人教版八年级上册数学期中复习

合集下载

2024年全新八年级数学上册期中试卷及答案(人教版)

2024年全新八年级数学上册期中试卷及答案(人教版)

2024年全新八年级数学上册期中试卷及答案(人教版)一、选择题1. 若一个数的平方根是3,那么这个数是( )A. 9B. 9C. 3D. 3答案:A2. 下列哪个数是负数?( )A. 2B. 2C. 0D. 1/2答案:B3. 若一个数的三次方是27,那么这个数是( )A. 3B. 3C. 9D. 9答案:B4. 若一个数的绝对值是5,那么这个数可能是( )A. 5B. 5C. 0D. 1答案:A5. 下列哪个数是正数?( )A. 2B. 0C. 1/2D. 1/2答案:C二、填空题1. 若a的平方根是b,那么a的立方根是_________。

答案:b2. 若a的绝对值是5,那么a可能是_________。

答案:5或53. 若a的三次方是27,那么a的平方是_________。

答案:94. 若a的平方根是b,那么b的平方根是_________。

答案:a5. 若a的绝对值是5,那么a的平方是_________。

答案:25三、解答题1. 若一个数的平方根是4,求这个数。

解:设这个数为x,根据题意,有√x = 4。

解这个方程,得到x= 4^2 = 16。

所以这个数是16。

2. 若一个数的三次方是8,求这个数。

解:设这个数为y,根据题意,有y^3 = 8。

解这个方程,得到y = 2。

所以这个数是2。

3. 若一个数的绝对值是7,求这个数的平方。

解:设这个数为z,根据题意,有|z| = 7。

由于绝对值表示数的大小,不考虑正负,所以z可以是7或7。

无论z是正数还是负数,其平方都是49。

所以这个数的平方是49。

4. 若一个数的平方根是5,求这个数的立方。

解:设这个数为w,根据题意,有√w = 5。

解这个方程,得到w= 5^2 = 25。

求w的立方,得到w^3 = 25^3 = 15625。

所以这个数的立方是15625。

5. 若一个数的绝对值是3,求这个数的立方根。

解:设这个数为v,根据题意,有|v| = 3。

由于绝对值表示数的大小,不考虑正负,所以v可以是3或3。

人教版2024-2025学年八年级数学上册期中试卷(原卷版)

人教版2024-2025学年八年级数学上册期中试卷(原卷版)

2024-2025八年级上册期中模拟试卷一、填空题(本题满分30分,每小题3分)1. 现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )A. B. C. D. 2. 已知长为a ,b ,c 的三条线段首尾顺次相接组成一个三角形.若7a =,9b =,则c 的取值范围是( )A. 2>cB. 16c <C. 216c ≤≤D. 216c << 3. 如图,ACE △≌DBF ,若11cm AD =,5cm =BC ,则AB 长为( )A 6cm B. 7cm C. 4cm D. 3cm4. 下列命题:①经过一点有且只有一条直线;②线段垂直平分线上的点到这条线段两端的距离相等;③有两边及其一角对应相等的两个三角形全等;④等腰三角形底边上的高线和中线重合.其中是真命题的有( )A. 1个B. 2个C. 3个D. 4个5. 如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴, 1.6 cm AB =, 2.3 cm CD =,则四边形ABCD 的周长为( )A. 3.9cmB. 7.8cmC. 4cmD. 4.6cm 6. 如图,CD ,CE ,CF 分别是ABC 的高、角平分线、中线,则下列各式中错误的是( ).A 2AB BF = B. 12ACE ACB ∠=∠ C. AE BE = D. CD BE ⊥7. 如图90B C ∠=∠=°,AD AE =,添加下列条件后不能..使ABD ECA △≌△的是( )A. 2AD BD =B. BD AC =C. =90DAE ∠°D. AB EC = 8. 一个正多边形的边长是3,从一个顶点可以引出4条对角线,则这个正多边形的周长是( )A. 12B. 15C. 18D. 21 9. 如图,在ABC 中,AB AC =,AB 的垂直平分线交AC 于点P ,若10cm AB =,6cm BC =,则PBC △的周长等于( )A. 16cmB. 12cmC. 8cmD. 20cm 10. 如图,在ABC 中,BD 为AC 边上的中线,已知8BC =,5AB =,BCD △的周长为20,则ABD △的周长为( )A. 17B. 23C. 25D. 28 11. 四盏灯笼的位置如图.已知A ,B ,C ,D 的坐标分别是()1,1−−,()1,1-,()2,1−,()3.2,1−,平移y 轴右侧的一盏灯笼,使得y 轴两侧的灯笼对称,则平移的方法可以是( ).A. 将B 向左平移4.2个单位B. 将C 向左平移4个单位C. 将D 向左平移5.2个单位D. 将C 向左平移4.2个单位12. 如图,在ABC ∆中,90A ∠=°,4AB =,3AC =,点O 为AB 的中点,点M 为ABC 内一动点且2OM =,点N 为OM 的中点,当BN CM +最小时,则ACM ∠的度数为( )A 15° B. 30° C. 45° D. 60°二.填空题(本题满分24分,每小题3分)13. 正五边形每个内角的度数为______.14. 若等腰三角形一个内角为36°,则这个等腰三角形顶角的度数为_____________. 15. 点P (1,-2)关于y 轴的对称点的坐标是_________.16. 过12边形的一个顶点可以画对角线的条数是____.17. 如图,点D 在BC 上,AB AC CD ==,AD BD =,则BAC ∠=_____.18. 如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN ,分别交边AB BC ,于点D 和E ,连接CD .若90BCA ∠=°,8AB =,则CD 的长为_______.三. 解答题(本大题满分62分).的19. 如图,B D BC DC ∠=∠=,.求证:AB AD =.20. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.21. 如图,ABC 中,16cm AC =,DE 为AB 的垂直平分线,交AC 于点E ,BCE 的周长为26cm ,求BC 的长.22. 如图所示,等边三角形ABC 中,AD BC ⊥,垂足为D ,点E 在线段AD 上,45EBC ∠=°,求ACE ∠的度数.23. 在 ABC 中,CD ⊥AB 于D ,CE 是∠ACB 的平分线,∠A =20°,∠B =60°.求∠BCD 和∠ECD 的度数.24. ABC 在平面直角坐标系中位置如图所示.(1)将ABC 先向下平移4个单位长度,再向右平移3个单位长度,画出平移后的111A B C △,并写出顶点1A ,1B ,1C 的坐标;(2)计算111A B C △的面积.25. 如图(1) ABC 和 DEC 都是等腰直角三角形,其中∠ACB =∠DCE =90°,BC =AC ,EC =DC ,点E 在 ABC 内部,直线AD 与BE 交于点F ,线段AF 、BF 、CF 之间存在怎么样的数量关系?(1)先将问题特殊化如图2,当点D 、F 重合时,直接写出线段AF 、BF 、CF 之间的数量关系式: ;(2)再探究一般情况如图1,当点D 、F 不重合时,证明(1)中的结论仍然成立. (3)如图3,若 ABC 和 DEC 都是含30°的直角三角形,若∠ACB =∠DCE =90°,∠BAC =∠EDC =30°,点E 在 ABC 内部,直线AD 、BE 交于点F ,直接写出一个等式,表示线段AF 、BF 、CF 之间的数量关系.的26. 在平面直角坐标系中,点A 在x 轴正半轴上,点B 在y 轴正半轴上,∠ABC =90°,且AB BC =.(1)如图(1),(5,0)A ,(0,2)B ,点C 在第三象限,请直接写出点C 的坐标; (2)如图(2),BC 与x 轴交于点D ,AC 与y 轴交于点E ,若点D 为BC 的中点,求证:ADB CDE ∠=∠;(3)如图(3),(,0)A a ,M 在AC 延长线上,过点(,)M m a −作MN x ⊥轴于点N ,探究线段BM ,AN ,OB 之间的关系,并证明你的结论.。

人教版八年级上册数学期中复习知识点总结

人教版八年级上册数学期中复习知识点总结

人教版八年级上册数学期中复习知识点总结一、数与式1. 有理数- 概念:有理数是可以表示为两个整数比值的数,包括整数、分数、小数。

- 分类:正有理数、负有理数、零。

- 运算:加法、减法、乘法、除法。

2. 实数- 概念:实数包括有理数和无理数。

- 分类:正实数、负有实数、零。

- 运算:同有理数。

3. 代数式- 概念:代数式是由数字、字母和运算符组成的式子。

- 分类:单项式、多项式。

- 运算:加法、减法、乘法、除法。

二、方程与不等式1. 一元一次方程- 概念:未知数的最高次数为1的方程。

- 解法:移项、合并同类项、化简。

2. 不等式- 概念:表示两个数大小关系的式子。

- 解法:同方程,但需要考虑符号。

3. 二元一次方程组- 概念:含有两个未知数的一次方程组。

- 解法:代入法、消元法。

三、图形与几何1. 平面几何- 点、线、面的基本概念。

- 直线、射线、线段的性质。

- 平行线、垂线的性质。

- 三角形、四边形、圆的性质。

2. 立体几何- 平面、直线、点在立体几何中的扩展。

- 三视图。

- 柱体、锥体、球体的性质。

四、统计与概率1. 统计- 数据收集、整理、描述。

- 平均数、中位数、众数、方差。

2. 概率- 随机事件、必然事件、不可能事件。

- 概率的计算。

以上为八年级上册数学期中复习的知识点总结,希望能帮助同学们更好地复习和掌握数学知识。

人教版八年级上数学期中复习要点总结

人教版八年级上数学期中复习要点总结

人教版八年级上数学期中复习要点总结
人教版八年级上数学期中复习要点总结包括以下内容:
1.表示数的形式:整数、分数、小数、百分数和科学计数法的相互转换和应用;
2.整数的运算:加法、减法、乘法、除法及其混合运算;
3.分数的运算:加法、减法、乘法、除法及其混合运算,带分数与假分数的相互转化;
4.小数的运算:加法、减法、乘法、除法及其混合运算;
5.百分数的应用:百分数与小数的相互转化,百分数的四则运算;
6.科学计数法的应用:科学计数法与十进制的互相转换,科学计数法的四则运算;
7.比例与比例的应用:比例的概念及相关性质,比例的求解与判断,比例在实际问题
中的应用;
8.图形的认识:平面图形的基本概念,三角形、四边形及其特殊图形的性质;
9.图形的计算:三角形的面积计算,正方形、长方形、平行四边形、梯形的面积计算;
10.代数式的认识:代数式的基本概念与性质,代数式的四则运算;
11.方程与方程的应用:方程的基本概念与性质,一元一次方程的解与应用;
12.多边形的认识:多边形的基本概念和判定多边形的方法;
13.平行线与相交线:平行线与转折线的判定,平行线的性质和应用。

以上是人教版八年级上数学期中的重点内容,希望对您有所帮助。

人教版数学八年级上册期中复习课件

人教版数学八年级上册期中复习课件

三角形
三边都不等的三角形
三底和腰不相等的三角形
按角分类
等腰三角形
等边三角形
知识点巩固
1.三边关系
任意两边之和大于第三边,
任意两边之差小于第三边
三角形第三边长度范围 三角形两边之差<三角形第三边
<三角形两边之和
与三角形有关的线段
2.三角形的高、中线、角平分线
3.三角形的稳定性
知识点巩固
1.三角形内角和:180°
第十三章 轴对称
轴对称图形
关系
区分 对象不

意义不

对称轴
联系
区分
联系
轴对称
两个图形
两个图形成轴对称
轴对称图形
一个图形
两个图形的特殊位置关 一个具有特殊形状的图


在两个图形中,只有一 经过图形,并且可能不
条对称轴
止一条对称轴
把成轴对称的两个图形看作一个整体,它就是轴
对称图形;把一个轴对称图形沿对称轴分成两个
对应边
对应角
知识点巩固
对应边相等
全等三角形的性质
对应角相等
周长和面积分别相等
边边边(SSS)
边角边(SAS)
全等三角形的判定
角边角(ASA)
角角边(AAS)
斜边、直角边(HL)
只针对直
角三角形
掌握角平分线的画法
角平分线
性质
角平分线上的点到
角两边的距离相等
判定
角的内部到角两
边距离相等的点
在角的平分线上
在直角三角形中,如
果一个锐角等于 30° ,
那么它所对的直角边
等于斜边的一半

人教版八年级上册数学期中复习课件(共52张PPT)

人教版八年级上册数学期中复习课件(共52张PPT)

D.锐角三角形
三角形的中线
在三角形中,连接一个顶点与它对边中点的线段,
叫做这个三角形这边的中线.
A

∵AD是△ ABC的中线
F
∴BD=CD= 12BC(中线的定义B)
E O

C
D
三角形的三条中线相交于一点,交点在三角形的内部.
三角形的角平分线
在三角形中,一个内角的角平分线与它的对边相交,
这个角的顶点与交点之间的线段,叫做三角形的角平分线。
;
斜边AC边上的高是_______B_D______.
拓展练习
1、下列各组图形中,哪一组图形中AD是△ABC 的高( D)
C AD
D
BC B
B C
CA
B (A)
(B)
AD (C)
D
A
(D)
2、 如果一个三角形的三条高的交点恰是三角形的一个
顶点,那么这个三角形是( B)
A.锐角三角形
B.直角三角形
C.钝角三角形
有两个角及其中一角的 对边分别对应相等的两个 三角形全等。
(简写成“角角边”或“AAS”)
符号语言
A
B
C
在 ABC和 DEF中
B=E
D
C=F
E
F
A B = D E
ABC DEF( A.A.S.)
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

直角三角形的三条高
A
直角三角形的三条高 交于直角顶点.
D

B
C
直角边BC边上的高是_____A_B____;

2024-2025学年人教版八年级上册期中数学复习训练试卷(天津)(含答案)

2024-2025学年人教版八年级上册期中数学复习训练试卷(天津)(含答案)

2024-2025学年第一学期人教版八年级期中数学复习训练试卷(天津)试卷满分:120分 考试时间:100分钟一、选择题本大愿共12小题每小题3分共36分在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.下列长度的三条线段中,能组成三角形的是( )A .,,B .,,C .,,D .,,3.用直尺和圆规作一个角等于已知角,如图,能得出的依据是( )A .B .C .D .4 . 一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为( )A .30B .24C .18D .24或305. 如图,是的两条中线,连接.若,则(  )A .1B .1.5C .2.5D .56. 如图,在△ABC 中,根据尺规作图痕迹,下列说法不一定正确的是(  )3cm 1cm 1cm 1cm 2cm 3cm2cm 3cm 4cm 4cm 4cm 9cmAOB AO B '''∠=∠SSS SAS ASA AASAD CE ,ABC V ED 10ABC S =△S =阴影A.AF=BF B.AE=ACC.∠DBF+∠DFB=90°D.∠BAF=∠EBC7.如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )A.40°B.30°C.20°D.10°8.如图,AC=FD,BC=ED,要利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE=BE;④BF=BE,可利用的是( )A.①或②B.②或③C.①或③D.①或④9.如图,在△ABC中,已知点D,E,F分别为边AC,BD,CE的中点,且阴影部分图形面积等于4平方厘米,则△ABC的面积为( )A .8平方厘米B .12平方厘米C .16平方厘米D .18平方厘米10 . 如图,中,,且,垂直平分,交于点,交于点,若周长为16,,则为( )A .5B .8C .9D .1011. 如图,在中, 垂直平分,点P 为直线上的任意一点,则的最小值是( )A .6B .7C .8D .1012 .如图,C 为线段上一动点(不与点A ,E 重合),在同侧分别作正三角形和正三角形,与交于点O ,与交于点P ,与交于点Q ,连接.以下五个结论:①;②;③;④;其中恒成立的结论有( )个ABC V AB AE =AD BC ⊥EF AC AC F BC E ABC V 6AC =DC ABC V 906810BAC AB AC BC EF ∠=︒===,,,,BC EF AP BP +AE AE ABC CDE AD BE AD BC BE CD PQ AD BE =PQ AE ∥EQ DP =60AOB ∠=︒A .1B .2C .3D .4二、境空题:本大题共6小题,每小题3分,共18分,请将答案直接填在答题纸中对应的横线上。

人教版八年级数学上册期中常考精选30题

人教版八年级数学上册期中常考精选30题

人教版八年级数学上学期期中常考精选30题考试范围:第十一章-第十三章的内容,共30小题.一、选择题(共8小题)1.(2022·山东·滨州市滨城区教学研究室八年级期中)下列各线段能构成三角形的是()A.7cm、5cm、12cm B.6cm、7cm、14cmC.9cm、5cm、11cm D.4cm、10cm、6cm【答案】C【分析】根据三角形三边关系逐一判断即可【详解】A、7+5=12,不能组成三角形,故本选项不符题意;B、6+7<14,不能组成三角形,故本选项不符题意;C、9+5>11,能组成三角形,故本选项符合题意;D、4+6=10,不能组成三角形,故本选项不符题意故选:C【点睛】本题考查了三角形三边关系,关键是掌握在运用三角形三边关系判定三条线段能否构成三角形时要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判断这三条线段能构成三角形.2.(2021·重庆市璧山中学校八年级期中)在一些美术字中,有的汉字是轴对称图形.下列4个汉字中,可以看作“沿某一条直线折叠后,直线两旁的部分能够互相重合”的是()A.B.C.D.【答案】C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项A、B、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项C能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(2022·全国·八年级专题练习)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为( )A.2B.3【答案】B【分析】过点D作DE⊥AB于的面积列式计算即可得解.【详解】解:如图,过点D作【点睛】本题考查了三角形的面积和角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.4.(2022·江苏扬州·七年级期末)在.B.C.D.【点睛】本题主要考查了三角形的高线的定义,是基础题,熟练掌握概念是解题的关键,三角形的高线初学者出错率较高,需正确区分,严格按照定义作图.5.(2022·黑龙江·兰西县红星乡第一中学校七年级期中)如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠2=80°,那么∠1的度数为()A.60°B.50°C.40°D.30°【答案】B【详解】解:如图,∵AB P CD,∴∠2=∠3=80°,∵∠3=∠1+30°,∴∠1=∠3-30°=80°-30°=50°.故选:B.【点睛】本题考查了平行线的性质和三角形外角的性质,关键是根据两直线平行,得出与∠2相等的角.6.(2022·黑龙江双鸭山·七年级阶段练习)小刚想做一个等腰三角形的相框,他已经找到两根长分别是10cm 和5cm的细木条,他找的第三根木条长应是()A.15cm B.7cm C.10cm D.5cm【答案】C【分析】根据等腰三角形的定义以及构成三角形三边的关系逐项判断即可.【详解】A项,以10cm、5cm、15cm为三边无法构成等腰三角形,故A项不符合题意;B项,以10cm、5cm、7cm为三边无法构成等腰三角形,故B项不符合题意;C项,以10cm、5cm、10cm为三边可以构成等腰三角形,故C项符合题意;D项,以10cm、5cm、5cm为三边,即有5+5=10即此时无法构成三角形,故D项不符合题意;故选:C.【点睛】本题考查了等腰三角形的定义以及构成三角形三边的关系的知识,掌握等腰三角形的定义以及构成三角形三边的关系是解答本题的关键.有两条边相等的三角形被称作等腰三角形.7.(2021·重庆·巴川初级中学校八年级期中)如图,△ABC 的面积为16,AD 为BC 边上的中线,E 为AD 上任意一点,连接BE 、CE ,图中阴影部分的面积为( )A .4B .5C .6D .8【答案】D 【分析】由D 是BC 的中点可得出△ABD 的面积等于△ACD 的面积等于8,再得出△BDE 的面积等于△CDE 的面积,即可得出阴影部分的面积.【详解】解:∵D 是BC 的中点,∴BD =CD ,∴8ABD ACD BDE CDE S S S S ===,V V V V ,∴8ACE BDE ACE CDE ACD S S S S S +=+==V V V V V ,故选:D .【点睛】本题主要考查三角形的中线的性质,关键是要牢记三角形的中线平分三角形的面积.8.(2022·黑龙江·肇东市第十中学八年级期末)如图,在△ABC 中,AD 平分∠BAC ,AD ⊥BD 于点D ,DE ∥AC 交AB 于点E ,若AB =8,则DE 的长度是( )A .6B .2C .3D .4【答案】D 【分析】分别延长AC 、BD 交于点F ,根据角平分线的性质得到∠BAD =∠FAD ,证明△BAD ≌△FAD ,根据全等三角形的性质得到BD =DF ,根据平行线的性质得到BE =ED ,EA =ED ,进一步计算即可求解.【详解】解:分别延长AC 、BD 交于点F ,∵AD平分∠BAC,AD⊥BD,∴∠BAD=∠FAD,∠ADB=∠ADF=90在△BAD和△FAD中,BADADADBÐìïíïÐ=î∴△BAD≌△FAD(ASA),∴∠ABD=∠F,∵DE∥AC,10.(2022·黑龙江·兰西县红星乡第一中学校七年级期中)如图所示的是自行车的三角形支架,这是利用三角形具有 ________________.【答案】稳定性【分析】根据三角形的特性即可解答.【详解】解:∵三角形具有稳定性,∴自行车三角形支架是利用了三角形稳定性的特性.故答案为:稳定性.【点睛】本题考查了三角形的特性,解决本题的关键是掌握三角形的特性.11.(2020·北京·垂杨柳中学八年级期中)已知点A (m +1,2)和点B (﹣2,n +1)关于y 轴对称,则m =___,n =___.【答案】 1 1【分析】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得m +1=2,n +1=2,再解方程即可.【详解】∵点A (m +1,2)和点B (﹣2,n +1)关于y 轴对称,∴m +1=2,n +1=2,解得m =1,n =1,故答案为:1;1.【点睛】此题主要考查了关于y 轴对称的点的坐标,关键是掌握点的坐标的变化规律.12.(2022·山东泰安·七年级期末)如图,AC ,BD 相交于点O ,∠A =∠D ,请补充一个条件,使△ACB ≌△DBC ,你补充的条件是______(填出一个即可).【答案】ABC DCB Ð=Ð(答案不唯一)【分析】本题要判定△ACB ≌△DBC ,已知∠A =∠D ,CB BC =,则可以添加ABC DCB Ð=Ð从而利用AAS 判定其全等.【详解】解:添加ABC DCB Ð=Ð,∵ABC DCB Ð=Ð,∠A =∠D ,CB BC=∴△ACB ≌△DBC .(AAS )故答案是:ABC DCB Ð=Ð(答案不唯一).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(2022·黑龙江大庆·七年级期末)琪琪画了一个等腰三角形,量得两条边长分别为12cm 和5cm ,那么它的周长为______.【答案】29cm ##29厘米【分析】因为三角形为等腰三角形,应分两种情况:①12cm 是底边时;②5cm 是底边时分别求解.【详解】解:应分两种情况:当12cm 是底边,5cm 是腰时,此时等腰三角形的三边长分别为:12cm ,5cm ,5cm ,∵5512+<,∴此时不能构成三角形;当5cm 是底边,12cm 是腰时,等腰三角形的三边长分别为:12cm ,12cm ,5cm ,此时51212+>,满足三角形的任意两边之和大于第三边,能构成三角形,∴三角形的周长为:12cm +12cm +5cm =29cm ,综上可得三角形的周长为29cm .故答案为:29cm .【点睛】本题考查了三角形的三边之间的关系,等腰三角形的定义及分类讨论的思想,熟记三角形任意两边之和大于第三边是解题的关键.14.(2022·北京一七一中八年级阶段练习)如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,过点C 作平行于AB 的直线交DE 的延长线于点F .若DE =FE ,AB =5,CF =3,则BD 的长是________.【答案】2【分析】先根据平行线的性质可得,A ECF ADE F Ð=ÐÐ=Ð,再根据AAS 定理证出ADE CFE @V V ,然后根据全等三角形的性质可得3AD CF ==,最后根据线段和差即可得.【详解】解:CF AB Q ∥,,A ECF ADE F \Ð=ÐÐ=Ð,在ADE V 和CFE V 中,AECF ADE F DE FE Ð=ÐìïÐ=Ðíï=î,()AAS ADE CFE \@V V ,AD CF \=,5,3AB CF ==Q ,532BD AB AD AB CF \=-=-=-=,故答案为:2.【点睛】本题考查了平行线的性质、三角形全等的判定与性质,正确找出两个全等三角形是解题关键.15.(2022·江西吉安·八年级期末)如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 并延长交BC 的延长线于点F .若2AD =,6AB =,当BC =______时,点B 在线段AF 的垂直平分线上.【答案】4【分析】通过求证△FEC ≌△AED 来证明CF =AD ;若点B 在线段AF 的垂直平分线上,则应有AB =BF 因为AB =8,CF =AD =2,所以BC =BF -CF =6-2=4时有AB =BF .【详解】解:∵AD ∥BC ,∴∠DAE =∠CFE ,∠D =∠ECF ,∵E 为CD 的中点,∴DE =CE ,在△ADE 与△FCE 中,DAE CFE D ECF DE CE Ð=ÐìïÐ=Ðíï=î,∴△ADE ≅△FCE (AAS ),∴CF =AD ;连接BE ,∵BE 垂直平分AF ,∴AB =BF ,∵AD =CF ,∵AD =2,AB =6,∴BC =BF -CF ,【答案】2【分析】过P作PF∥BC交NF=AN,证△PFM≌△QCM【详解】解:过P作PF∥∵PF∥BC,△ABC是等边三角形,∴∠PFM=∠QCM,∠APF=∠B=∴△APF是等边三角形,∴AP=PF=AF,∵PN⊥AC,(1)求证:△BCE≌△BDE;(2)若30Ð=°,CE=1,求A【答案】(1)证明见解析()HL BCE BDE \@V V .(2)解:90,30C A Ð=°Ð=°Q ,9060ABC A \Ð=°-Ð=°,BE Q 平分ABC Ð,30CBE ABE \Ð=Ð=°,30ABE A \Ð=Ð=°,AE BE \=,又Q 在Rt BCE V 中,90,30,1C CBE CE Ð=°Ð=°=,22BE CE \==,2AE \=.【点睛】本题考查了直角三角形全等的判定、角平分线的性质、等腰三角形的判定、含30度角的直角三角形的性质,熟练掌握直角三角形全等的判定和等腰三角形的判定是解题关键.18.(2022·全国·八年级课时练习)如图,已知△ABC ≌△DEF ,点B ,E ,C ,F 在同一直线上.(1)若∠BED =130°,∠D =70°,求∠ACB 的度数;(2)若2BE =EC ,EC =6,求BF 的长.【答案】(1)60°(2)12【分析】(1)根据三角形的外角的性质求出∠F ,再根据全等三角形的对应角相等解答;(2)根据题意求出BE 、BC ,再根据全等三角形的性质解答.(1)解:∵∠BED =130°,∠D =70°,∴∠F =∠BED -∠D =60°,∵V ABC ≌V DEF ,∴∠ACB =∠F =60°;(2)∵2BE =EC ,EC =6,∴BE =3,∴BC =BE +EC =9,∵V ABC ≌V DEF ,∴EF =BC =9,∴BF =EF +BE =12.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.19.(2022·新疆乌鲁木齐·八年级阶段练习)用一条长41cm 的细绳围成一个三角形,已知此三角形的第一条边为xcm ,第二条边是第一条边的3倍少4cm .(1)请用含x 的式子表示第三条边的长度.(2)若此三角形恰好是一个等腰三角形,求这个等腰三角形的三边长.【答案】(1)()454x -cm(2)7cm ,17cm ,17cm【分析】(1)依据三角形的第一条边为xcm ,第二条边是第一条边的3倍少4cm ,即可用含x 的式子表示第三条边的长度.(2)依据三角形恰好是一个等腰三角形,分三种情况讨论,即可得到这个等腰三角形的三边长.(1)解:∵三角形的第一条边长为xcm ,第二条边长比第一条边长的3倍少4cm ,∴第二条边长为()34x -cm .∴第三条边长为()()4134454x x x ---=-cm .(2)解:若x =3x -4,则x =2,此时三边长分别为2cm ,2cm 和37cm ,根据三角形三边关系可知,2,2,37不能组成三角形;若x =45-4x ,则x =9,此时三边长分别为9cm ,9cm 和23cm ,根据三角形三边关系可知,9,9,23不能组成三角形;若3x -4=45-4x ,则x =7,此时三边长分别为7cm ,17cm ,17cm ,根据三角形三边关系可知,7,17,17可以组成三角形.∴这个等腰三角形的三边长分别为7cm ,17cm ,17cm .【点睛】本题主要考查了等腰三角形的性质以及三角形的三边关系,解题的关键是根据三角形的三边关系进行判断.20.(2022·重庆市巴渝学校八年级期中)如图,在ABC V 中,BA BC =,BF AC ^于点F .【点睛】本题主要考查了作轴对称图形,求三角形的面积,根据两点之间线段最短求线段和最小等,准确的画出图形是解题的关键.22.(2021·福建·莆田第七中学八年级期中)(1)〖问题背景〗如图1,B 、E 、M 三点共线,∠DEF =∠B =∠M ,DE =EF ,求证:△DBE ≌△EMF ;(2)〖变式运用〗如图2,B 、E 、C 三点共线,△DEF 为等边三角形,∠B =60°,∠C =30°,求证:EC =BD +BE .【答案】(1)见详解(2)见详解【分析】(1)根据∠DEM =∠B +∠BDE ,∠B =∠DEF ,可得∠BDE =∠MEF ,利用AAS 即可证明DBE EMF @V V ;(2)延长DB 至N 点,使得BE =BN ,连接EN ,根据BE =BN ,可得∠BNE =∠BEN ,即有∠BNE =∠BEN =30°,进而得∠C =∠BNE ,根据∠DEF +∠CEF =∠DBE +∠BDE ;根据△DEF 是等边三角形,可得DE =EF ,∠DEF =60°,即有∠CEF =∠BDE ,利用AAS 即可证明DNE ECF @V V ,则有EC =DN ,即可得EC =BD +BE .【详解】(1)证明:∵B 、E 、M 三点共线,∴∠DEM =∠B +∠BDE ,∴∠DEF +∠MEF =∠B +∠BDE ,∵∠B =∠DEF =∠M ,∴∠BDE =∠MEF ,∵DE =EF ,∠B =∠M ,∴DBE EMF @V V ;(2)证明:延长DB 至N 点,使得BE =BN ,连接EN ,如图,∵BE =BN ,∴∠BNE =∠BEN ,∵∠BNE +∠BEN =∠DBE =60°,∴∠BNE =∠BEN =30°,∵∠C =30°,∴∠C =∠BNE ,∵B 、E 、C 三点共线,∴∠DEC =∠DBE +∠BDE ,∴∠DEF +∠CEF =∠DBE +∠BDE ,∵△DEF 是等边三角形,∴DE =EF ,∠DEF =60°,∵∠DBE =60°,∴∠DBE =60°=∠DEF ,∴∠CEF =∠BDE ,∵∠C =∠BNE ,DE =EF ,∴DNE ECF @V V ,∴EC =DN ,∵BE =BN ,DN =BN +BD ,∴EC =BD +BE .【点睛】本题主要考查了等边三角形的性质和全等三角形的判定及其性质,构造辅助线BN 是解答本题的关键.23.(2022·上海·八年级开学考试)(1)如图1,在△ABC 中,BD 平分∠ABC ,CD 平分∠ACB .过D 作EF P BC 交AB 于E ,交AC 于F ,请说明EF =BE +CF 的理由.(2)如图2,BD 平分∠ABC ,CD 是△ABC 中∠ACB 的外角平分线,若仍然过点D 作EF P BC 交AB 于E ,交AC 于F ,第(1)题的结论还成立吗?如果成立,请说明理由;如果不成立,你能否找到EF 与BE 、CF 之间类似的数量关系?【答案】(1)见解析;(2)不成立,EF =BE ﹣CF .【分析】(1)利用角平分线的性质、平行线的性质、等腰三角形的判定与性质证明BE =ED ,CF =FD 即可;(2)利用角平分线的性质、平行线的性质、等腰三角形的判定与性质证明BE =DE ,DF =CF 即可.【详解】(1)∵在△ABC 中,BD 平分∠ABC ,CD 平分∠ACB ,∴∠EBD =∠DBC ,∠DCB =∠FCD .又∵EF P BC 交AB 于E ,交AC 于F ,∴∠EDB =∠DBC ,∠FDC =∠DCB∴∠EBD =∠EDB ,∠FDC =∠FCD ,∴BE =ED ,CF =FD ,∴EF =ED +DF =BE +CF .即:EF =BE +CF .(2)不成立.EF =BE ﹣CF .理由如下:∵BD 平分∠ABC ,CD 是△ABC 中∠ACB 的外角平分线,∠EBD =∠DBC ,∠FCD =∠DCG ,∵EF P BC 交AB 于E ,交AC 于F ,∴∠EDB =∠DBC ,∠FDC =∠DCG ,∴∠EBD =∠EDB ,∠FDC =∠FCD ,∴BE =DE ,DF =CF ,∴EF =ED ﹣DF =BE ﹣CF .【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形判定与性质等问题,解题的关键是上述知识点的综合应用.24.(2022·辽宁铁岭·八年级期末)如图,在ABC V 中,90ACB Ð=°,10cm AB =,6cm BC =,若动点P 从点A 出发,沿着三角形的三边,先运动到点C ,再运动到点B ,最后运动回到点A ,2cm/s P V =,设点P 的运动时间为ts .∵∴的角平分线上,过点∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;【点睛】本题是三角形综合题,考查了全等三角形的判定与性质、直角三角形的性质,解题的关键是熟练掌握全等三角形的判定与性质.26.(2021·湖北·公安县教学研究中心八年级阶段练习)如图(1),AB=8cm,AC⊥AB,BD⊥AB,AC=BD=6cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)当t=1时,△ACP与△BPQ是全等,理由见解析(2)存在当x=2,t=1或x=3,t=2时,△ACP与△BPQ全等.【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.(1)解:△ACP≌△BPQ,证明:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵t=1,∴AP=BQ=2,∴BP=6,∴BP=AC,在△ACP和△BPQ中,(1)如图,连接CE.①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.【答案】(1)①42°;②30°;(2)∠BEC的度数为48°或132°或12°.质,正确的画出图形辅助解决问题是解题的关键.28.(2021·重庆市渝北区实验中学校八年级期中)在ABC V 中,,AB AC E =是BC 中点,,G H 分别为射线,BA AC 上一点,且满足180GEH BAC ÐÐ+=o(1)如图1,若45B Ð=o ,且,G H 分别在线段,BA AC 上,2CH =,求线段AG 的长度;(2)如图2,连接AE 并延长至点D ,使DE AE =,过点E 作EF BD ^于点F ,当点G 在线段BA 的延长线上,点H 在AC 延长线上时,求证:2BF CH BG+=【答案】(1)2(2)见解析【分析】(1)连接AE ,可证△ABC 是等腰直角三角形,进一步可得AE =CE ,∠C =∠EAG =45°,根据已知条件,可得∠CEH =∠AEG ,即可证明△CEH ≌△AEG (ASA ),从而求出AG ;(2)作EI ⊥AB 于I ,在BG 上截取IJ =BI ,连接EJ ,可知EI 是线段BJ 的垂直平分线,根据线段垂直平分线的性质以及等腰三角形的性质易证△ECH ≌△EJG (AAS ),可得CH =GJ ,再证明△BFE ≌△BIE (AAS ),可得BF =BI ,即可得证.(1)解:连接AE ,如图所示:∵∠B =45°,AB =AC ,∴∠B =∠C =45°,∴∠CAB =180°-∠B -∠C =90°,∴△ABC 是等腰直角三角形,∵E 为BC 的中点,∴AE =CE ,AE ⊥BC ,∠CAE =∠BAE =45°,∴∠C =∠BAE ,∴∠GEH =∠AEC =90°,∴∠CEH =∠AEG ,在△CEH 和△AEG 中,C BAC AE CECEH AEG Ð=Ðìï=íïÐ=Ðî∴△CEH ≌△AEG (ASA ),∴AG =CH =2;(2)证明:作EI ⊥AB 于I ,在BG 上截取IJ =BI ,连接EJ ,如图所示:则EI 是线段BJ 的垂直平分线,∴EJ =BE ,∵E 是BC 的中点,∴BE =EC ,∴EJ =EC ,∵∠GEH +∠BAC =180°,∠GAH +∠BAC =180°,∴∠GEH =∠GAH ,∴∠JGE =∠CHE ,∵EJ =EB ,AB =AC ,∴∠EJB =∠ABC =∠ACB ,∴∠EJG =∠ECH ,∴△ECH ≌△EJG (AAS ),∴CH =JG ,∵AC =AB ,点E 是BC 的中点,∴AE ⊥BC ,又DE =AE ,∴BD =AB ,∴∠ABE =∠DBE ,∵EF ⊥BD ,EI ⊥AB ,(1)若D恰好在BC的中点上(如图1)①求证CD=CE;②求证:△ADE是等边三角形;(2)若D为直线BC上任一点(如图2)其他条件不变,请给予证明;若不成立,请说明理由.△ADE是等边三角形的结论;(1)在AC上取点F,使CF=CD,连结DF,先证得△ADF≌△EDC得出AD=ED,再运用已证的结论“∠ADE=60°”和根据“有一个角是60°的等腰三角形是等边三角形”可证明出△ADE是等边三角形的结论.(1)①证明:∵a∥AB,且△ABC为等边三角形,∴∠ACE=∠BAC=∠ABD=60°,AB=AC,∵D是BC中点,即BD=CD,∴AD⊥BC,∴∠ADC=90°,∵∠ADE=60°,∴∠EDC=∠ADC-∠ADE=90°-60°=30°,∴∠DOC=180°-∠EDC-∠ACB=90°,∴∠DEC=∠DOC-∠ACE=90°-60°=30°,∴∠EDC=∠DEC,∴CD=CE;②∵BD=CD,CD=CE,∴BD=CE,在△ABD和△ACE中,∵AB ACABD ACEBD CE=ìïÐ=Ðíï=î,∴△ABD≌△ACE(SAS),∴AD=AE,又∵∠ADE=60°,∴△ADE是等边三角形;(2)解:“△ADE是等边三角形”的结论仍然成立.证明如下:在AC上取点F,使CF=CD,连结DF,如图2所示:,∵∠ACB=60°,∴△DCF是等边三角形,∴DF=CD,∵∠ADF+∠FDE=∠EDC+∠FDE=60°,∴∠ADF=∠EDC,∵∠DAF+∠ADE=∠DEC+∠ACE,∠ACE=∠ADE=60°,∴∠DAF=∠DEC,∴△ADF≌△EDC(AAS),∴AD=ED,又∵∠ADE=60°,∴△ADE是等边三角形.【点睛】本题考查的是等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角形内角和定理、三角形的外角性质、平行线的性质.解题关键是注意熟练掌握及熟练等边三角形的判定定理与性质定理、全等三角形的判定与性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
方法总结
证明线段相等的方法
1、证明全等,利用全等三角形的性质; 2、角平分线的性质 3、线段垂直平分线的性质 4、等角对等边
证明角相等的方法
1、证明全等,利用全等三角形的性质; 2、角平分线的判定 3、等边对等角
当某个量不容易求得时,应该考虑 用方程思想
常用辅助线的作法
一、连接 二、看到角平分线就想到过某个点作角两边 的垂线段 三、看到垂直平分线就想到把垂直平分线上 的某个点与线段的两个端点连接起来 四、截取 五、作平行
D C G E
B
F
E D C
A B F
3、
4、如图,已知AB=CD,△EAB的面积与 △ECD 的面积相等.求证:FE平分∠AFD
∵S△AEB=S△ECD AB=CD ∴EG=EH ∴FE平分∠AFD G ┐
┐ H
5、已知:如图,∠B=∠C=90°,M是BC的中 点,DM平分∠ADC. (1)若连接AM,则AM是否平分∠BAD?请你 证明你的结论; (2)线段DM与AM有怎样的位置关系?请说明 理由.
A C E D
B
ABC 中, BAC 2、如图2,
的平分线与BC边的 垂直平分线相交于点D。 过点D作AB、AC(或延长线) 的垂线,垂足分别是E、F。 求证:BE=CF。
E B M A
C F
D
A
E B M C F
D
3、如图所示,在Rt△ABC中,∠ACB=90°, AC=BC,D为BC边上的中点,CE⊥AD于点E, BF∥AC交CE的延长线于点F,求证:AB垂直平分 DF.
(1)∵△ACM与△CBN都是等边三角形, ∴AC=MC,CN=CB,∠ACM=∠BCN=60°. ∴∠MCN=60°,∠ACN=∠MCB.
∴△ACN≌△MCB.
∴AN=BM.
(2)∵△ACN≌△MCB, ∴∠CAE=∠CMB.
∵∠MCN=60°=∠ACM,AC=MC,
∴△ACE≌△MCF. ∴CE=CF. ∴△CEF的形状是等边三角形.
例、如图,已知△ABC中,点D在AB上,点E 在AC的延长线上,且BD=CE,连结DE交BC于 点G。若DG=GE,证明:△ABC为等腰三角形
例、如图,已知△ABC中,点D在AB上,点E在AC的延长线上, 且BD=CE,连结DE交BC于点G。若DG=GE,证明:△ABC为等腰 三角形
A
过D点AC的平行线交BC与点F △GDF≌△GEC DF=CE=DB ∠1=∠2 ∠2=∠3 ∠1=∠3
E D
公共角
1 2 B
A
C
3、如图,已知BE与CD相交于点O,且AB=AC, ∠ADC=∠AEB,证明:AD=AE
A
D
E
公共角
O
C
B
4、如图,已知AB=CD,AD=BC,试说明∠E=∠F 的理由
公共边
A D O B E
F
C
5、已知,AC⊥CE,AC=CE,∠ABC=∠DEC=900, 问BD=AB+ED吗? A
△ADF≌△CDG可知AD=CD F
G
三、垂直平分线
(一)、性质 ∵CD垂直平分AB ∴CA=CB, DA=DB, OA=OB (注意不是平分角) (二)、判定 ∵CA=CB ∴点C在线段AB的垂直平分线上 ∵DA=DB ∴点D在线段AB的垂直平分线上 ∴CD垂直平分线段AB
1、如图所示,AC=AD,BC=BD,AB与CD相交 于点E。求证:直线AB是线段CD的垂直平分 线。
期中复习
解答题常考题型
一、全等三角形
证明全等的方法有: SSS、SAS、ASA、AAS、HL(直角三角形) 注意: 不要忘记公共角、公共边、对顶角这些隐含 条件
1、已知AC=BD,AE=CF,BE=DF,问AE∥CF吗?
E F
公共边
A C B D
2、已知点B是线段AC的中点,BD = BE, ∠1 =∠2.证明:△ADB ≌ △CEB
1、如图,已知AB=AC,D是AB上一点,DE⊥BC于E, ED的延长线交CA的延长线于F,试说明△ADF是等 腰三角形的理由.
2、如图所示,△ABC中,AB=AC,∠BAC=120°,AC 的垂直平分线EF交AC于点E,交BC于点F.求证: BF=2CF.
30º
30º
30º
3、如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=α.以OC为一边作等边△OCD,连接AC、AD.( 1)当α=150°时,试判断△AOD的形状,并说明理由; (2)探究:当a为多少度时,△AOD是等腰三角形?
△ACD≌△CBF
△ADB≌△AFB
45º 45º
四、等腰三角形
1、等腰三角形的性质几何语言 (1)∵AB=AC ∴ ∠B= ∠C (2)①∵AB=AC,AD平分∠BAC ∴AD⊥BC,BD=CD ②∵AB=AC,AD⊥BC ∴AD平分∠BAC,BD=CD ③∵AB=AC,BD=CD ∴AD⊥BC,AD平分∠BAC 2、等腰三角形的判定几何语言 ∵∠B= ∠C ∴AB=AC ∴△ABC是等腰三角形
二、角平分线
(一)、性质 ∵AP平分∠BAC(或者∠BAP = ∠CAP), PD⊥AB,PE⊥AC ∴PD=PE (二)、判定 ∵PD=PE ,PD⊥AB,PE⊥AC ∴AP平分∠BAC
1、如图,OM平分∠POQ,MA⊥OP,MB⊥OQ, A、B为垂足,AB交OM于点N. 求证:∠OAB=∠OBA
△MED≌△MCD可知 ME=MC=MB △AEM≌ABM(HL)∠3=∠4
E
∠1=∠2 ∠3=∠4 ∠1+∠2+∠3+∠4=180º 2(∠3+∠1)=180º ∠3+∠1=90º ∠DMA=90º DM┴AM
6、如图11-1,已知在四边形ABCD中, 对角线BD平分∠ABC, 且∠BAD与∠BCD互补,求证:AD=CD.
DE=AD-BE
∠1+∠2=90º ∠3+∠2=90º ∠1=∠3 E
DE=AD+BE
DE=BE-AD
7、图1、图2中,点C为线段AB上一点,△ACM与△CBN都 是等边三角形. (1)如图1,线段AN与线段BM是否相等?证明你的结论; (2)如图2,AN与MC交于点E,BM与CN交于点F,探究 △CEF的形状,并证明你的结论.
4、如图,△ABC中,BD、CD分别平分∠ABC,∠ACG,过D作EF∥BC交AB、AC 于点E、F,则BE、CF、EF有怎样的数量关系?并说明你的理由.
BE=CF+EF
六、画图
1、画一个角的平分线 2、画一条线段的垂直平分线 3、画一个图形的轴对称图形 4、画到几个点的距离相等的点 5、画到几条边的距离相等的点 6、画到两条边的距离相等并到两个点的距离 相等的点 7、画到两个点的距离最短的点 8、在数轴上画出
(1)答:当α=150°时,△AOD是直角三角形. 理由是:∵△BOC≌△ADC,
∴∠ADC=∠BOC=150°,
又∵△COD是等边三角形, ∴∠ODC=60°, ∴∠ADO=∠ADC﹣∠ODC=90°, 即△AOD是直角三角形.
(2)解:①要使AO=AD,需∠AOD=∠ADO, ∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°, ∴190°﹣α=α﹣60°, ∴α=125°; ②要使OA=OD,需∠OAD=∠ADO. ∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,
3、等边三角形的性质有哪些? (1)三边相等,三角相等,都为60°; (2)三线合一 (3)是轴对称图形,有3条对称轴 4、等边三角形的判定有哪些? (1)三边相等的三角形是等边三角形; (2)三角相等的三角形是等边三角形; (3)有一个角是60°的等腰三角形的 是等边三角形 5、含30°直角三角形有什么性质? ∵ ∠B=90°, ∠A=30° ∴BC=½ AC(或AC=2BC)
△BOM≌△AOM(HL) ∠OBM=∠OAM MB=MA ∠MBA=∠MAB ∠OAB=∠OBM-∠MBA ∠OBA=∠OAM-∠OAM ∠OAB=∠OBA
2、如图,点D、B分别在∠A的两边上,C点 是∠A 内一点,且AB=AD,BC=DC,CE⊥AD, CF⊥AB,垂足分别为E、F, 求证:CE=CF。

∴α﹣60°=50°,
∴α=110°; ③要使OD=AD,需∠OAD=∠AOD. ∵∠OAD=360°﹣110°﹣60°﹣α=190°﹣α, ∠AOD==120°﹣,
∴190°﹣α=120°﹣,
4、如图,△ABC中,BD、CD分别平分∠ABC, ∠ACG,过D作EF∥BC交AB、AC于点E、F,则BE、 CF、EF有怎样的数量关系?并说明你的理由.
同角的余角相等
E
B
C
D
6、在△ABC中,∠ACB=90°AC=BC,直线MN经过点C,且 AD⊥MN于D,BE⊥MN于E.
( DE、AD、 2 2 的位置时,你在(1)中得到的结 (1 3)当 )当MN MN绕点 绕点C C旋转到图 旋转到图1 3的位置时,请你探究线段 BE之间的数量关系; 论是否发生变化?
相关文档
最新文档