各种核反应堆
第四代核能介绍

第四代核能介绍面对能源危机、雾霾围城,核能以绿色、高效、低碳排放和可规模生产的突出优势,成为较为理想的替代能源。
作为一种可大规模替代化石燃料的清洁能源,核能在目前的世界能源结构中占有重要地位。
然而,由于现有大规模应用的热中子反应堆存在资源利用率低、放射性废物不断积累和潜在核安全问题,开发更加清洁、高效、安全的新型核能系统对核能可持续发展意义重大。
2014年1月,“第四代核能系统国际论坛组织(GIF)”官方发布的“第四代核能系统技术路线更新图”,选出了6种创新反应堆概念及其支持性的燃料循环供进一步的合作研究与开发。
一:气冷快堆(GFR)——快中子谱、氦冷反应堆和闭合燃料循环;二:超高温反应堆(VHTR)——采用一次通过式铀燃料循环的石墨慢化氦冷反应堆;三:超临界水冷反应堆(SCWR)——在水的热力学临界点以上运行的高温高压水冷反应堆;四:钠冷快堆(SFR)——快中子谱、钠冷堆和有效管理锕系元素和转化铀-238的闭式燃料循环;五:铅冷快堆(LFR)——快中子谱、铅或铅/铋低共熔液态金属冷却反应堆和有效转化铀-238和管理锕系元素的闭合燃料循环;六:熔盐反应堆(MSR)——在超热中子谱反应堆中用循环的熔盐燃料混合物生产裂变电力和使用全部锕系元素再循环的燃料循环。
以上反应堆预计在今后30年内可投入使用。
相对的优点包括基建费用减少,核安全性提高,核废物产生量最小,并且进一步减小了武器材料扩散的风险。
而其中,铅基反应堆备受关注。
铅基材料(铅、铅铋或铅锂合金等)作为反应堆冷却剂,能使反应堆的物理特性和安全运行具有显著优势,铅基反应堆主要特点如下。
第一,中子经济性优良,发展可持续性好。
铅基材料具有低的中子慢化能力及小的俘获截面,因此铅基反应堆可设计成较硬的中子能谱而获得优良的中子经济性,可利用更多富余中子实现核废料嬗变和核燃料增殖等多种功能,也可设计成长寿命堆芯,不仅能提高资源利用率和经济性,也有利于预防核扩散。
核反应堆及发展

核反应堆的类型核电站中的反应堆设计具有多样性,也就是说,核反应堆具有不同类型,相应形成不同的核电站。
可以利用下列三个特点表征不同类型的反应堆。
第一,所用的核燃料可以是天然铀或浓缩铀、钮或钍;第二,使用不同类型的冷却剂,可以是水、二氧化碳、氮气或钠;第三,用于控制链式反应中释放的中子能量的慢化剂,可以是石墨、重水或轻水(即普通水)。
下面就是迄今国际上核电站常用的4种核反应堆型。
压水堆是以加压轻水作为慢化剂和冷却剂,且水在堆内不沸腾的核反应堆。
目前以压水堆为热源的核电站,在核电站机组数量和装机容量方面都处于领先地位。
沸水堆是以沸腾轻水为慢化剂和冷却剂并在反应堆压力容器内直接产生饱和蒸汽的核反应堆。
沸水堆与压水堆同属轻水堆,都具有结构紧凑、安全可靠、建造费用低和负荷跟随能力强等优点。
它们都需使用低富集铀作燃料。
以沸水堆为热源的核电站在未来市场中仍将占有显著的地位。
重水堆是以重水作为慢化剂,轻水或重水作为冷却剂的核反应堆,可以直接利用天然铀作为核燃料。
重水堆分压力容器式和压力管式两类。
重水堆核电站是发展较早的核电站,但已实现工业规模的只有加拿大发展起来的坎杜型压力管式重水堆核电站。
快堆是由快中子引起链式裂变反应的核反应堆。
快堆在运行中既消耗裂变材料,又生产新裂变材料,而且所产可多于所耗,能实现核裂变材料的增殖。
专家预计,快堆未来的发展将会加快起来。
前景看好的快堆现在世界上所运行的绝大多数反应堆是热中子堆,或者说是非增殖堆型,利用的只是铀-235,而天然铀将近99.3%是难裂变的铀-238,所以这些堆型对铀资源的利用率只有1 %~2%。
但在快堆中,铀-238 原则上都能通过核反应转变成易裂变的钮-239而得以使用。
即使考虑到各种损耗,快堆总体上可将铀资源的利用率提高到60%~70%,也可使核废料产生量得到最大程度的降低,实现放射性废物最小化。
具体点说,在堆芯燃料钮-239的外围再生区里放置铀-238,通过钮-239产生的裂变反应时放出来的快中子,使铀-238吸收一个中子后,发生连续两次8衰变后,铀-238很快被转变成钮-239,同时产生了能量,如此核反应下去,能够源源不断地将铀-238转变成可用的燃料钮-239。
核反应堆结构-4

控制棒导向管 : 在标准的17×17燃料组件中,导向管占据24个栅元, 它们为控制棒插入和抽出提供导向的通道,导向管 由一整根锆-4合金管子制成.其下段在第一和第二 格架之间直径缩小,在紧急停堆时,当控制棒在导 向管内接近行程底部时,它将起缓冲作用,缓冲段 的过渡区呈锥形,以避免管径过快变化,在过渡区 上方开有流水孔,在正常运行时有一定的冷却水流 入管内进行冷却,而在紧急停堆时水能部分地从管 内流出,以保证控制棒的冲击速度被限制在棒束控 制组件最大的容许速度之内,又使缓冲段内因减速 而产生的最大压力引起导向管的应力不超过最大许 用应力.缓冲段以下在第一层格架的高度处,导向 管扩径至正常管径,使这层格架与上面各层格架以 相同的方式与导向管相连.
导向管与下管座的连接借助其螺纹塞头来实现,螺 纹塞头的端部带有一个卡紧的薄圆环,用胀管工具 使圆环机械地变形并镶入管座内带凹槽的扇形孔中; 螺纹塞头旋紧在合金端塞的螺孔中将导向管锁紧在 下管座中. 组件重量和施加在组件上的轴向载荷,经导向管传 递,通过下管座分部到堆芯下栅格板上.燃料组件 在堆芯中的正确定位由对角线上两个支撑脚上的孔 来保征,这两个孔和堆芯下栅格板上的两个定位销 相配合,作用在燃料组件上的水平载荷通过定位销 传送到堆芯支承结构上.
核燃料组件的"骨架"结构
前面已经讲到17×17型压水堆核燃料组件是由 包括定位格架,控制棒导向管,中子通量测量管, 上管座和下管座所组成的"骨架"结构和核燃料元 件组成. 定位格架 作用:燃料组件中,燃料棒沿长度方向由八层格架 夹住定位,这种定位使棒的间距在组件的设计寿期 内得以保持.格架的加紧力设计成既使可能发生的 振动减到最小,又允许有不同的热膨胀滑移,也不 致引起包壳的超应力. 结构外形:格架由锆-4合金条带制成,呈17×17正 方栅格排列,条带的交叉处用电子束焊双边点焊连 接,外条带比内条带厚,内条带的端部焊在条带上, 外条带端部由三道焊缝连接;使格架能在运输及装 卸操作过程中很好地保护燃料棒.
核聚变反应堆的简介

核聚变反应堆的简介
核聚变反应堆是一种利用轻核素(例如氢和氦)在高温高压下发生核融合反应,并释放大量能量的设备。
与核裂变反应堆不同的是,核聚变反应堆不会产生高放射性废物,也不会造成核泄漏或融毁等类似事故。
核聚变反应堆的主要部件包括等离子体炉、磁约束系统、加热系统、燃料循环系统、辐射屏蔽系统等。
其中,等离子体炉是核聚变反应堆的核心组成部分,是实现高温高压等离子体状态的设备。
磁约束系统则用于控制等离子体的位置和稳定性,避免等离子体与反应堆壁产生接触。
加热系统则是用来提供等离子体热能的,通常使用的是强大的激光束或微波束。
燃料循环系统的主要作用是将反应堆中产生的氦等废物移除,以及为反应提供新的燃料。
辐射屏蔽系统则用于防止反应堆放出的辐射对人和环境造成伤害。
目前,核聚变反应堆仍处于研究和发展的阶段,但其潜在的能源贡献和环境效益都十分巨大,值得我们继续努力发展和完善。
- 1 -。
各种核反应堆.doc

各种核反应堆热堆的概念中子打入铀-235的原于核以后,原子核就变得不稳定,会分裂成两个较小质量的新原子核,这是核的裂变反应,放出的能量叫裂变能;产生巨大能量的同时,还会放出2~3个中子和其它射线。
这些中子再打入别的铀-235核,引起新的核裂变,新的裂变又产生新的中子和裂变能,如此不断持续下去,就形成了链式反应利用原子核反应原理建造的反应堆需将裂变时释放出的中子减速后,再引起新的核裂变,由于中子的运动速度与分子的热运动达到平衡状态,这种中子被称为热中子。
堆内主要由热中子引起裂变的反应堆叫做热中子反应堆(简称热堆)。
热中子反应堆,它是用慢化剂把快中子速度降低,使之成为热中子(或称慢中子),再利用热中子来进行链式反应的一种装置。
由于热中子更容易引起铀-235等裂变,这样,用少量裂变物质就可获得链式裂变反应。
慢化剂是一些含轻元素而又吸收中子少的物质,如重水、铍、石墨、水等。
热中子堆一般都是把燃料元件有规则地排列在慢化剂中,组成堆芯。
链式反应就是在堆芯中进行的。
反应堆必须用冷却剂把裂变能带出堆芯。
冷却剂也是吸收中子很少的物质。
热中子堆最常用的冷却剂是轻水(普通水)、重水、二氧化碳和氦气。
核电站的内部它通常由一回路系统和二回路系统组成。
反应堆是核电站的核心。
反应堆工作时放出的热能,由一回路系统的冷却剂带出,用以产生蒸汽。
因此,整个一回路系统被称为“核供汽系统”,它相当于火电厂的锅炉系统。
为了确保安全,整个一回路系统装在一个被称为安全壳的密闭厂房内,这样,无论在正常运行或发生事故时都不会影响安全。
由蒸汽驱动汽轮发电机组进行发电的二回路系统,与火电厂的汽轮发电机系统基本相同。
轻水堆――压水堆电站自从核电站问世以来,在工业上成熟的发电堆主要有以下三种:轻水堆、重水堆和石墨汽冷堆。
它们相应地被用到三种不同的核电站中,形成了现代核发电的主体。
目前,热中子堆中的大多数是用轻水慢化和冷却的所谓轻水堆。
轻水堆又分为压水堆和沸水堆。
核反应堆的主要类型

目前,在以发电为目的的核能动力领域,世界上应用比较普遍或具有良好发展前景的,主要有压水堆(PWR)、沸水堆(BWR)、重水堆(PHWR)、高温气冷堆(HTGR)和快中子堆(LMFBR)五种堆型。
一、压水堆压水堆(PWR)最初是美国为核潜艇设计的一种热中子堆堆型。
四十多年来,这种堆型得到了很大的发展,经过一系列的重大改进,.己经成为技术上最成熟的一种堆型。
压水堆核电站采用以稍加浓铀作核然料,燃料芯块中铀-235的富集度约3%。
核燃料是高温烧结的圆柱形二氧化铀陶瓷燃料芯块。
柱状燃料芯块被封装在细长的铬合金包壳管中构成燃料元件,这些燃料元件以矩形点阵排列为燃料组件,组件横断面边长约20cm,长约3m。
几百个组件拼装成压水堆的堆芯。
堆芯宏观上为圆柱形。
压水堆的冷却剂是轻水。
轻水不仅价格便宜,而且具有优良的热传输性能。
所以在压水堆中,轻水不仅作为中子的慢化剂.同时也用作冷却剂。
轻水有一个明显的缺点,就是沸点低。
要使热力系统有较高的热能转换效率,根据热力学原理.核反应堆应有高的堆芯出口温度参数:要获得高的温度参数,就必须增加冷却剂的系统压力使其处于液相状态。
所以压水堆是一种使冷却剂处于高压状态的轻水堆。
压水堆冷却剂入口水温一般在290℃左右,出口水温330℃左右,堆内压力15.5MPa大亚湾核电站就是一座压水堆核电站。
高温水从压力容器上部离开反应堆堆芯以后,进入蒸汽发生器,如图1-7所示。
压水堆堆芯和蒸汽发生器总体上像一台大锅炉,核反应堆堆芯内的燃料元件相当于加热炉,而蒸汽发生器相当于生产蒸汽的锅,通过冷却剂回路将锅与炉连接在一起。
冷却剂从蒸汽发生器的管内流过后,经过冷却剂回路循环泵又回到反应堆堆芯。
包括压力容器、蒸汽发生器、主泵、稳压器及有关阀门的整个系统,是冷却剂回路的压力边界。
它们都被安置在安全壳内,称之为核岛。
蒸汽发生器内有很多传热管,冷却剂回路和二回路通过蒸汽发生器传递热量。
传热管外为二回路的水,冷却剂回路的水流过蒸汽发生器传热管内时,将携带的热量传输给二回路内流动的水,从而使二回路的水变成280℃左右的、6-7MPa的高温蒸汽。
各种反应堆的原理

各种反应堆的原理反应堆是利用核能产生能量的设备,它可以利用核裂变或核聚变产生巨大的热能,然后通过控制和引导这些能量来产生蒸汽,最后驱动涡轮机发电。
下面将介绍几种常见的反应堆类型及其原理。
1.压水堆核反应堆(PWR)压水堆核反应堆是最常见的商业核电站反应堆类型之一、其原理是利用浓缩的铀燃料棒产生热能,同时也会产生中子。
这些中子与水中的轻水分子相互作用,使其产生热,然后通过传热器将热能转移到给水中。
这个给水经过加热后变成高温高压的蒸汽,然后驱动涡轮机发电。
2.沸水堆核反应堆(BWR)沸水堆核反应堆也是一种商业化运行的核反应堆类型。
其原理是使用浓缩的铀燃料棒,通过核裂变产生的热能直接将水变成蒸汽。
由于直接使用水作为冷却剂和工质,它不需要传热器。
生成的蒸汽直接送入涡轮机来驱动发电机。
3.高温气冷堆核反应堆(HTGR)高温气冷堆核反应堆是一种利用高温气体冷却的堆芯来产生热能的反应堆。
其原理是使用固体燃料,如石墨或陶瓷颗粒,通过核裂变释放热能。
然后通过冷却剂,如氦气,高温液体金属等,将热能转移到热交换器中,并最终转化为蒸汽使发电机运行。
4.快中子反应堆(FBR)快中子反应堆是一种使用高能快中子进行核裂变的堆芯的反应堆。
其原理是利用高质量的钚或钍等燃料产生大量的中子,然后利用这些中子进行核裂变,产生大量的热能。
该反应堆同时可以产生额外的燃料,这使它具有较高的燃料利用率。
石墨、钠、铅和氦等可以用作冷却剂。
5.离子迁移反应堆(IMR)离子迁移反应堆是一种采用离子迁移材料来促进和控制核裂变反应的反应堆。
它使用离子迁移膜,通过离子的迁移使核反应堆得到加速或减速。
通过使用这种材料,离子迁移反应堆可以更好地控制裂变反应速率,使燃料的使用效率更高。
以上是一些常见的反应堆类型及其原理。
各种反应堆根据不同的设计目标和应用需求,采用不同的结构、燃料和冷却剂等技术,但它们的基本原理都是通过控制和利用核能产生热能,然后将其转化为电能。
核反应堆的原理和分类

核反应堆的原理和分类随着全球能源需求的不断增长,核能作为一种清洁、高效的能源形式越来越受到重视。
而核反应堆作为核能产生的关键设备,其原理和分类种类也备受关注。
一、核反应堆的原理核反应堆是一种利用核裂变或核聚变反应释放出来的能量,以产生热能或电能的机器。
其主要原理是通过核裂变或核聚变反应,使得核燃料中的原子核不断分裂或合并,从而释放出大量的能量。
通过将这些能量转换为热能,再利用热能驱动涡轮发电机,最终转化为电能。
核反应堆的燃料主要为铀或钚等放射性元素,而核反应的过程中,放射性物质会释放出大量的热能,同时也会产生各种类型的放射线,包括α、β、γ等。
因此,在核反应堆中进行核反应时,必须采取防护措施,保护人员和环境免受辐射的危害。
二、核反应堆的分类根据核反应堆所使用的核燃料和反应方式的不同,核反应堆可以分为以下几种分类。
1. 核裂变反应堆核裂变反应堆是目前应用最广泛的核反应堆。
它利用铀、钚等放射性元素的原子核发生核裂变,释放出大量的热能和中子,从而驱动涡轮发电机,产生电能。
目前,核裂变反应堆主要采用的是铀-235作为核燃料。
核裂变反应堆又可以分为自持续反应堆和非自持续反应堆。
自持续反应堆在反应中可以自我调节中子产生率,从而保持反应的平衡状态;而非自持续反应堆则需要用中子反射体、控制杆等来控制核反应的速率和强度。
2. 核聚变反应堆核聚变反应堆是一种通过将两个氢原子核合并成一个氦原子核释放出能量的反应堆。
核聚变反应堆利用的是轻核聚变能力较高的氢、氘、氚等,具有较高的能量密度和不污染环境的优点。
但是,目前尚未研究出一种能够解决核聚变反应中产生的高温、高压等技术难题,因而核聚变反应堆目前还处于实验室阶段。
3. 热中子反应堆热中子反应堆是一种利用热中子慢化反应进行核裂变的反应堆。
反应堆的燃料主要为铀-235或钚等放射性元素,反应过程中所生成的中子会与中子反射体进行碰撞,因而减少了中子速度,使得中子能更容易地被燃料吸收,从而达到治理核反应的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种核反应堆热堆的概念中子打入铀-235的原于核以后,原子核就变得不稳定,会分裂成两个较小质量的新原子核,这是核的裂变反应,放出的能量叫裂变能;产生巨大能量的同时,还会放出2~3个中子和其它射线。
这些中子再打入别的铀-235核,引起新的核裂变,新的裂变又产生新的中子和裂变能,如此不断持续下去,就形成了链式反应利用原子核反应原理建造的反应堆需将裂变时释放出的中子减速后,再引起新的核裂变,由于中子的运动速度与分子的热运动达到平衡状态,这种中子被称为热中子。
堆内主要由热中子引起裂变的反应堆叫做热中子反应堆(简称热堆)。
热中子反应堆,它是用慢化剂把快中子速度降低,使之成为热中子(或称慢中子),再利用热中子来进行链式反应的一种装置。
由于热中子更容易引起铀-235等裂变,这样,用少量裂变物质就可获得链式裂变反应。
慢化剂是一些含轻元素而又吸收中子少的物质,如重水、铍、石墨、水等。
热中子堆一般都是把燃料元件有规则地排列在慢化剂中,组成堆芯。
链式反应就是在堆芯中进行的。
反应堆必须用冷却剂把裂变能带出堆芯。
冷却剂也是吸收中子很少的物质。
热中子堆最常用的冷却剂是轻水(普通水)、重水、二氧化碳和氦气。
核电站的内部它通常由一回路系统和二回路系统组成。
反应堆是核电站的核心。
反应堆工作时放出的热能,由一回路系统的冷却剂带出,用以产生蒸汽。
因此,整个一回路系统被称为“核供汽系统”,它相当于火电厂的锅炉系统。
为了确保安全,整个一回路系统装在一个被称为安全壳的密闭厂房内,这样,无论在正常运行或发生事故时都不会影响安全。
由蒸汽驱动汽轮发电机组进行发电的二回路系统,与火电厂的汽轮发电机系统基本相同。
轻水堆――压水堆电站自从核电站问世以来,在工业上成熟的发电堆主要有以下三种:轻水堆、重水堆和石墨汽冷堆。
它们相应地被用到三种不同的核电站中,形成了现代核发电的主体。
目前,热中子堆中的大多数是用轻水慢化和冷却的所谓轻水堆。
轻水堆又分为压水堆和沸水堆。
压水堆核电站压水堆核电站的一回路系统与二回路系统完全隔开,它是一个密闭的循环系统。
该核电站的原理流程为:主泵将高压冷却剂送入反应堆,一般冷却剂保持在120~160个大气压。
在高压情况下,冷却剂的温度即使300℃多也不会汽化。
冷却剂把核燃料放出的热能带出反应堆,并进入蒸汽发生器,通过数以千计的传热管,把热量传给管外的二回路水,使水沸腾产生蒸汽;冷却剂流经蒸汽发生器后,再由主泵送入反应堆,这样来回循环,不断地把反应堆中的热量带出并转换产生蒸汽。
从蒸汽发生器出来的高温高压蒸汽,推动汽轮发电机组发电。
做过功的废汽在冷凝器中凝结成水,再由凝结给水泵送入加热器,重新加热后送回蒸汽发生器。
这就是二回路循环系统。
压水堆由压力容器和堆芯两部分组成。
压力容器是一个密封的、又厚又重的、高达数十米的圆筒形大钢壳,所用的钢材耐高温高压、耐腐蚀,用来推动汽轮机转动的高温高压蒸汽就在这里产生的。
在容器的顶部设置有控制棒驱动机构,用以驱动控制棒在堆芯内上下移动。
堆芯是反应堆的心脏,装在压力容器中间。
它是燃料组件构成的。
正如锅炉烧的煤块一样,燃料芯块是核电站“原子锅炉”燃烧的基本单元。
这种芯块是由二氧化铀烧结而成的,含有2~4%的铀-235,呈小圆柱形,直径为9.3毫米。
把这种芯块装在两端密封的锆合金包壳管中,成为一根长约4米、直径约10毫米的燃料元件棒。
把200多根燃料棒按正方形排列,用定位格架固定,组成燃料组件。
每个堆芯一般由121个到193个组件组成。
这样,一座压水堆所需燃料棒几万根,二氧化铀芯块1千多万块堆芯。
此外,这种反应堆的堆芯还有控制棒和含硼的冷却水(冷却剂)。
控制棒用银铟镉材料制成,外面套有不锈钢包壳,可以吸收反应堆中的中子,它的粗细与燃料棒差不多。
把多根控制棒组成棒束型,用来控制反应堆核反应的快慢。
如果反应堆发生故障,立即把足够多的控制棒插入堆芯,在很短时间内反应堆就会停止工作,这就保证了反应堆运行的安全。
轻水堆――沸水堆电站沸水堆核电站沸水堆核电站工作流程是:冷却剂(水)从堆芯下部流进,在沿堆芯上升的过程中,从燃料棒那里得到了热量,使冷却剂变成了蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,将分离出的蒸汽来推动汽轮发电机组发电。
沸水堆是由压力容器及其中间的燃料元件、十字形控制棒和汽水分离器等组成。
汽水分离器在堆芯的上部,它的作用是把蒸汽和水滴分开、防止水进入汽轮机,造成汽轮机叶片损坏。
沸水堆所用的燃料和燃料组件与压水堆相同。
沸腾水既作慢化剂又作冷却剂。
沸水堆与压水堆不同之处在于冷却水保持在较低的压力(约为70个大气压)下,水通过堆芯变成约285℃的蒸汽,并直接被引入汽轮机。
所以,沸水堆只有一个回路,省去了容易发生泄漏的蒸汽发生器,因而显得很简单。
总之,轻水堆核电站的最大优点是结构和运行都比较简单,尺寸较小,造价也低廉,燃料也比较经济,具有良好的安全性、可靠性与经济性。
它的缺点是必须使用低浓铀,目前采用轻水堆的国家,在核燃料供应上大多依赖美国和独联体。
此外,轻水堆对天然铀的利用率低。
如果系列地发展轻水堆要比系列地发展重水堆多用天然铀50%以上。
从维修来看,压水堆因为一回路和蒸汽系统分开,汽轮机未受放射性的沾污,所以,容易维修。
而沸水堆是堆内产生的蒸汽直接进入汽轮机,这样,汽轮机会受到放射性的沾污,所以在这方面的设计与维修都比压水堆要麻烦一些。
重水堆核电站重水堆按其结构型式可分为压力壳式和压力管式两种。
压力壳式的冷却剂只用重水,它的内部结构材料比压力管式少,但中子经济性好,生成新燃料钚-239的净产量比较高。
这种堆一般用天然铀作燃料,结构类似压水堆,但因栅格节距大,压力壳比同样功率的压水堆要大得多,因此单堆功率最大只能做到30万千瓦。
因为管式重水堆的冷却剂不受限制,可用重水、轻水、气体或有机化合物。
它的尺寸也不受限制,虽然压力管带来了伴生吸收中子损失,但由于堆芯大,可使中子的泄漏损失减小。
此外,这种堆便于实行不停堆装卸和连续换料,可省去补偿燃耗的控制棒。
压力管式重水堆主要包括重水慢化、重水冷却和重水慢化、沸腾轻水冷却两种反应堆。
这两种堆的结构大致相同。
(1) 重水慢化,重水冷却堆核电站这种反应堆的反应堆容器不承受压力。
重水慢化剂充满反应堆容器,有许多容器管贯穿反应堆容器,并与其成为一体。
在容器管中,放有锆合金制的压力管。
用天然二氧化铀制成的芯块,被装到燃料棒的锆合金包壳管中,然后再组成短棒束型燃料元件。
棒束元件就放在压力管中,它借助支承垫可在水平的压力管中来回滑动。
在反应堆的两端,各设置有一座遥控定位的装卸料机,可在反应堆运行期间连续地装卸燃料元件。
这种核电站的发电原理是:既作慢化剂又作冷却剂的重水,在压力管中流动,冷却燃料。
像压水堆那样,为了不使重水沸腾,必须保持在高压(约90大气压)状态下。
这样,流过压力管的高温(约300℃)高压的重水,把裂变产生的热量带出堆芯,在蒸汽发生器内传给二回路的轻水,以产生蒸汽,带动汽轮发电机组发电。
(2)重水慢化、沸腾轻水冷却堆核电站这种堆是英国在坝杜堆(重水慢化、重水冷却堆)的基础上发展起来的。
加拿大所设计的重水慢化重水冷却反应堆的容器和压力管都是水平布置的。
而重水慢化沸腾轻水冷却反应堆都是垂直布置的。
它的燃料管道内流动的轻水冷却剂,在堆芯内上升的过程中,引起沸腾,所产生的蒸汽直接送进汽轮机,并带动发电机。
因为轻水比重水吸收中子多,堆芯用天然铀作燃料就很难维持稳定的核反应,所以,大多数设计都在燃料中加入了低浓度的铀-235或钚-239。
重水堆的突出优点是能最有效地利用天然铀。
由于重水慢化性能好,吸收中子少,这不仅可直接用天然铀作燃料,而且燃料烧得比较透。
重水堆比轻水堆消耗天然铀的量要少,如果采用低浓度铀,可节省天然铀38%。
在各种热中子堆中,重水堆需要的天然铀量最小。
此外,重水堆对燃料的适应性强,能很容易地改用另一种核燃料。
它的主要缺点是,体积比轻水堆大。
建造费用高,重水昂贵,发电成本也比较高。
石墨气冷堆核电站所谓石墨气冷堆就是以气体(二氧化碳或氦气)作为冷却剂的反应堆。
这种堆经历了三个发展阶段,产生了三种堆型:天然铀石墨气冷堆、改进型气冷堆和高温气冷堆。
(1)天然铀石墨气冷堆核电站天然铀石墨气冷堆实际上是天然铀作燃料,石墨作慢化剂,二氧化碳作冷却剂的反应堆。
这种反应堆是英、法两国为商用发电建造的堆型之一,是在军用钚生产堆的基础上发展起来的,早在1956年英国就建造了净功率为45兆瓦的核电站。
因为它是用镁合金作燃料包壳的,英国人又把它称为镁诺克斯堆。
该堆的堆芯大致为圆柱形,是由很多正六角形棱柱的石墨块堆砌而成。
在石墨砌体中有许多装有燃料元件的孔道。
以便使冷却剂流过将热量带出去。
从堆芯出来的热气体,在蒸汽发生器中将热量传给二回路的水,从而产生蒸汽。
这些冷却气体借助循环回路回到堆芯。
蒸汽发生器产生的蒸汽被送到汽轮机,带动汽轮发电机组发电。
这就是天然铀石墨气冷堆核电站的简单工作原理。
这种堆的主要优点是用天然铀作燃料,其缺点是功率密度小、体积大、装料多、造价高,天然铀消耗量远远大于其他堆。
现在英、法两国都停止建造这种堆型的核电站。
(2)改进型气冷堆核电站改进型气冷堆是在天然铀石墨气冷堆的基础上发展起来的。
设计的目的是改进蒸汽条件,提高气体冷却剂的最大允许温度。
这种堆,石墨仍然为慢化剂,二氧化碳为冷却剂,核燃料用的是低浓度铀(铀-235的浓度为2-3%),出口温度可达670℃。
它的蒸汽条件达到了新型火电站的标准,其热效率也可与之相比。
这种堆被称为第二代气冷堆,英国建造了这种堆,由于存在不少工程技术问题,对其经济性多年来争论不休,得不出定论,所以前途暗淡。
(3)高温气冷堆高温气冷堆被称为第三代气冷堆,它是石墨作为慢化剂,氦气作为冷却剂的堆。
这里所说的高温是指气体的温度达到了较高的程度。
因为在这种反应堆中,采用了陶瓷燃料和耐高温的石墨结构材料,并用了惰性的氦气作冷却剂,这样,就把气体的温度提高到750℃以上。
同时,由于结构材料石墨吸收中子少,从而加深了燃耗。
另外,由于颗粒状燃料的表面积大、氦气的传热性好和堆芯材料耐高温,所以改善了传热性能,提高了功率密度。
这样,高温气冷堆成为一种高温、深燃耗和高功率密度的堆型。
它的简单工作过程是,氦气冷却剂流过燃料体之间,变成了高温气体;高温气体通过蒸汽发生器产生蒸汽,蒸汽带动汽轮发电机发电。
高温气冷堆有特殊的优点:由于氦气是惰性气体,因而它不能被活化,在高温下也不腐蚀设备和管道;由于石墨的热容量大,所以发生事故时不会引起温度的迅速增加;由于用混凝土做成压力壳,这样,反应堆没有突然破裂的危险,大大增加了安全性;由于热效率达到40%以上,这样高的热效率减少了热污染。
高温气冷堆有可能为钢铁、燃料、化工等工业部门提供高温热能,实现氢还原炼铁、石油和天然气裂解、煤的气化等新工艺,开辟综合利用核能的新途径。