从高考试题看数学思想方法的复习
高三怎么数学复习及技巧

高三怎么数学复习及技巧高三怎么数学复习1、立足基础知识高三复习数学的时候老师平时讲的大多数都是基础知识,很少讲特别难的,因为只有高考考察的大部分内容还是基础,并且只有基础知识掌握好了才能进一步学好难的。
再者平时考试结束以后,很多同学都会出现这种情况:明明是很简单的题,但是不知道为什么当时考虑错了,这也是因为基础知识没有学好,考试的时候一紧张就会出现思维混乱,简单的题就会做错。
2、做题注重审题减少错误审题是做题的第一步,只有读懂了题干,清楚了题目的要求才能继续分析解题,如果题干内容都不清楚就半猜测的做题,就很容易做错。
就像考试卷子发下来以后,发现明明是会做的题却做错了,就是因为审题不清楚、不谨慎。
所以高三学生备考数学的时候不仅要注重知识的掌握,还要改善自身的小毛病,那些可以避免的错误以后就不要再犯。
3、重总结归纳对做错的题、没有完全掌握的内容、经常犯错的地方进行总结,该补的补改的改,不要把小毛病攒成大毛病,或者一个小的知识点攒成一个重大的弱点。
学习就是不断总结、反思、完善自我的过程,善于总结和反思的同学学习效率总是比别人高,学习成绩也比别人好。
高考数学复习策略1、高三要做题,因为高三考“三基”,基础知识、基本技能、基本方法,体现在平常的大量练习中对三基的把握。
因此,要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。
从基础题入手,以课本上的习题为准,反复练习打好基础,可以再找一些课外的习题练习,循序渐进,由易到难,对做过的典型题目要有一定的体会和变通,即按“学、练、思、结”程序对待典型的问题。
2、从近些年的高考数学试题中,我们可以明显地看出,高考十分注重对通性通法的考查。
通性通法指的是某些规律性和普遍意义的常规解题模式和常用的数学思想方法。
这些方法只有在复习的过程中,对那些普遍性的东西不断地加以概括和总结,在具体解题中加以细心体会才能得到。
3、在数学复习阶段,还必须养成良好的解题习惯,如仔细阅读题目,看清数字,规范解题格式。
高考数学七大数学思想方法

1, a1
1 2
a0
(4
a0
)
3, 2
∴ 0 a0 a1 2 ;
2°假设 n = k 时有 ak1 ak 2 成立,
令 f (x) 1 x(4 x) , f (x) 在0, 2 上单调递增,
2
所以由假设有: f (ak1 ) f (ak ) f (2),
即
1 2
ak1 (4
ak1 )
则 fmin x m ,又 fmin x 2 ,则 m 2 .
(Ⅱ)若关于 x 的不等式 x 1 x 1 m 有解,则 fmin x m ,
即m2.
【例 3】(2005 年,江西卷,理)
已知数列{an } 各项都是正数,且满足
a0
1, an1
1 2
an (4 an ), n N.
提升数学思想 提高思维能力
一.高考对数学思想方法的要求:
1. 《考试大纲》的要求: “数学科的命题,在考查基础知识的基础上,注重对数学思想 和方法的考查,注重对数学能力的考查.” “对数学思想和方法的考查是对数学知识在更高层次的抽象和 概括的考查,考查时必须要与数学知识相结合,通过数学知识的考 查,反映考生对数学思想和方法的理解.要从学科整体意义和思想 价值立意,注意通性通法,淡化特殊技巧,有效地检测考生对中学 数学知识中所蕴涵的数学思想和方法的掌握程度.”(《考试大纲》 (理,文科,2007 年))
又 x1 f x x1 x F x x1 x ax x1x x2
x x11 ax ax2 ,
由
x2
1 a
得1
ax2
0
,又有
x1
x
0
,于是,
x1 f x 0,
如何实施有效的高考数学复习

如何实施有效的高考数学复习数学的广泛应用对每个公民的数学修养提出了新的要求,况且数学渗透到社会各个层次,每个人都在不同程度上需要数学。
为此,数学教学必须教给所有学生以适应未来社会最基本的知识与技能,然而,未来生活对各人所需的数学知识不尽相同,那么如何支面对“面向全体”与“特殊发展”的协调统一,对高三的复习提出了考验。
以下是笔者在近几年教学工作中总结出的几个应注意的方面。
一、加强对《考试说明》的认识《考试说明》就是考试大纲,它规定了考试的目标和性质、考试的内容和能力要求、考试的方式和方法及题型示例、高考数学复习首先要对这一切吃透、抓准。
只有深刻透彻地研究《考试说明》,才能切实把握教学要求,才能控制好复习的深度、广度和难度,避免复习盲目性无效性,增强复习的针对性和实效性。
二、重视对历年高考数学试题的研究(1)每年的试题均存在与以往考题雷同的现象。
考题雷同不是偶然现象,这是因为对于一些重要的关键性的基础知识和基本方法,是全体接受义务教育学生必须要掌握的并理解的。
(2)高考试题是《考试说明》的具体体现。
只有研究高考试题才能加深对《考试说明》的理解。
例如《考试说明》指出“对知识的要求由低到高分为三个层次,依次是了解、理解和掌握、灵活和综合运用,且高一级的层次包含低一级的层次要求。
”三个层次简单说分别为:了解:知是非;理解和掌握:不仅知是非,而且明因果,还要会运用;灵活和综合运用:不仅知是非,明因果,会运用,还要善于运用,但这样的划分仍是定性的,很难操作。
又如,《考试说明》中多处提到“会解简单的***”,何谓“简单的***”?如何界定?所有这些都只能通过深入研究历年的高考场数学试题才能使之具体化、可操作化。
(3)高考场试题年年变,份量上,侧重上,难度上都会略有不同。
我们只有认真研究近年来的高考场数学试题,才能体会命题专家,是如何将教材中的例题、习题改造成试题的,是如何考查各知识点的,是如何考查“三基”的,是如何考查数学思想,方法的,是如何考查数学能力的,是如何考查开放性、探索性和应用性问题的,是如何考查数学语言的阅读、理解、互译能力的,是如何设计新情境考查学生的。
以数学思想方法立意的高考试题评析

函数 f = + 将方 程问题 转化为 函数 问题 , 利用 ) t 2, 并 f t的单调性 , C) 找到 t与 t 的关 系 , 到 t=l ' : 得 。 o f 使问 g2
题 简洁 获 解 .
例 2 ( 0 7年 四川 理 ) 图 1 Z, , 20 如 , Z l 同一 平 面 ,是
求解.
运用 函数的思想 , 以建 立 函数关 系 , 可 然后 用 函数 的性质解决问题. 运用方程的思想 , 可以构造方程 ( ) 组 , 然后用代数方法研究方程 ( ) 组 的解或解 的情 况 , 使问题
获解 .
如图1 ̄A B 的 , AC 边长为 则 A ÷, i , , D: 由余弦定
理 有 B A A 2 B ・ D o , D : B + D 一 A A cs
例 1 (09年辽 宁理 ) 20 若 满足 2 +2 = , 满 5
足 2 2l 2 + g( o 一1 = ,Ⅱ + 2 ) 5 贝 l =
A. 5
/
B
.
即 2手 )詈 肋=+ ) ( c , X( 2手 o s
相互转化 , 有助 于认识数学本 质 , 活化数学 思维 , 简化解
题 过 程.
内的三条平行直线 , 与 f Z 间的距离是 1 1与 f间的距 , :
・ 试题分析 ・
.
中。 幺 (1 第 期・ 中 ) 7 ・ 20 2 高 版 毒 7 0年
Y ÷(一厨 = t )一 ≤ ≤ , £ .
边 长是
C
想, 数形结合 的思想 , 分类 与整 合的思想 , 归与转化 的 化 思想 , 特殊 与一般的思 想 , 限与无限 的思 想 , 有 或然与必 然的思想. 数学思想方法对 认识数 学本质 、 建构数学 关
高考中的数学思想方法

高考中的数学思想方法高考复习有别于新知识的教学。
它是在学生基本掌握了中学数学知识体系、具备了一定的解题经验的基础上的复课数学,也是在学生基本认识了各种数学基本方法、思维方法及数学思想的基础上的复课数学。
其目的在于深化学生对基础知识的理解,完善学生的知识结构,在综合性强的练习中进一步形成基本技能,优化思维品质,使学生在多次的练习中充分运用数学思想方法,提高数学能力。
高考复习是学生发展数学思想,熟练掌握数学方法理想的难得的深化过程。
我们今天来了解高考数学的思想方法高考试题重在考查对知识理解的准确性、深刻性,重在考查知识的综合灵活运用。
它着眼于知识点新颖巧妙的组合,试题新而不偏,活而不过难;着眼于对数学思想方法、数学能力的考查。
尤其是近几年的高考试题加大了对考生应用能力的考查,高考《考试说明》中明确指出:“能综合应用所学数学知识、思想方法解决问题,包括解决在相关学科、生产生活中的数学问题……”、“有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度……”。
高考的这种积极导向,决定了我们的数学复习中必须以数学思想指导知识、方法的运用,整体把握各部分知识的内在联系。
高考复习有别于新知识的教学。
它是在学生基本掌握了中学数学知识体系、具备了一定的解题经验的基础上的复课数学,也是在学生基本认识了各种数学基本方法、思维方法及数学思想的基础上的复课数学。
其目的在于深化学生对基础知识的理解,完善学生的知识结构,在综合性强的练习中进一步形成基本技能,优化思维品质,使学生在多次的练习中充分运用数学思想方法,提高数学能力。
高考复习是学生发展数学思想,熟练掌握数学方法理想的难得的深化过程。
中学数学内容从总体上可以分为两个层次:一个称为基础知识,另一个称为深层知识.基础知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法。
基础知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识.学生只有通过对教材的学习,在掌握和理解了一定的基础知识后,才能进一步的学习和领悟相关的深层知识。
高考数学复习策略与方法推荐

高考数学复习策略与方法推荐高考已经迎来最后一道关卡,你准备好上战场了么,在剩下的这段复习时间里,小编给大家带来的高考数学复习策略与方法推荐,希望大家喜欢!复习之初,先定方向从近年来的高考试题看,显然不要求每个学生都达到“深”度。
因此复习时要注意根据自身的实际情况有所取舍,譬如只参加高考的同学就没有必要去学习柯西不等式、排序不等式等竞赛内容,也没有必要花过多的精力在不等式的证明上,而对比较大小的基本方法、初等不等式的解法、基本不等式的应用上则要力求掌握。
什么是基本的、必须要掌握的呢?有一个比较简单的方法来确认,就是看教材的目录。
比如从不等式这一章教材目录上看,不等式的性质是基础;不等式的解法是重点(一元二次不等式的解法则是重中之重);对基本不等式则需思考:何为“基本”?在数学中如何体现出来;而不等式的证明仅是供学有余力的同学选用,这样在复习时方向就明确了,有利于合理分配时间与精力。
我们还可以将上述看目录的方法延伸到整个教材,来看章节之间的联系,体会数学知识的内在联系。
学会梳理、形成能力仍以不等式为例。
1.追根溯源,梳理知识我们可以从溯源开始,即知识是如何发现、发生、发展与其他知识之间的关系如何。
比较准则是不等式知识的源头,很多问题最后都会归于比较准则。
如下例:例 1:比较 |a+b|/1+|a+b|与|a|/1+|a|+ |b|/1+|b|的大小由比较准则可知:a>b,c>0→ac>bc(不等式性质 3),在上述基础上可知:若a>b>0,m>0→am>bm→ab+am>ab+bm→b+m/a+m>b/a(两边同时乘 1/a(a+m))因为:|a+b|≤|a|+|b|→ |a+b|/1+|a+b| ≤|a|+|b|/1+|a|+|b|= |a|/1+|a|+|b| + |b|/1+|a|+|b|≤|a|/1+|a| + |b|/1+|b|因此|a+b|/1+|a+b|≤|a|/1+|a| + |b|/1+|b|从上述过程可以发现,复杂、未知的数学问题总是可以通过不断的转化,回归到基本的问题。
高考数学试题中常用的思想方法

高考数学试题中常用的思想方法作者:吴小建来源:《考试周刊》2014年第03期一、函数与方程的思想函数与方程构成了中学数学代数知识体系的主体,所谓函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质分析问题、转化问题,从而使问题获得解决.函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题;所谓方程思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质分析、转化问题,使问题获得解决.方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系.二、数形结合思想所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:1)实数与数轴上的点的对应关系;2)函数与图像的对应关系;3)曲线与方程的对应关系;4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等;5)所给的等式或代数式的结构含有明显的几何意义.数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.数形结合的思想包含“以形助数”和“以数轴形”两方面.两方面相辅相成,互为补充,利用数形结合的思想解题能把抽象的数量关系与直观的几何图形建立关系,从而使问题在解答过程中更加形象化、直观化.三、分类讨论思想所谓分类讨论就是当问题所给的对象不能进行统一研究时,需要根据问题的条件和结论所涉及的概念、定理、公式、性质及运算的需要,图形的位置等进行科学合理的分类,然后对每一类分别研究,得出每一类的结论,最后结合各类的结果,得到整个问题的解答.由此可见,分类讨论思想本质上是一种“逻辑划分思想”,即把所要研究的数学对象划分成若干不同的情形,再分类进行研究和求解的一种数学思想.它也是一种重要的化难为易、化繁为简的解题策略和方法,体现了化整为零、积零为整的思想.有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人思维的条理性和概括性,所以分类讨论是解决问题的一种逻辑方法是常见的数学思想方法之一,它把由于某种原因原本变幻不定的数学问题,分解成若干个相对确定的问题,并实行各个击破,从而获得完整的解答.当所研究的问题含有参数时,往往要对参数进行讨论,分类时要全面,本着“不重复、不遗漏”的原则进行.最后要有概括性的总结,叙述时力争做到条理简洁,语言精练.分类讨论问题是历年高考试题中的热点问题之一,它能很好地考查学生对数学知识的理解和掌握及逻辑思维能力,在高考试题中占有重要的位置.四、变换与转化思想点评:根据已知条件,建立以参数为主元的不等式是一个转化的数学思想,通过转化就于利用一次函数f(m)的单调性解决问题,体现了函数与不等式之间的转化关系.。
高三数学复习计划

高三数学复习计划高考数学复习是一项系统工程,如何进行有效的复习,针对我校的实际情况,下面谈谈我们的做法。
一、夯实解题基本功高考数学题很多源于课本,因此要依据教学大纲和考试大纲,强化基础知识的落实和巩固。
注重对课本例题、习题的演变训练,将课本内容延伸、提高。
数学高考历来重视运算能力,运算要熟练、准确,运算要简捷、迅速,运算要与推理相结合,要合理,并且在复习中要有意识地养成书写规范,表达准确的良好习惯。
二、不依靠题海取胜,注重题目的质量和处理水平由于复习的时间紧任务重,要避免题海战术,教学要精心备课,选择典型例题,使学生少走弯路。
对立意新颖、结构精巧的新题予以足够的重视,要保证有相当数量的这类题目,但也不一味排斥一些典型的所谓“新题”、“热题”。
传统的好题,应足够重视,陈题新解、熟题重温可使学生获得新的感受和乐趣。
要特别重视讲评试卷的方法和技巧。
三、分层辅导,强化训练1.对于优生(90分以上),我们组建了培优班,由6个文科班中的数学前40-50名同学组成,培优的目的主要是能使这些优秀的学生在高考中数学成绩稳定在115分左右,部分学生能超过125分。
培优是对重点知识内容深化,是使他们既能熟练掌握,又能灵活应用,并在解题过程中,不断强化、固化。
同时还要培养他们的应试技巧。
2.对于中等生(65-90分,比例较大),我们组建了两个提高班。
主要针对中上等学生和只有数学单科较弱的中等学生群体,帮助他们树立学习数学的兴趣并改变数学拖后腿的现象。
中等生的提高意味着上线率的提高,对此我们十分的重视。
提高班的主要目的是加强对“基本知识、基本技能、基本方法”能力培养,以强化解题方法、解题思路为主,讲解选择题、填空题、解答题中的基础题得分技巧。
对重点、难点、疑点、误点、弱点、考点进行强化训练。
3.对于学数学有困难的学生(主要集中在2,5,6班,数学成绩在30分以下),我们本着“不抛弃,不放弃”的原则,以课本为主,强化数学知识的概念、定理、公式、法则,加以理解,要求记忆、默写,并会简单应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从高考试题看数学思想方法的复习玉环教研室林法玉环实验学校叶回新一、高考对数学思想方法的要求1、《考试大纲》、《考试说明》的要求“数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值”(《考试说明》(理科,2007年)数学思想和方法,是对数学知识在更高层次的抽象和概括,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想和方法的理解;要从学科整体意义和思想价值上立意,注意通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.”(《考试大纲》(理科,2007年)2、高考评价报告要求“在高考命题时,以经常使用的重要数学思维方法常编制解答题给予重点考查,而选择题与填空题则鼓励考生积极思维,选择最佳思维方法,优化解答过程,减少解答时间,并以此指导中学数学加强思维方法的教学,提高考生的思维水平.”(2007年教育部考试中心《高考数学测量理论与实践》).3、考试中心对教学与复习的建议“数学思想方法较之数学基础知识有更高的层次.具有观念性的地位,如果说数学知识是数学内容,可用文字和符号来记录和描述,那么数学思想方法则是数学意识,只能领会、运用,属于思维的范畴,用以对数学问题的认识、处理和解决,中学数学思想和方法有数形结合思想,函数和方程思想,分类讨论思想,化归和转化思想”“数学思想方法与数学基本方法常常在学习、掌握数学知识的同时获得,与此同时又应该领会它们在形成知识中的作用,到了复习阶段应该对数学思想方法和数学基本方法进行疏理、总结,逐个认识它们的本质特征、思维程序或者操作程序,逐步做到自觉地、灵活地施用于所要解决的问题.近几年来,高考的每一道数学试题几乎都考虑到数学思想方法或数学基本方法的运用,目的也是加强这些方面的考查.同样,这些高考试题也成为检验数学知识,同时又是检验数学思想方法的良好素材,复习时可以有意识地加以运用.”二、数学思想方法的三个层次数学思想方法可分为三个层次,其主要内容如下表三、近三年浙江高考试题对数学思想考查的分布情况四、用数学思想指导问题解决1、函数与方程思想考试中心对考试大纲的说明中指出:“高考把函数与方程的思想作为七种思想方法的重点来考查,使用选择题和填空题考查函数与方程思想的基本运算,而在解答题中,则从更深的层次,在知识的网络的交汇处,从思想方法与相关能力相综合的角度进行深入考查。
”什么是函数和方程思想?简单地说,就是学会用函数和变量来思考,学会转化已知与未知的关系,在解题时,用函数思想做指导就需要把字母看作变量,把代数式看作函数,利用函数的性质做工具进行分析,或者构造一个函数把表面上不是函数的问题化归为函数问题.用方程思想做指导就需要把含字母的等式看作方程,研究方程的根有什么要求.著名数学家克莱因说“一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考”.一个学生仅仅学习了函数的知识,他在解决问题时往往是被动的,而建立了函数思想,才能主动地去思考一些问题.建立函数思想是中学数学教学的重要课题,因为函数思想是中学数学,特别是高中数学的主线,函数思想的建立使常量数学进入了变量数学,中学数学中的初等函数、三角函数、数列以及解析几何都可以归结为函数,尤其是导数的引入为函数的研究增添了新的工具.因此,在数学教学中注重函数思想是相当重要的.对函数和方程思想的考查,主要是考查能不能用函数和方程思想指导解题,在用函数和方程思想指导解题时要经常思考下面一些问题:---是否需要把一个代数式看成一个函数? ---是否需要把字母看作变量?---如果把一个代数式看成了函数,把一个或几个字母看成了变量,那么这个函数有什么性质?----如果一个问题从表面上看不是一个函数问题,能否构造一个函数来帮助解题? ----是否需要把一个等式看作为一个含未知数的方程?----如果是一个方程,那么这个方程的根(例如根的虚实,正负,范围等)有什么要求?(1)在解题中形成方程意识将所求的量(或与所求的量相关的量)设成未知数,用它表示问题中的其它各量,根据题中的等量关系,列出方程,通过解方程或对方程进行研究,以求得问题的解决。
例1(天津理10)设两个向量22(2,cos )a λλα=+- 和(,sin ),2m b m α=+ 其中,,m λα为实数.若2,a b = 则mλ的取值范围是 ( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]- 例2、(全国1理12)函数22()cos 2cos2xf x x =-的一个单调增区间是 A .2(,)33ππB .(,)62ππC .(0,)3π D .(,)66ππ- 例3、(上海文8)某工程由A B C D ,,,四道工序组成,完成它们需用时间依次为254x ,,,天.四道工序的先后顺序及相互关系是:A B ,可以同时开工;A 完成后,C 可以开工;B C ,完成后,D 可以开工.若该工程总时数为9天,则完成工序C 需要的天数x 最大是 3 .例4、(浙江理9文10)已知双曲线22221(00)x y a b a b -=>>,的左、右焦点分别为1F ,2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab = ,则双曲线的离心率是( )C.2D.3该等量关系转换成等于a 、b 、c 的关系等式,即可转换得关于未知量e 的方程,解方程即得e 的取值。
(2)在解题中形成函数意识在解题中,要对所给的问题观察、分析、判断并善于挖掘题目中的条件,构造出恰当的函数解析式、妙用函数的性质。
例6、对于满足0≤p≤4的一切实数,不等式x 2+px >4x +p -3恒成立,试求x 的取值范围一例,我们习惯上把x 当作自变量,构造函数y =x 2+(p -4)x +3-p,于是问题转化为:当p∈[0,4]时,y >0恒成立,求x 的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的.如果把p 看作自变量,x 视为参数,构造函数y =(x -1)p +(x 2-4x +3),则y 是p 的一次函数,就非常简单.即令 f(p)=(x -1)p +(x 2-4x +3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x 的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x 的不等式组来达到求解的目的.又如,已知(3x 4+7x 3+4x 2-7x -5)5·(3x 4-7x 3+4x 2+7x -5)5=a 0+a 1x +a 2x 2+…+a 40x 40,试求a 0+a 2+a 4+…+a 40的值.此题的第一感觉,可能会联想到二项式定理,但是仔细观察会发现左边并不是某两个二项式的展开式.但比较一下对应项的系数,不难发现,它们的偶次幂项的系数都相等,而x 的奇次幂项的系数互为相反数,联想到函数的奇偶性便不难解决.例5、(浙江文21)(本题15分)如图,直线y =kx +b 与椭圆2214x y +=交于A 、B 两点,记△AOB 的面积为S .(I)求在k =0,0<b <1的条件下,S 的最大值; (Ⅱ)当|AB |=2,S =1时,求直线AB 的方程. (3)、在求变量取值范围中形成不等式的意识数学中很多变量的范围往往可将它们间的关系建立一个不等式通过解不等式即可求得。
例7、双曲线12222=-b y a x (a >0,b >0)离心率e=332,过点A (0,-b )和B (a,0)的直线与原点间距离为23。
(1)求双曲线方程;(2)若直线l:y=kx+m(k 0≠,m 0≠)与双曲线交于不同的两点C 、D ,且C 、D 两点都在以A 为圆心的圆上,求函数m=f(k)的解析式及值域。
分析:第二问只要利用韦达定理找出CD 的中点M ,连接MA 的直线与CD 互相垂直得关于mk 的等量关系,再把这个等量关系转换成关于m 的式子代入 组成等量关系和不等量关系式组解这个不等式组即得m 的范围。
方程问题、不等式问题、和某些代数问题都可以转化为函数知识。
且涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,是高考中考查的重点,所以在教学中我们应高度重视。
例8、(山东理)设函数2()ln(1)f x x b x =++,其中0b ≠.(Ⅰ)当12b >时,判断函数()f x 在定义域上的单调性; (Ⅱ)求函数()f x 的极值点;(Ⅲ)证明对任意的正整数n ,不等式23111ln 1n n n⎛⎫+>-⎪⎝⎭都成立. 【分析】函数的单调性、导数的应用、不等式的证明方法。
(I)通过判断导函数的正负来确定函数的单调性是'()0f x >是12b >和定义域()1,-+∞共同作用的结果;(II )需要分类讨论,由(I )可知分类的标准为11,0,0.22b b b ≥<<<(III )构造新函数为证明不等式“服务”,构造函数的依据是不等式关系中隐含的易于判断的函数关系。
用导数解决函数的单调性问题一直是各省市高考及各地市高考模拟试题的重点,究其原因,应该有三条:这里是知识的交汇处,这里是导数的主阵地,这里是思维的制高点.此类问题的一般步骤都能掌握,但重要的是求导后的细节问题------参数的取值范围是否影响了函数的单调性?因而需要进行分类讨论判断:当参数给出了明确的取值范围后,应根据()f x 导函数的特点迅速判断'()0f x >或'()0f x <。
参数取某些特定值时,可直观作出判断,单列为一类;不能作出直观判断的,再分为一类,用通法解决.另外要注意由'()0f x =求得的根不一定就是极值点,需要判断在该点两侧的异号性后才能称为 “极值点”. 例9、(福建理)已知函数()e xf x kx x =-∈R , (Ⅰ)若e k =,试确定函数()f x 的单调区间;(Ⅱ)若0k >,且对于任意x ∈R ,()0f x >恒成立,试确定实数k 的取值范围; (Ⅲ)设函数()()()F x f x f x =+-,求证:12(1)(2)()(e2)()nn F F F n n +*>+∈N .本小题主要考查函数的单调性、极值、导数、不等式等基本知识,考查运用导数研究函数性质的方法,考查分类讨论、化归以及数形结合等数学思想方法,考查分析问题、解决问题的能力. 2、数形结合思想数形结合思想是一种很重要的数学思想,数与形是事物的两个方面,正是基于对数与形的抽象研究才产生了数学这门学科,才能使人们能够从不同侧面认识事物,华罗庚先生说过:“数与形本是两依倚,焉能分作两边飞. 数缺形时少直观, 形少数时难入微.”.把数量关系的研究转化为图形性质的研究,或者把 图形性质的研究转化为数量关系的研究,这种解决问题过程中“数”与“形”相互转化的研究策略,就是数形结合的思想。