定理求得斜边AC=5;然后由锐角三角函数的定义知sinA=,然后将相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC==5(勾股定理).∴sinA==.故答案是:.17.在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是﹣4或6.【考点】坐标与图形性质.【分析】点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x﹣1|=5,从而解得x的值.【解答】解:∵点M(1,3)与点N(x,3)之间的距离是5,∴|x﹣1|=5,解得x=﹣4或6.故答案为:﹣4或6.18.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1C1D1;在等腰直角三角形OA1B1中作内接正方形A2B2C2D2;在等腰直角三角形OA2B2中作内接正方形A3B3C3D3;…;依次作下去,则第2020个正方形A2020B2020C2020D2020的边长是.【考点】正方形的性质;等腰直角三角形.【分析】根据等腰直角三角形和正方形的性质可以得出A n D n+1=D n+1C n+1=C n+1B n=A n B n,再结合AB=1即可得出A n B n=,代入n=2020即可得出结论.【解答】解:∵△OA n B n为等腰直角三角形,∴A n D n+1=D n+1C n+1=C n+1B n=A n B n,∵AB=1,∴A n B n=,∴第2020个正方形A2020B2020C2020D2020的边长是.故答案为:.三、解答题(本大题共10小题,共计96分,请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)19.(1)计算:()﹣1+2cos45°﹣(2)化简:÷.【考点】实数的运算;分式的乘除法;负整数指数幂;特殊角的三角函数值.【分析】(1)原式利用负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2+2×﹣2=2﹣;(2)原式=﹣•=﹣1.20.(1)解不等式:5(x﹣2)+8<6(x﹣1)+7;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.【考点】解一元一次不等式;一元一次方程的解;一元一次不等式的整数解.【分析】(1)根据不等式的基本性质先去括号,然后通过移项、合并同类项即可求得原不等式的解集;(2)根据(1)中的x的取值范围来确定x的最小整数解;然后将x的值代入已知方程列出关于系数a的一元一次方程2×(﹣2)﹣a×(﹣2)=3,通过解该方程即可求得a的值.【解答】解:(1)5(x﹣2)+8<6(x﹣1)+75x﹣10+8<6x﹣6+75x﹣2<6x+1﹣x<3x>﹣3.(2)由(1)得,最小整数解为x=﹣2,∴2×(﹣2)﹣a×(﹣2)=3∴a=.21.如图,方格纸中的每个小方格是边长为1个单位长度的正方形.(1)画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1.(2)再将Rt△A1B1C1绕点C1顺时针旋转90°,画出旋转后的Rt△A2B2C2,并求出旋转过程中点A1所走过的路线长(结果保留π)【考点】作图-旋转变换;作图-平移变换.【分析】(1)根据平移的定义画出图形即可.(2)根据旋转的定义画出图形即可,点A1所走过的路线长为圆心角为90°,半径为4的弧长.【解答】解;(1)Rt△ABC向右平移5个单位长度后的Rt△A1B1C1如图所示.(2)将Rt△A1B1C1绕点C1顺时针旋转90°,得到Rt△A2B2C2如图所示.点A1所走过的路线长为=2π.22.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.【考点】平行四边形的性质;平行线的性质;全等三角形的判定与性质.【分析】根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,证△ADE≌△CBF,推出∠DAE=∠BCF即可.【解答】证明:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,∴∠ADE=∠CBF又∵BE=DF,∴BF=DE,∵在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠DAE=∠BCF.23.心理健康是一个人健康的重要标志之一.为了解学生对心理健康知识的掌握程度,某校从800名在校学生中,随机抽取200名进行问卷调查,并按“优秀”、“良好”、“一般”、“较差”四个等级统计,绘制成如下的频数分布表和频数分布直方图.程度频数频率优秀60 0.3良好100 a一般 b 0.15较差 c 0.05请根据图表提供的信息,解答下列问题:(1)求频数分布表中a、b、c的值.并补全频数分布直方图;(2)请你估计该校学生对心理健康知识掌握程度达到“优秀”的总人数.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)根据频数分布直方图60的频率是0.3,计算可得良好的频率为0.5,得出b的频数为30,c的频数为10,(2)根据频数分布表可知优秀学生的频率为0.3,该校有800名学生,即可得出该校学生对心理健康知识掌握程度达到“优秀”的总人数.【解答】解:(1)a=0.5,b=30,c=10,频数分布直方图如图:(2)优秀总人数为800×0.3=240(人).24.现有数字﹣1、1、2各若干,随机拿两个数组成点的坐标(两个数可以重复).请用画树状图或列表的方法罗列所有可能情况,并求组成坐标的点是抛物线y=x2+1上的点的概率.【考点】列表法与树状图法.【分析】先画树状图展示所有9种等可能的结果数,再根据二次函数图象上点的坐标特征可判断(﹣1,2),(1,2)在抛物线y=x2+1上,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中组成坐标的点是抛物线y=x2+1上的点的结果数为2,所以组成坐标的点是抛物线y=x2+1上的点的概率=.25.九(一)班课题学习小组,为了了解大树生长状况,去年在学校门前点A处测得一棵大树顶点C的仰角为30°,树高5m;今年他们仍在原点A处测得大树D的仰角为37°,问这棵树一年生长了多少m?(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】由题意得:∠DAB=37°,∠CAB=30°,BC=5m,然后分别在Rt△ABC与Rt△DAB 中,利用正切函数求解即可求得答案.【解答】解:根据题意得:∠DAB=37°,∠CAB=30°,BC=5m,在Rt△ABC中,AB===5(m),在Rt△DAB中,BD=AB•tan37°≈5×0.75≈6.495(m),则CD=BD﹣BC=6.495﹣5=1.495(m).答:这棵树一年生长了1.495m.26.如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)【考点】扇形面积的计算;切线的判定.【分析】(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD垂直即可.(2)阴影部分的面积可由梯形OBCD和扇形OBD的面积差求得;扇形的半径和圆心角已求得,那么关键是求出梯形上底CD的长,可通过证四边形ABCD是平行四边形,得出CD=AB,由此可求出CD的长,即可得解.【解答】解:(1)直线CD与⊙O相切.理由如下:如图,连接OD∵OA=OD,∠DAB=45°,∴∠ODA=45°∴∠AOD=90°∵CD∥AB∴∠ODC=∠AOD=90°,即OD⊥CD又∵点D在⊙O上,∴直线CD与⊙O相切;(2)∵⊙O 的半径为1,AB 是⊙O 的直径,∴AB=2,∵BC ∥AD ,CD ∥AB∴四边形ABCD 是平行四边形∴CD=AB=2∴S 梯形OBCD ===;∴图中阴影部分的面积等于S 梯形OBCD ﹣S 扇形OBD =﹣×π×12=﹣.27.某班将举行“趣味数学知识竞赛”活动,班长安排小明购买奖品,下面是小明买回奖品时与班长的对话情况:小明:买了两种不同的笔记本共40本,单价分别为5元和8元,我领了300元,现在找回68元.班长:你肯定搞错了!小明:哦!我把自己口袋里的13元一起当作找回的钱款了.班长:这就对了!请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?【考点】二元一次方程组的应用.【分析】(1)设5元、8元的笔记本分别买x 本、y 本,根据题意列出关于x 、y 的二元一次方程组,求出x 、y 的值即可;(2)根据(1)中求出的5元、8元的笔记本的本数求出应找回的钱数,再与68相比较即可得出结论.【解答】解:(1)设一种笔记本买了x 本,另一种笔记本买了y 本,根据题意,得:,解得:, 答:一种笔记本买了25本,另一种笔记本买了15本;(2)解法一:应找回钱款为300﹣5×25﹣8×15=55≠68,故不能找回68元.解法二:设买m 本5元的笔记本,则买(40﹣m )本8元的笔记本,依题意得,5m +8(40﹣m )=300﹣68,解得:m=,∵m 是正整数,∴m=不合题意,舍去.∴不能找回68元.解法三:买25本5元笔记本和15本8元的笔记本的价钱总数应为奇数而不是偶数,故不能找回68元.28.如图①,点A′、B′的坐标分别为(4,0)和(0,﹣8),将△A′B′O绕点O按逆时针方向旋90°转后得△ABO,点A′的对应点是A,点B′的对应点是点B.(1)写出A、B两点的坐标,并求出直线AB的解析式;(2)将△ABO沿着垂直于x轴的线段CD折叠(点C在x轴上,点D在线段AB上,点D 不与A、B重合)如图②,使点B落在x轴上,点B的对应点为点E,设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.①试求出S与x之间的函数关系式(包括自变量x的取值范围);②当x为何值时,S的面积最大?最大值是多少?(3)当4<x<8时,是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)根据旋转的性质可以得到OA=OA′,OB=OB′,则A,B的坐标就可以得到,根据待定系数法就可以求出直线AB的解析式.(2)①OB=8,C点的位置应分两种情况进行讨论,当C在OB的中点或在中点与B之间时,重合部分是△CDE;当C在OB的中点与O之间时,重合部分是梯形,就可以得到函数解析式.②求出S与x之间的函数解析式,根据函数的性质就可以得到面积的最值.(3)分△ADE以点A为直角顶点和△ADE以点E为直角顶点,两种情况进行讨论.根据相似三角形的对应边的比相等,求出OE的长,就可以得到C点的坐标.【解答】解:(1)由旋转得,OA=OA′,OB=OB′,∵点A′、B′的坐标分别为(4,0)和(0,﹣8),∴OA′=4,OB′=8,∴A(0,4),B(8,0),设直线AB的解析式y=kx+b,∴,∴∴直线AB的解析式y=﹣x+4,(2)①Ⅰ、点E在原点和x轴正半轴上时,重叠部分是△CDE.则S△CDE=BC×CD=(8﹣x)(﹣x+4)=(x﹣8)2,∵CE=OB=4当E与O重合时∴4≤x<8Ⅱ、当E在x轴的负半轴上时,设DE与y轴交于点F,则重叠部分为梯形∵△OFE∽△OAB=,∴OF=OE又∵OE=8﹣2x∴OF=4﹣x=x{4﹣x+(﹣x+4)=﹣x2+4x∴S四边形CDFO当点C与点O重合时,点C的坐标为(0,0)∴0<x<4综合Ⅰ、Ⅱ得,S=②Ⅰ、当4≤x<8时,s=(x﹣8)2,∴对称轴是直线x=8,∵抛物线开口向上,∴在4≤x<8中,S随x的增大而减小∴当x=4时,S的最大值=4,Ⅱ、当0<x<4时,s=﹣x2+4x∴对称轴是直线x=∵抛物线开口向下∴当x=时,S有最大值为综合①②当x=时,S有最大值为(3)存在,点C的坐标为(5,0)①当△ADE以点A为直角顶点时,作AE⊥AB交x轴负半轴于点E,∵△AOE∽△BOA∴∵AO=4∴EO=2∴点E坐标为(﹣2,0)∴点C的坐标为(3,0)(舍,4<x<8)②当△ADE以点E为直角顶点时同样有△AOE∽△BOA,∴∴∴EO=2∴E(2,0)∴点C的坐标(5,0)综合Ⅰ、Ⅱ知满足条件的坐标有(5,0).2020年9月16日。
江苏省淮安市淮安区2020届中考数学一模试卷 (含解析)

江苏省淮安市淮安区2020届中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.−66的相反数是()A. −66B. 66C. 166D. −1662.下列运算正确的是()A. (2a2)3=6a6B. 2a2+4a2=6a4C. a3⋅a2=a5D. (a+2b)2=a2+4b23.大型纪录电影《厉害了,我的国》3月2日在全国上二映,在上映首日收获了4132万人民币的票房数据“4132万”用科学记数法表示为A. 41.32×106B. 4.132×107C. 4.132×106D. 41.32×1074.下面由7个完全相同的小正方体组成的几何体的左视图是()A. B. C. D.5.在一次捐款活动中,某校七年级(1)班6名团员的捐款金额(单位:元)如下:10,15,30,50,30,20.这组数据的众数是()A. 10B. 15C. 20D. 306.已知三角形两边的长分别是2和3,第三边的长是方程x2−8x+12=0的根,则该三角形的周长为()A. 7B. 11C. 7或11D. 8或97.若反比例函数y=1x的图象经过点A(2,m),则m的值()A. 2B. 12C. −12D. −28.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A. 103B. 4C. 4.5D. 5二、填空题(本大题共7小题,共21.0分)9.因式分解:3m2n+6mn2=______.10.分式方程:xx+1=2x3x+3+1的解是______ .11.正五边形的外角和等于__________(度).12.如图,在平行四边形ABCD中,分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于M,N两点,作直线MN,分别交AD,BC于点E,F,连接AF,∠B=50°∘,∠DAC=30°,则∠BAF=____________.13.如图,l1//l2//l3,两条直线与这三条平行线分别交于点A、B、C和D、E、F,已知ABBC =43,若DF=10,则DE=______.14.半径为3cm,圆心角为120°的扇形的弧长为______.15.不等式组{x−1≤02x+4>0的解集是______.三、计算题(本大题共2小题,共18.0分)16.计算:√8×sin45°−20190+2−117.先化简,再求值:x2−4x+4x2−1÷(1−3x+1),其中x=−2.四、解答题(本大题共10小题,共87.0分)18.观察如图所示的图形,回答下列问题:(1)图③中有________个三角形,图④中有________个三角形,猜测第7个图形中一共有________个三角形.(2)按上面的方法继续下去,第n个图形中有________个三角形(用含n的代数式表示).19.某旅行社为吸引中小学生组团去黄山风景区旅游,推出了如下收费标准(如图所示):合肥市五十中学新校八(2)班家委会组织学生开展“在路上”综合实践课程,去黄山风景区旅游,共支付给旅行社旅游费用27000元,请问该班这次共有多少名学生去黄山风景区旅游?20.在△ABC中,M是AC边上的一点,连接BM.将△ABC沿AC翻折,使点B落在点D处,当DM//AB时,求证:四边形ABMD是菱形.21.某学校为了解学生课外阅读的情况,对学生“平均每天课外阅读的时间”进行了随机抽样调查,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)平均每天课外阅读的时间为“0.5~1小时”部分的扇形图的圆心角为______度;(2)本次一共调查了______名学生;(3)将条形图补充完整;(4)若该校有1680名学生,请估计该校有多少名学生平均每天课外阅读的时间在0.5小时以下.22.2019年3月24日无锡马拉松赛在盛大的樱花雨中鸣枪起跑.无锡马拉松赛的赛事共有三项:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小华、小红和小明参与该项赛事的志愿者服务工作,组委会随机将他们分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为____________;(2)已知小明被分配到A(全程马拉松),请利用树状图或列表法求三人被分配到不同项目组的概率.23.如图,两根竹竿AB和AC斜靠在墙BD上,量的∠ABD=37°,∠ACD=45°,BC=50cm,求竹竿AB和AC的长(结果精确到0.1cm).参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√2≈1.41.24.如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC相切于点D,若BE=6,BD=6√3.(1)求⊙O的半径;(2)求图中阴影部分的面积.25.小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16min回到家中.设小明出发第t min时的速度为v m/min,离家的距离为s m.v与t之间的函数关系如图所示(图中的空心圈表示不包含这一点).(1)小明出发第2min 时离家的距离为_________m;(2)当2<t≤5时,求s与t之间的函数表达式;(3)画出s与t之间的函数图象.26.有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,,,求与的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,的平分线交OA于点E,连结DE并延长交AC于点F,求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作于点H,交BC于点G,当DH=BG=4时,求⊙O的面积.27.如图,对称轴为直线x=1的抛物线经过A(−1,0)、C(0,3)两点,与x轴的另一个交点为B,点D在y轴上,且OB=3OD(1)求该抛物线的表达式;(2)设该抛物线上的一个动点P的横坐标为t①当0<t<3时,求四边形CDBP的面积S与t的函数关系式,并求出S的最大值;②点Q在直线BC上,若以CD为边,点C、D、Q、P为顶点的四边形是平行四边形,请求出所有符合条件的点P的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年江苏省淮安市中考数学模拟试卷一、选择题(本大题共8小题,共24.0分)1.−3的相反数是()A. −3B. 3C. −13D. 132.8x6÷x2的结果是()A. 8x3B. x3C. 18x3 D. 8x43.下面四个几何体中,主视图为三角形的是()A. B. C. D.4.八边形的内角和为()A. 180°B. 360°C. 1080°D. 1440°5.在平面直角坐标系中,点P(−2,a)与点Q(b,3)关于原点对称,则a+b的值为()A. 5B. −5C. 1D. −16.数据12,13,11,8,10,11,14,11,13的众数是()A. 12B. 14C. 11D. 137.如图,A,B,C,D是⊙O上的四个点,AB⏜=BC⏜,若∠AOB=58°,则∠BDC的度数为()A. 58°B. 42°C. 32°D. 29°8.两个连续奇数的平方差一定是()A. 2的倍数,但不一定是4的倍数B. 4的倍数,但不一定是8的倍数C. 8的倍数,但不一定是16的倍数D. 16的倍数,但不一定是32的倍数二、填空题(本大题共8小题,共24.0分)9.分解因式:x2−36=______ .10.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日,某市党员“学习强国”客户端注册人数约1180000,将数据1180000用科学记数法表示为______.11. 有一组数据:1,0,–1,3,2,它们的平均数是__________.12. 方程2x−1=1的解是______ .13. 已知直角三角形斜边长为10cm ,则此直角三角形斜边上的中线长是______cm .14. 一个菱形的两条对角线长分别为12cm 、16cm ,这个菱形的周长=________ cm .15. 二次函数y =x 2+2x 的顶点坐标为______.16. 如图,反比例函数y =k x (k ≠0)第一象限内的图象经过△ABC 的顶点A ,C ,AB =AC ,且BC//x 轴,点A 、点C 的横坐标分别为1,3,若∠BAC =120°,则k 的值为______.三、解答题(本大题共11小题,共102.0分)17. 计算:(1)(−12)−2+√273−(√5−1)0 (2)(1+3x−1)÷x+2x 2−1.18. 解不等式:2−x 3>2(x +1)−7x−22.19. 为了积极响应“3亿人上冰雪”号召,我市某中学组织初二420名学生到北大壶滑雪场开展冬令营活动.学校到某旅游公司租车,该公司现有A ,B 两种车型,若租用3辆A 型车,5辆B 型车,则空余15个座位;如果租用5辆A型车,3辆B型车,则有15个人没座位.求该公司A,B两种车型各有多少个座位.20.如图,点E,F分别在平行四边形ABCD的边BA,DC的延长线上,连接EF,交对角线BD于点O,已知OE=OF.求证:四边形EBFD是平行四边形.21.某校为了解学生对“第二十届中国哈尔滨冰雪大世界”主题景观的了解情况,在全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图的不完整的两幅统计图:(1)本次调查共抽取了______名学生;(2)通过计算补全条形图,并在扇形统计图中计算“不了解”所对应扇形圆心角的度数;(3)若该学校共有750名学生,请你估计该学校选择“比较了解”项目的学生有多少名?22.一个不透明的布袋里装有4个大小,质地都相同的乒乓球,球面上分别标有数字1,−2,3,−4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.(1)共有______种可能的结果.(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.23.如图是矗立在公路边水平地面上的交通警示牌,经测量得到如下数据AM=4米,AB=8米,∠MBC=30°,∠MAD=45°,则警示牌的高CD为多少米?(结果精确到米,参考数据:√2≈1.41,√3≈1.73)24.如图,某公路上有A、B、C三站,一辆汽车在上午8时从离A站5km的P地出发向C站匀速行驶,15min后离A站20km。
(1)设出发xℎ后,汽车离A站y km,写出y与x之间的函数表达式。
(2)当汽车行驶到离A站215km的B站时,接到通知要在中午12时前赶到离B站35km的C站。
汽车若按原速能否按时到达?若能,是在几时几分到达?若不能,车速最少应提高到多少?25.如图,Rt△ACB中,∠C=90°,点D在AC上,∠CBD=∠A,过A、D两点的圆的圆心O在AB上,(1)判断BD所在直线与⊙O的位置关系,并证明你的结论;(2)若AE=4,∠A=30°,求图中由BD,BE,弧DE围成阴影部分面积.26.已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.AC;(1)特例感知如图1,若∠C=60°,D是AB的中点,求证:AP=12(2)变式求异如图2,若∠C=90°,m=6√2,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.27.如图1,抛物线y=ax2+bx+2与x轴相交于点A(−1,0)和B(4,0),与y轴相交于点C.(1)直接写出该抛物线的解析______(结果用一般式表示)(2)如图2,将直线BC绕点B顺时针旋转45°后得到直线BD.与抛物线的另一个交点为D,求BD的长.(3)如图3,点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1−S2的最大值.-------- 答案与解析 --------1.答案:B解析:【分析】本题考查相反数的定义,根据相反数的定义即可解答.【解答】解:−3的相反数是3.故选B.2.答案:D解析:解:8x6÷x2=8x6−2=8x4,故选:D.根据同底数幂的除法法则计算.本题考查的是同底数幂的除法,同底数幂的除法法则:底数不变,指数相减.3.答案:B解析:解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.根据主视图是从正面看得到的图形,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.答案:C解析:【分析】本题考查了多边形内角和,正确记忆理解多边形的内角和定理,以及外角和定理是解决本题的关键.n 边形的内角和是(n−2)⋅180°,已知多边形的边数,代入多边形的内角和公式就可以求出内角和.【解答】解:八边形的内角和为(8−2)×180°=1080°.故选C.5.答案:D解析:解:∵点P(−2,a)与Q(b,3)关于原点对称,∴b=2,a=−3,则a+b的值为:2−3=−1.故选:D.接利用关于原点对称点的性质得出a,b的值进而得出答案.此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.6.答案:C解析:解:因为在数据中11出现次数最多,有3次,所以这组数据的众数为11,故选:C.根据众数的定义即可得.本题主要考查众数,解题的关键是掌握一组数据中出现次数最多的数据叫做众数.7.答案:D解析:【分析本题考查的是圆心角、弧、弦之间的关系、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.连接OC,根据圆心角、弧、弦之间的关系定理得到∠BOC=∠AOB=58°,根据圆周角定理计算,得到答案.【解答】解:连接OC,∵AB⏜=BC⏜,∴∠BOC=∠AOB=58°,∠BOC=29°,由圆周角定理得,∠BDC=12故选D.8.答案:C解析:[分析]设出两个连续奇数,表示出平方差,利用平方差公式化简后即可作出判断.此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.[详解]解:设两个连续奇数分别为2n−1,2n+1(n为整数),根据题意得:(2n+1)2−(2n−1)2=(2n+1+2n−1)(2n+1−2n+1)=8n,则两个连续奇数的平方差一定是8的倍数,但不一定是16的倍数,故选C.9.答案:(x+6)(x−6)解析:【分析】此题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.原式利用平方差公式分解即可.【解答】解:原式=(x+6)(x−6).故答案为(x+6)(x−6).10.答案:1.18×106解析:解:1180000=1.18×106,故答案为:1.18×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.11.答案:1。