新市学区2012年九年级下第一学月考试数学试题及答案

合集下载

2012年下学期数学第一单元测试题

2012年下学期数学第一单元测试题

2012年下学期初三数学第一单元测试题 1. 姓名一、选择题(让你算的少,要你想的多,只选一个可要认准哦!每小题3分,共30分)1.下列方程中,是关于x 的一元二次方程的是( )(A )2110x x -+= (B21x = (C )2(2)x x x x -=+(D )210ax x +-=(0a ≠)2.方程(3)x x x +=的根是 ( )(A )-2 (B )0 (C )无实根 (D )0或-23.用配方法解方程22103xx -+=,正确的解法是( ) (A )218()39x -=,133x =± (B )218()39x -=-,无解 (C )225()39x -=,x =(D )225()39x -=-,无解4.若(21)a -与(21)a +互为倒数,则实数a 为( )(A )±1 (B )±12(C )±2(D )5.解方程29180xx -+=,较简便的方法是( )(A )直接开平方法 (B )配方法 (C )公式法 (D )因式分解法 6.若一元二次方程20axbx c ++=中满足0a b c ++=,那么方程必有一个根是(A )0 (B )1 (C )-1 (D )±17.要使分式2544x x x -+-的值为0,则x 等于( )(A )1 (B )4或1 (C )4 (D )-4或-18.关于x 的方程0)2(22=++-+b ax x a a 是一元二次方程的条件是( )(A )2a≠-且1≠a (B )2a ≠-(C )2a ≠-或1≠a (D )1≠a9.关于x 的一元二次方程230x ax a --=的一个根为6,另一根为( )(A )2 (B )-2 (C )-6或2 (D )6或-2 10.若a 是一元二次方程230xx m -+=的一个根,-a 是方程230x x m +-= 的一个根,则a 的值为( ) (A )1或2 (B )0或-3 (C )-1或-2 (D )0或3 二、填空题(简洁的结果,需要的是细心!每小题3分,共24分)11.把方程(3)(2)4x x +-=化为一般形式为 . 12.若一个等腰三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为 . 13.在参加足球世界杯预选赛的球队中,每两个队都进行一次比赛,共要比赛66场,若参赛队有x 支队,则可得方程 .14.要使2469nn a-+与3na 是同类项,则n 的值是_____________.15.一元二次方程20axbx c ++=(0a ≠)有实数根,若0b =,则两根1x 与2x 之间的关系是________________.16.关于x 的方程()24110x k x -++=有两个相等的实根,则k = .17.若两个连续偶数的积是288,则这两个数的和等于_________.18.我市某企业为节约用水,自建污水净化站.3月份净化污水3000t ,5月份增加到3630t ,则这两个月净化污水的量平均每月增长的百分率为______________.三、解答题(耐心计算,仔细观察,表露你萌动的智慧!每小题10分,共40分) 19.用适当的方法解下列方程。

2012年初中毕业生学业及升学考试数学试题及答案-推荐下载

2012年初中毕业生学业及升学考试数学试题及答案-推荐下载
准考证号:
2012 年 初 中 毕 业 生 学 业 考 试
数学试卷
【说明】全卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷 1-2 页,第Ⅱ卷 3-10 页。考试时间 120 分 钟,
满分 150 分。考试结束后,第Ⅱ卷和答题卡按规定装袋上交。
第Ⅰ卷(选择题 共 40 分)
注意事项: 1.答第Ⅰ卷前,考生务必将自己的学校、姓名、准考证号、考试科目填涂在答题卡
C.3
C.x4÷x=x3
C.6,4
C. 3 4
D.-3
D.(x5)2=x7
D.10,6
D. 4 3
此等腰梯形的周长是
A.19
B.20
6.下列几何体中,正视图是等腰三角形的是
A
B
C.21
7.若⊙ O1 、⊙ O2 的半径分别为 4 和 6,圆心距 O1O2 =8,则⊙ O1 与⊙ O2 的位置关系是
AB 边于点 E、D,则△DEG 和△CBG 的面积比是
A. 1∶4
C.1∶3
3x y x 3y
B.1∶2
D.2∶9

1 3
数学试卷第 2 页(共 10 页)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

九年级数学下册第一次月考试题(含答案)

九年级数学下册第一次月考试题(含答案)

九年级数学下册第一次月考试题(含答案)九年级数学下册第一次月考试题(含答案)以下是查字典数学网为您推荐的九年级数学下册第一次月考试题(含答案),希望本篇文章对您学习有所帮助。

九年级数学下册第一次月考试题(含答案)一、选择题(本大题共 8小题,每小题3分,共24 分)1.绝对值是6的有理数是 ( )A.6B.6C.-6D.2.计算的结果是 ( )A. B. C. D.3.半径为6的圆的内接正六边形的边长是 ( )A.2B.4C.6D.84.如图是一个几何体的三视图,已知主视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为 ( )A. B. C. D.5.某校共有学生600 名,学生上学的方式有乘车、骑车、步行三种. 如图是该校学生乘车、骑车、步行上学人数的扇形统计图.,乘车的人数是 ( )A.180B.270C.150D.2006.函数的自变量X的取值范围是 ( )A. B. C. D.7. 如右图, 是一个下底小而上口大的圆台形容器,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为17、(本小题5分) 计算:18. (本小题5分)先化简,再求值,其中x= 。

19. (本小题7分) 已知:如图,四边形是平行四边形,于,于 .求证: .20.(本小题7分). 为了解某住宅区的家庭用水量情况,从该住宅区中随机抽样调查了50户家庭去年每个月的用水量,统计得到的数据绘制了下面的两幅统计图.图1是去年这50户家庭月总用水量的折线统计图,图2是去年这50户家庭月总用水量的不完整的频数分布直方图.(1)根据图1提供的信息,补全图2中的频数分布直方图;(2)在抽查的50户家庭去年月总用水量这12个数据中,极差是米3,众数是米3,中位数是米3;(3)请你根据上述提供的统计数据,估计该住宅区今年每户家庭平均每月的用水量是多少米3?21. (本小题7分) 一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为,求n的值.22. (本小题7分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2:(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.23.(本小题7分) 如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30。

2012年九年级下学期第一月月考数学试题

2012年九年级下学期第一月月考数学试题

2011学年第二学期第一次月考(2月)九年级数学试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的 .注意可以用多种不同的方法来选取正确答案 .1.已知ab cd =,下列有关,,,a b c d 的比例式,不成立...的是( ) A. ac bd =B. a c d b =C. b c d a= D. d b a c =2.函数2(1)y x =+2的图象,可以由抛物线2y x = 2 向( )平移1个单位得到. A .上 B .下 C .左 D .右 3.若函数ky x=的图象过点(3,-7),那么它不.经过..的点是( ) A .(-3,7) B .(-7,3) C .(7,-3) D .(3,7) 4.如果△ABC 中,sinA=cosB=2,则下列对△ABC 形状描述准确的是( ) A. △ABC 是直角三角形 B. △ABC 是等腰三角形C. △ABC 是等腰直角三角形D. △ABC 是锐角三角形5.如图所示,△ABC 中DE ∥BC ,若AD ∶DB =1∶3,则下列结论中正确的是 ( ) A .13DE BC = B .的周长的周长ABC ADE ∆∆=13C .的面积的面积ABC ADE ∆∆19=D .的周长的周长ABC ADE ∆∆14=6. 一艘“重庆号”轮船在长江航线上往返于A 和B 两地,已知轮船在静水中的速度为1v km /h ,水流速度为2v km /h (1v >2v ). “重庆号”轮船先从A 顺水匀速航行到B ,在B 停留一段时间后,又从B 逆水匀速航行到A .设轮船从A 出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是7.如图,在Rt △ABC 中,∠ACB=90°,,将Rt △ABC 绕A 点按逆时针方向旋转30°后得到R t △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( ) A .6π B .3π C .1+6πD . 1 8.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如下表:从上表可知,下列说法中错误的是( )A .抛物线与x 轴的一个交点为(3, 0)B .函数2y ax bx c =++的最大值为6 C .抛物线的对称轴是直线12x =D .在对称轴左侧,y 随x 增大而增大 9.设c bx x x f ++=2)(对任意实数t ,都有)2()2(t f t f -=+,那么( ) A 、)4()1()2(f f f << B 、)4()2()1(f f f << C 、)1()4()2(f f f << D 、)1()2()4(f f f << 10.如图,正方形ABCD 中,连接BD .点E 在边BC 上,且CE=2BE .连接AE 交BD 于F ;连接DE ,取BD 的中点O ;取DE 的中点G ,连接OG .下列结论: ①BF=OF ;②OG ⊥CD ;③AB=5OG ;④sin ∠AFD=552;⑤31=∆∆ABF ODG S S 其中正确结论的个数是 (B)A .5B .4C .3D .2二、 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.二次函数247y x x =-+的顶点坐标是 .12.若反比例函数2m y x+=的图象在第一、三象限,则m 的取值范围是 . 13.在△ABC 中,若三边BC , CA, AB 满足 BC ︰CA ︰AB=5︰12︰13,则cosB= . 14.如图,AD 、AC 分别是⊙O 的直径和弦,且∠CAD =30°,OB ⊥AD ,交AC 于点 B ,若OB=2,则BC 的长等于 .15.在平面直角坐标系内,横、纵坐标都是整数的点叫做整点.在某一平面直角坐标系内,以坐标原点为圆心,以3个单位长度为半径画圆,从此圆圆内的整点中任意选取一个点,其横、纵坐标之和为0的概率是_____________. 16.如图1,在平面直角坐标系中,将n 个边长为1的正方形并排组成矩形OABC ,相邻两边OA 和OC 分别落在x 轴和y 轴的正半轴上. 现将矩形OABC 绕点O 顺时针旋转,使B10题图得点B落到x轴的正半轴上(如图2),设抛物线y=ax2+bx+c(a<0),如果抛物线同时经过点O、B、C:①当n=3时a=;②a关于n的关系式是..三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤 .如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以 .17.(本题6分)︒+︒⋅︒.(2)已知:tan60°·sinα,求锐角α.(1)计算:cos30tan45sin6018.(本题8分)作图与计算:在所给图中仅用直尺和圆规按要求作图(保留作图痕迹,不写作法)(1)作Rt△ABC的外接圆,圆心为O;(2)以AB为对称轴,作点C的对称点为C/,CC/交AB于E;(3)当BC=1,AC=2时,计算BE的长.19.(本题8分)小张与同学欲测量公园内一棵树DE 的高度.他们在这棵树正前方一座楼亭前的台阶上A 点处测得树顶端D 的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°.已知A 点的高度AB 为2米,台阶AC的坡度为1:(即AB ︰BC=),且B 、C 、E 三点在同一条直线上.请根据以上条件求出树DE 的高度.20.(本题10分)A )0,1(和x 轴上点A (1)当︒=∠90APB (221、(本题10分)阅读下列材料解答下列问题观察下列方程:○123x x +=; ○265x x +=; ○3127x x+=;…;(1)按此规律写出关于x 的第n 个方程为 ;此方程的解为(2)根据上述结论,求出()()12221n n x n n x ++=+≥-的解,并验根。

2012年九年级中考一模数学试卷(含答案)

2012年九年级中考一模数学试卷(含答案)

俯视图
(第 6 题)
6.已知二次函数 y=ax2+bx+c 的图象如图所示,则下列结论:①c=2; ③2a+b=0; ④a-b+c<0.其中正确的为(▲)
②b2-4ac>0;
A.①②③
B.①②④
C.①②
D.③④
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直 接填写在答题卡相应位置 上) ....... 7.函数 y= 1-x 中,自变量 x 的取值范围是 ▲ .
2.下列运算正确的是(▲) A.(a3)2=a9 B.a2+a3=a5 C.a6÷a2=a3 D.a3·a4=a7
3.人体最小的细胞是血小板.5 000 000 个血小板紧密排成一直线长约 1m,则 1 个血小板 的直径用科学计数法表示为(▲) A.5×106 m B.5×107 m C.2×10
-7
22.(7 分) 班主任老师让同学们为班会活动设计一个抽奖方案,拟使中奖概率为 60%. (1)小明的设计方案:在一个不透明的盒子中,放入 10 个球,这些球除颜色外都相同,搅 匀后从中任意摸出 1 个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师 要求,则盒子中黄球应有 ▲ 个,白球应有 ▲ 个; (2)小兵的设计方案:在一个不透明的盒子中,放入 4 个黄球和 1 个白球,这些球除颜色外 都相同, 搅匀后从中任意摸出 2 个球, 摸到的 2 个球都是黄球则表示中奖, 否则不中奖. 该 设计方案是否符合老师的要求?试说明理由.
D级 15% C级 35%
A级 45%
B 级 5% (第 21 题)
(1)此次竞赛中(2)班成绩在 C 级以上(包括 C 级)的人数为 ▲ ; (2)请你将表格补充完整: (1)班 (2)班 88 平均数(分) 中位数(分) 众数 (分) 90 90 100

2012年下期九年级第一次月考数学试卷

2012年下期九年级第一次月考数学试卷

2012年下期九年级第一次月考试卷一.填空题(每小题3分,共24分)1.把一元二次方程12)3)(1(2+=++x x x 化成一般形式后,它的二次项系数是 ;一次项系数是 ;常数项是 。

2.用“如果……,那么……”的形式把命题“等腰三角形的两底角相等”的逆命题写出来_________________________________________________.3.关于 x 的一元二次方程230x ax a --=的一个根是2-,则a 的值是______ _.4. 方程x x x =-)1(的根是 。

5. 已知21,x x 是方程04322=-+x x 的两个根,那么:()()=++1121x x ; 6. 关于x 的代数式x 2+(m +2)x +(4m -7)中,当m =______时,代数式为完全平方式7.关于x 的方程210mx mx -+=有两个相等的实数根,则m 的值为的_______.8. .若平行四边形的两邻边的长分别为16和20,两长边间的距离为8,则两短边的距离为__________..二、选择题(每小题3分,共24分)9.下列方程中,是一元二次方程的是( )A .32-=y xB .2(1)3x +=C .11322+=-+x x xD .29x =10.对于方程220x bx +-=,下列说法正确的是A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法确定11、下列命题是真命题的是( )A.两个等腰三角形全等B.等腰三角形底边中点到两腰距离相等C.同位角相等D.两边和一角对应相等的两个三角形全等12.下列命题的逆命题是真命题的是( )A.两直线平行同位角相等B.对顶角相等C.若a b =,则22a b =D.若(1)1a x a +>+,则1x >13. △ABC 的三边长,,a b c 满足关系式()()()0a b b c c a ---=,则这个三角形一定是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.无法确定14. 方程5)3)(1(=-+x x 的解是( );A 、2,421=-=x xB 、3,121-==x xC 、3,121=-=x xD 、2,421-==x x15. 已知x 满足方程2310x x -+=,则1x x+的值为( ) (A )3 (B )-3 (C )32(D )以上都不对 16.某种型号的手机由于连续两次降价,每只售价由1185元降到了580元.设每次降价的百分率为 x ,则所列方程正确的是A.2580(1)1185x +=B.21185(1)580x +=C.21185(1)580x -=D.2580(1)1185x -=三、计算题(每题4分,共16分)17. 解方程: (1)(x -2)2=3 (2)x(7x +5)=4(7x +5)(3)0)1(3)1(2=-+-x x x ; (4)(3)(5)8x x --=四、解答题18.(8分)已知:如图,在矩形ABCD 中,AF =BE .求证:DE =CF ;19.(8分)已知等腰三角形底边长为8,腰长是方程02092=+-x x 的一个根,求这个三角形的面积.20.(8分)关于x 的一元二次方程x 2-3x -k =0有两个不相等的实数根.(1)求k 的取值范围;(2)请选择k 的一个负整数值,并求出方程的根.21、(8分)某商店销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元。

2012年九年级第一次质量检测数学试题

2012年九年级第一次质量检测数学试题

2012年九年级第一次质量检测数学试题(时间:120分钟 满分:120分)一、选择题(本大题共有10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.2-等于( ▲ )A .2B .2-C .12 D .12- 2.2010年我国总人口约为l 370 000 000人,该人口数用科学记数法表示为( ▲ ) A .110.13710⨯B .91.3710⨯C .813.710⨯D .713710⨯3.下列计算正确的是( ▲ ) A.3a ﹣a=3 B.2a•a 3=a 6C.(3a )2=2a 6D.2a÷a=24.如图,CD∥AB,∠1=120°,∠2=80°,则∠E 的度数是(▲ )A.40°B.60°C.80°D.120°第4题5.甲种蔬菜保鲜适宜的温度是2℃~6℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ▲ )A.2℃~3℃B.3℃~6℃C.6℃~8℃D.2℃~8℃6.如图所示,将矩形纸片先沿虚线AB 按箭头方向向右对折,接着对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( ▲ )A. B. C. D.第6题7.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是(▲ )A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h第7题8.如图,空心圆柱的主视图是(▲)第8题9.四边形ABCD 的4个内角之比为A ∠∶B ∠∶C ∠∶D ∠=1∶5∶5∶1,则该四边形是( ▲ )A.直角梯形 B.等腰梯形 C.平行四边形 D.矩形10.如图,在平面直角坐标系中,点P 在第一象限,⊙p 与x 轴相切于Q 点,与y 轴交于Ots 甲乙1 2 3 4 20 10 A B C DM (0,2),N(0,8) 两点,则点P 的坐标是( ▲) A .(5,3)B .(3,5)C .(5,4)D .(4,5)第10题二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 11. 因式分解2a 2-8=▲12.函数y =x 的取值范围是▲ 13.反比例函数 xm y 1-=的图象在第一、三象限,则m 的取值范围是▲ 14.若方程290x kx ++=有两个相等的实数根,则k= ▲15.如图,矩形OABC 的顶点O 为坐标原点,点A 在x 轴上,点B 的坐标为(2,1).如果将矩形0ABC 绕点O 旋转180°旋转后的图形为矩形OA 1B 1C 1,那么点B 1的坐标为▲.第15题第16题16.如图,小明在A 时测得某树的影长为2m ,在B 时又测得该树的影长为8m ,若两次日照的光线互相垂直,则树的高度为▲m17.如图,已知⊙O 的半径为2,弦BC的长为A 为弦BC 所对优弧上任意一点(B ,C 两点除外).则∠BAC =▲度.第18题 90B ∠=,12mm AB =,24mm BC =,动点P 从点A 开始沿边ABB 重合),动点Q 从点B 开始沿边BC 向C 以 C 重合).如果P 、Q 分别从A 、B 同时出发,那么 经过▲秒,四边形APQC 的面积最小.三、解答题(本大题共有10小题,共76分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题8分)计算:(1)12)2()21(02+---π;(2)221(2).1a a a a -+--- 20.(本题6分)如图,□ABCD 的对角线交于点O ,E 、F 分别为OB 、OD 的中点,线段AE 与CF 的大小和位置有什么关系?请说明理由. 21.(本题6分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率. 22.(本题6分) 如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).23.(本题6分)已知抛物线y =-x 2+2x +2. (1)该抛物线的对称轴是,顶点坐标; (2)选取适当的数据填入下表,并在图(3)若该抛物线上两点A (x 1,y 1),B (x 2,y 2)的横坐标满足x 1>x 2>1,试比较y 1与y 2的大小. 第23题24.(本题8分)(注意:乙组得6分改为1人,图中有误)一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格, 成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下: (1)请补充完成下面的成绩统计分析表:(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组。

九年级数学下学期第一次月考试卷(含解析)

九年级数学下学期第一次月考试卷(含解析)

2015-2016学年云南省曲靖市宣威市热水一中九年级(下)第一次月考数学试卷一、单项选择题(每小题3分,共24分)1.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列各式正确的是()A.2a2﹣a2=2 B. += C.()2=25 D. =13.在实数:﹣0.3,,2.010010001…(0的个数依次递增),4.,2π,中,无理数有()A.1 B.2个C.3个D.4个4.下列图形中,由AB∥CD,能得到∠1=∠2的是()A. B. C. D.5.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转80°,再左转100° B.先左转80°,再右转80°C.先左转80°,再左转100° D.先右转80°,再右转80°6.下列命题是假命题的是()A.同位角相等B.点P(﹣2,x2+1)一定在第二象限C.﹣的相反数是D.数轴上的点与全体实数一一对应7.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60° B.50° C.40° D.30°8.2015年“五.四青年节”我校举行八年级文艺表演,表演的舞台是面积约为73平方米的一个正方形.试估计该舞台的边长的大小在()米.A.与之间B.6与7之间C.7与8之间D.8与9之间二、填空题(每小题3分,共24分)9.比较:5 (填“>”或“<”或“=”)10.把命题“对顶角相等”改写成“如果…那么…”的形式:.11.81的算术平方根是.12.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.13.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(﹣4,0),则“马”位于.14.用“※”定义新运算:对于任意实数a、b,都有a※b=2a2+b.例如3※4=2×32+4=22,那么※2=.15.如图,折叠宽度相等的长方形纸条,若∠1=65°,则∠2= °.16.观察思考下列计算过程:∵112=121,∴=11;∵1112=12321,∴=111.猜想:≈(精确到1万).三、解答题17.计算:.18.求下列未知数x的值(1)2x2=6(2)(x﹣1)3﹣8=0.19.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(),∴∠2=∠CGD(等量代换).∴CE∥BF().∴∠=∠C().又∵∠B=∠C(已知),∴∠=∠B(等量代换).∴AB∥CD().20.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC 变化位置,并写出A′、B′、C′的坐标.(3)求出S△ABC.21.已知:如图AB∥CD,BE∥CF.试说明:∠1=∠4.22.实数a、b互为相反数,c、d互为倒数,x的绝对值为,求代数式x2+(a+b+cd)x++的值.23.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.24.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)试证明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.2015-2016学年云南省曲靖市宣威市热水一中九年级(下)第一次月考数学试卷参考答案与试题解析一、单项选择题(每小题3分,共24分)1.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限点的坐标的特点解答.【解答】解:点P(﹣2,1)在第二象限.故选B.2.下列各式正确的是()A.2a2﹣a2=2 B. += C.()2=25 D. =1【考点】实数的运算;合并同类项.【分析】A、原式合并同类项得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用平方根定义计算得到结果,即可做出判断;D、原式利用二次根式性质计算得到结果,即可做出判断.【解答】解:A、原式=a2,错误;B、原式不能合并,错误;C、原式=5,错误;D、原式=1,正确.故选D.3.在实数:﹣0.3,,2.010010001…(0的个数依次递增),4.,2π,中,无理数有()A.1 B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:在实数:﹣0.3,,2.010010001…(0的个数依次递增),4.,2π,中,无理数有2.010010001…(0的个数依次递增),2π,故选B4.下列图形中,由AB∥CD,能得到∠1=∠2的是()A. B. C. D.【考点】平行线的判定与性质.【分析】根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.5.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转80°,再左转100° B.先左转80°,再右转80°C.先左转80°,再左转100° D.先右转80°,再右转80°【考点】平行线的性质.【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等画出图形,根据图形直接解答即可.【解答】解:如图所示:A、,故本选项错误;B、,故本选项正确;C、,故本选项错误;D、,故本选项错误.故选B.6.下列命题是假命题的是()A.同位角相等B.点P(﹣2,x2+1)一定在第二象限C.﹣的相反数是D.数轴上的点与全体实数一一对应【考点】命题与定理.【分析】利用同位角的定义,坐标内点的特点,相反数的定义及实数的知识分别判断后即可确定正确的选项.【解答】解:A、两直线平行,同位角才相等,故错误,是假命题;B、点P(﹣2,x2+1)一定在第二象限,正确,是真命题;C、﹣的相反数是,正确,是真命题;D、数轴上的点与全体实数一一对应,正确,是真命题;故选A.7.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60° B.50° C.40° D.30°【考点】平行线的性质.【分析】根据三角形外角性质可得∠3=30°+∠1,由于平行线的性质即可得到∠2=∠3=60°,即可解答.【解答】解:如图,∵∠3=∠1+30°,∵AB∥CD,∴∠2=∠3=60°,∴∠1=∠3﹣30°=60°﹣30°=30°.故选D8.2015年“五.四青年节”我校举行八年级文艺表演,表演的舞台是面积约为73平方米的一个正方形.试估计该舞台的边长的大小在()米.A.与之间B.6与7之间C.7与8之间D.8与9之间【考点】估算无理数的大小.【分析】正方形的面积=边长×边长,面积已知,可确定边长.【解答】解:设正方形的边长为a,∴a2=73,∵a>0,∴a=,∵64<73<81,∴,∴边长大小在8和9之间,故选D.二、填空题(每小题3分,共24分)9.比较:5 >(填“>”或“<”或“=”)【考点】实数大小比较.【分析】先把5化为,再比较被开方数的大小即可.【解答】解:∵5=,25>20,∴>,即5>.故答案为:>.10.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.11.81的算术平方根是9 .【考点】算术平方根.【分析】直接利用算术平方根的定义得出答案.【解答】解:81的算术平方根是: =9.故答案为:9.12.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为25 .【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案.【解答】解:∵点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),∴,解得:,则a b的值为:(﹣5)2=25.故答案为:25.13.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(﹣4,0),则“马”位于(3,3).【考点】坐标确定位置.【分析】根据已知两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:结合图形以“将”(0,0)作为基准点,则“马”位于(0+3,0+3),即(3,3).故答案为:(3,3).14.用“※”定义新运算:对于任意实数a、b,都有a※b=2a2+b.例如3※4=2×32+4=22,那么※2=8 .【考点】实数的运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:※2=2×3+2=6+2=8.故答案为:815.如图,折叠宽度相等的长方形纸条,若∠1=65°,则∠2= 50 °.【考点】平行线的性质;翻折变换(折叠问题).【分析】首先根据折叠可得∠3=∠4,再根据平行线的性质可得∠4=∠3=∠1=65°,再由平角定义可得∠2的度数.【解答】解:根据折叠可得∠3=∠4,∵AB∥CD,∠1=65°,∴∠4=65°,∴∠3=65°,∴∠2=180°﹣65°×2=50°.故答案为:50;16.观察思考下列计算过程:∵112=121,∴=11;∵1112=12321,∴=111.猜想:≈1110000 (精确到1万).【考点】算术平方根.【分析】首先可观察已知等式,发现规律结果中,1的个数与其中间的数字相同,由此即可写出最后结果.【解答】解:∵112=121,∴=11;∵1112=12321,∴=111;由此猜想≈=1111111≈1110000.故答案为:1110000.三、解答题17.计算:.【考点】实数的运算.【分析】此题涉及有理数的乘方、绝对值、算术平方根、立方根的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【解答】解:=2﹣3﹣1﹣(﹣2)=﹣1﹣1+2=018.求下列未知数x的值(1)2x2=6(2)(x﹣1)3﹣8=0.【考点】立方根;平方根.【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)方程整理后,利用立方根定义开立方即可求出解.【解答】解:(1)方程整理得:x2=3,开方得:x=±;(2)方程整理得:(x﹣1)3=8,开立方得:x﹣1=2,解得:x=3.19.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换).∴CE∥BF(同位角相等,两直线平行).∴∠BFD =∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠BFD =∠B(等量代换).∴AB∥CD(内错角相等,两直线平行).【考点】平行线的判定与性质.【分析】先由对顶的定义得到∠1=∠CGD,则∠2=∠CGD,根据平行线的判定得到CE∥BF,则∠C=∠BFD,易得∠B=∠BFD,然后根据平行线的判定即可得到AB∥CD.【解答】解:答案为:对顶角相等;同位角相等,两直线平行;BFD两直线平行,同位角相等;BFD;内错角相等,两直线平行.20.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向右平移2个单位得△A′B′C′,在图中画出△ABC 变化位置,并写出A′、B′、C′的坐标.(3)求出S△ABC.【考点】作图-平移变换.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;(3)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)A(﹣1,﹣1),B(4,2),C(1,3);(2)△A′B′C′如图所示,A′(1,1),B′(6,4),C′(3,5);(3)S△ABC=5×4﹣×5×3﹣×1×3﹣×2×4,=20﹣7.5﹣1.5﹣4,=20﹣13,=7.21.已知:如图AB∥CD,BE∥CF.试说明:∠1=∠4.【考点】平行线的性质.【分析】根据两直线平行,内错角相等解答即可.【解答】解:∵AB∥CD,∴∠ABC=∠BCD,∵BE∥CF,∴∠2=∠3,∴∠ABC﹣∠2=∠BCD﹣∠3,∴∠1=∠4.22.实数a、b互为相反数,c、d互为倒数,x的绝对值为,求代数式x2+(a+b+cd)x++的值.【考点】实数的运算.【分析】先根据a、b互为相反数,c、d互为倒数,x的绝对值为得出a+b=0,cd=1,x=±,再代入代数式进行计算即可.【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值为,∴a+b=0,cd=1,x=±,当x=时,原式=6+(0+1)×+0+1=7+;当x=﹣时,原式=6+(0+1)×(﹣)+0+1=7﹣.23.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.【考点】平行线的性质.【分析】此题要注意由EF∥AD,可得∠2=∠3,由等量代换可得∠1=∠3,可得DG∥BA,根据平行线的性质可得∠BAC+∠AGD=180°,即可求解.【解答】解:∵EF∥AD(已知)∴∠2=∠3(两直线平行,同位角相等);∵∠1=∠2(已知),∴∠1=∠3(等量代换);∴DG∥AB(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°,∴∠AGD=110°.24.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)试证明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.【考点】平行线的性质.【分析】(1)作OM∥AB,根据平行线的性质得∠1=∠BEO,由于AB∥CD,根据平行线的传递性得OM∥CD,根据平行线的性质得∠2=∠DFO,所以∠1+∠2=∠BEO+∠DFO;(2)作OM∥AB,PN∥CD,由AB∥CD得到OM∥PN∥AB∥CD,根据平行线的性质得∠1=∠BEO,∠2=∠3,∠4=∠PFC,所以∠1+∠2+∠PFC=∠BEO+∠3+∠4,即∠O+∠PFC=∠BEO+∠P.【解答】(1)证明:作OM∥AB,如图1,∴∠1=∠BEO,∵AB∥CD,∴OM∥CD,∴∠2=∠DFO,∴∠1+∠2=∠BEO+∠DFO,即:∠O=∠BEO+∠DFO.(2)解:∠O+∠PFC=∠BEO+∠P.理由如下:作OM∥AB,PN∥CD,如图2,∵AB∥CD,∴OM∥PN∥AB∥CD,∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,∴∠O+∠PFC=∠BEO+∠P.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新市学区2012年九年级下第一学月考试数 学 试 题(命题:杨家九义校 胡彬)全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.全卷满分120分,考试时间共120分钟.第Ⅰ卷(选择题 共30分)一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. –3的绝对值是( ) A. 3B. –3C. ±3D. 92. 下列计算正确的是( ) A. a +2a 2=3a 3B. a 2·a 3=a 6C. 32()a =a 9D. a 3÷a 4=1a -(a ≠0)3. 吴某打算用同一大小的正多边形地板砖铺设家中的地面,则该地板砖的形状不能是( ) A. 正三角形B. 正方形C. 正六边形D. 正八边形4. 若一次函数y =kx +b (k ≠0)的函数值y 随x 的增大而增大,则( ) A. k <0B. k >0C. b <0D. b >05.的结果是( ) A. 2xB. ±2xD. ±6. 在数轴上表示不等式组11,21x x ⎧≥-⎪⎨⎪->-⎩的解集,正确的是( )7. 如图1,在矩形ABCD 中,若AC =2AB ,则∠AOB 的大小是( ) A. 30° B. 45° C. 60°D.90°8. 按图2中第一、二两行图形的平移、轴对称及旋转等变换规律,填入图2图 1第三行“?”处的图形应是( )9. 用a 、b 、c 、d 四把钥匙去开X 、Y 两把锁,其中仅有a 钥匙能够打开X 锁,仅有b 钥匙能打开Y 锁.在求“任意取出一把钥匙能够一次打开其中一把锁”的概率时,以下分析正确的是( )A. 分析1、分析2、分析3B. 分析1、分析2C. 分析1D. 分析210. 如图3,已知Rt △ABC 的直角边AC =24,斜边AB =25,一个以点P 为圆心、半径为1的圆在△ABC 内部沿顺时针方向滚动,且运动过程中⊙P 一直保持与△ABC 的边相切,当点P 第一次回到它的初始位置时所经过路径的长度是( )A. 563 B. 25 C. 1123D. 56图 3资阳市2009年高中阶段学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 甲、乙两人进行跳远训练时,在相同条件下各跳10次的平均成绩相同,若甲的方差为0.3,乙的方差为0.4,则甲、乙两人跳远成绩较为稳定的是_________(填“甲”或“乙”).12. 方程组25,4x y x y -=⎧⎨+=⎩的解是_____________.13. 若两个互补的角的度数之比为1∶2,则这两个角中较小..角的度数是_____________. 14. 如图4,已知直线AD 、BC 交于点E ,且AE =BE ,欲证明△AEC ≌△BED ,需增加的条件可以是__________________(只填一个即可).15. 若点A (–2,a )、B (–1,b )、C (1,c )都在反比例函数y =kx(k <0)的图象上,则用“<”连接a 、b 、c 的大小关系为___________________.16. 若n 为整数,且n ≤x <n +1,则称n 为x 的整数部分.通过计算301198019801980+++个和301111200920092009+++个的值,可以确定x =11111119801981198220082009+++++ 的整数部分是________________________.三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.图417.(本小题满分7分)解方程:213xx--=.18.(本小题满分7分)如图5,已知□ABCD的对角线AC、BD相交于点O,AC =12,BD=18,且△AOB的周长l=23,求AB的长.19.(本小题满分8分)已知Z市某种生活必需品的年需求量y1(万件)、供应量y2(万件)与价格x(元/件)在一定范围内分别近似图5满足下列函数关系式:y1= –4x+190,y2=5x–170.当y1=y2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y1<y2时,称该商品的供求关系为供过于求;当y1>y2时,称该商品的供求关系为供不应求.(1) (4分) 求该商品的稳定价格和稳定需求量;(2) (4分) 当价格为45(元/件)时,该商品的供求关系如何?为什么?20.(小题满分8分)根据W市统计局公布的数据,可以得到下列统计图表.请利用其中提供的信息回答下列问题:(1) (3分) 从2006年到2008年,W市的GDP哪一年比上一年的增长量最大?(2) (3分) 2008年W 市GDP 分布在第三产业 的约是多少亿元?(精确到0.1亿元)(3) (2分) 2008年W 市的人口总数约为多少万人?(精确到0.1万人)21.(本小题满分8分)某市在举行“5.12汶川大地震”周年纪念活动时,根据地形搭建了一个台面为梯形(如图6所示)的舞台,且台面铺设每平方米售价为a 元的木板.已知AB =12米,AD =16米,∠B =60°,∠C =45°,计算购买铺设台面的木板所用资金是多少元.(不计铺设损耗,结果不取近似值)图622.(本小题满分8分)已知关于x的一元二次方程x2+kx–3=0,(1) (4分) 求证:不论k为何实数,方程总有两个不相等的实数根;(2) (4分) 当k=2时,用配方法解此一元二次方程.23.(本小题满分8分)如图7,已知四边形ABCD、AEFG均为正方形,∠BAG=α(0°<α<180°).(1) (6分) 求证:BE=DG,且BE⊥DG;图7(2) (2分) 设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB所围成封闭图形的面积为S.当α变化时,指出S的最大值及相应的α值.(直接写出结果,不必说明理由)24.(本小题满分9分)如图8-1,已知O 是锐角∠XAY 的边AX 上的动点,以点O 为圆心、R 为半径的圆与射线AY 切于点B ,交射线OX 于点C .连结BC ,作CD ⊥BC ,交AY 于点D .(1) (3分) 求证:△ABC ∽△ACD ;(2) (6分) 若P 是AY 上一点,AP =4,且sin A =35,① 如图8-2,当点D 与点P 重合时,求R 的值; ② 当点D 与点P 不重合时,试求PD 的长(用R 表示).图8-2图8-125.(本小题满分9分)如图9,已知抛物线y=12x2–2x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点B和P的直线l交y轴于点C,连结O′C,将△ACO′沿O′C翻折后,点A落在点D的位置.(1) (3分) 求直线l的函数解析式;(2) (3分) 求点D的坐标;(3) (3分) 抛物线上是否存在点Q,使得S△DQC= S△DPB? 若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.图9新市学区2012年九年级下第一学月考试数学参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ADDBC ;6-10. DCBAC.二、填空题(每小题3分,共6个小题,满分18分):11.甲;12.3,1;xy=⎧⎨=⎩13.60°;14.∠A=∠B或∠C=∠D或CE=DE;15.c<a<b;16.66.三、解答题(共9个小题,满分72分):17.原方程可变形为:3(x–2)–x=0, ························································································· 3分整理,得2x=6, ··················································································································· 5分解得x=3.······························································································································ 6分经检验,x=3是原方程的解. ····························································································· 7分18.∵□ABCD的对角线AC、BD相交于点O,AC =12,BD=18,································· 1分∴AO=12AC=6,·················································································································· 3分BO=12BD=9.························································································································ 5分又∵△AOB的周长l=23,∴AB=l–(AO+BO)=23–(6+9)=8. ······································ 7分19.(1) 由y1=y2,得:–4x+190=5x–170, ············································································· 2分解得x=40. ··························································································································· 3分此时的需求量为y1= –4×40+190=30.··············································································· 4分因此,该商品的稳定价格为40元/件,稳定需求量为30万件.(2) 当x=45时,y1= – 4×45+190=10,············································································· 5分y2= 5×45–170=55, ················································································································ 6分∴ y 1<y 2. ······························································································································· 7分∴ 当价格为45(元/件)时,该商品供过于求.································································· 8分20.(1) 观察条形统计图可知,W 市的GDP2007年比上一年的增长量最大. ················ 3分(2) 2008年W 市GDP 分布在第三产业的约是:467.6×26%≈121.6(亿元). ···································································································· 6分(3) 2008年W 市人口总数约为:467.6×104÷12000≈389.7 (万人). ······························ 8分21.作AE ⊥BC 于点E ,DF ⊥BC 于点F ,易知ADFE 为矩形. ····································· 1分在Rt △ABE 中,AB =12米,∠B =60°,∴ BE =12×cos60°=6(米), ·························· 2分AE =12×sin60°米) . ································································································ 3分在矩形ADFE 中,AD =16米,∴ EF =AD =16米,DF =AE . ·············································································· 4分在Rt △CDF 中,∠C =45°,∴ CF =DF (米) .················································· 5分∴ BC =BE +EF +CF 米), ··············································································· 6分∴ S 梯形ABCD =12(AD +BC )·AE =12米2), ·········· 7分∴购买木板所用的资金为 a 元. ·································································· 8分22. (1) 方程的判别式为 Δ=k 2 –4×1×(–3)= k 2 +12, ································································ 2分不论k 为何实数,k 2≥0,k 2 +12>0,即Δ>0, ································································· 3分因此,不论k 为何实数,方程总有两个不相等的实数根. ·········································· 4分(2) 当k =2时,原一元二次方程即 x 2+2x –3=0,∴ x 2+2x +1=4, ····················································································································· 5分∴ (x +1)2=4, ························································································································· 6分∴ x +1=2或x +1= –2, ········································································································· 7分∴ 此时方程的根为 x 1=1,x 2= –3. ·················································································· 8分23. (1) 证法一:∵四边形ABCD 、AEFG 均为正方形,∴ ∠DAB =∠GAE =90°,AD =AB ,AG =AE . ································································ 2分∴ 将AD 、AG 分别绕点A 按顺时针方向旋转90°,它们恰好分别与AB 、AE 重合,即点D 与点B 重合,点G 与点E 重合, ················································································································ 3分∴ DG 绕点A 顺时针旋转90°与BE 重合, ···································································· 5分∴ BE =DG ,且BE ⊥DG . ································································································· 6分证法二:∵四边形ABCD 、AEFG 均为正方形,∴ ∠DAB =∠GAE =90°,AD =AB ,AG =AE . ································································ 2分∴ ∠DAB +α=∠GAE +α,∴ ∠DAG =∠BAE .① 当α≠90°时,由前知 △DAG ≌△BAE (S.A.S.), ····················································· 2分∴ BE =DG , ·························································································································· 3分且∠ADG =∠ABE . ·············································································································· 4分设直线DG 分别与直线BA 、BE 交于点M 、N ,又∵∠AMD =∠BMN ,∠ADG +∠AMD =90°, ∴∠ABE +∠BMN =90°,······································································································ 5分∴∠BND =90°,∴BE ⊥DG . ····························································································· 6分② 当α=90°时,点E 、点G 分别在BA 、DA 的延长线上,显然BE =DG ,且BE ⊥DG .(说明:未考虑α=90°的情形不扣分)(2) S 的最大值为252, ·········································································································· 7分 当S 取得最大值时,α=90°. ······························································································ 8分24.(1) 由已知,CD ⊥BC ,∴ ∠ADC =90°–∠CBD , ························································· 1分又∵ ⊙O 切AY 于点B ,∴ OB ⊥AB ,∴∠OBC =90°–∠CBD , ······························· 2分∴ ∠ADC =∠OBC .又在⊙O 中,OB =OC =R ,∴∠OBC =∠ACB ,∴∠ACB =∠ADC .又∠A =∠A ,∴△ABC ∽△ACD . ···················································································· 3分(2) 由已知,sin A =35,又OB =OC =R ,OB ⊥AB , ∴ 在Rt △AOB 中,AO =sin OB A =5R =53R ,AB=43R , ∴ AC =53R +R =83R . ········································································································· 4分 由(1)已证,△ABC ∽△ACD ,∴ AC AD AB AC=, ································································ 5分 ∴834833R AD R R =,因此 AD =163R . ························································································ 6分 ① 当点D 与点P 重合时,AD =AP =4,∴163R =4,∴R =34. ···································· 7分 ② 当点D 与点P 不重合时,有以下两种可能:i) 若点D 在线段AP 上(即0<R <34),PD =AP –AD =4–163R ; ······································ 8分 ii) 若点D 在射线PY 上(即R >34),PD =AD –AP =163R –4. ········································· 9分 综上,当点D 在线段AP 上(即0<R <34)时,PD =4–163R ;当点D 在射线PY 上(即R >34)时,PD =163R –4.又当点D 与点P 重合(即R =34)时,PD =0,故在题设条件下,总有PD =|163R –4|(R >0). 25.(1) 配方,得y =12(x –2)2 –1,∴抛物线的对称轴为直线x =2,顶点为P (2,–1) . ···· 1分 取x =0代入y =12x 2 –2x +1,得y =1,∴点A 的坐标是(0,1).由抛物线的对称性知,点A (0,1)与点B 关于直线x =2对称,∴点B 的坐标是(4,1). ···································································· 2分设直线l 的解析式为y =kx +b (k ≠0),将B 、P 的坐标代入,有14,12,k b k b =+⎧⎨-=+⎩解得1,3.k b =⎧⎨=-⎩∴直线l 的解析式为y =x –3.················································ 3分。

相关文档
最新文档