三角形问题
三角形经典例题

三角形经典例题在数学几何学中,三角形是一种基本的几何形状。
本文将介绍三个经典的三角形例题,以帮助读者更好地理解和应用三角形的性质与定理。
1. 题目一:等边三角形的性质已知三角形ABC是一个等边三角形,AB = BC = AC。
证明:三角形ABC的三条高线、三条中线和三条角平分线重合于同一点,且该点是三角形ABC的重心。
解析:对于等边三角形ABC,易知三条高线、三条中线和三条角平分线都经过三个顶点的垂足。
我们需要证明这些垂足重合于同一点,且该点是三角形ABC的重心。
假设H1、H2、H3分别是三角形ABC三边对应的高线上的垂足,M1、M2、M3分别是三角形ABC三边上的中点,I1、I2、I3分别是三角形ABC三个内角的平分线与对边的交点。
首先,连接H1H2、M2M3和I1I2。
由于三角形ABC是等边三角形,所以AB = BC = AC。
根据垂直平分线定理,我们可以得到H1H2 =M2M3 = I1I2。
同理可证H2H3 = M1M3 = I2I3,H3H1 = M1M2 = I3I1。
接下来,我们需要证明H1、H2、H3、M1、M2、M3、I1、I2、I3九个点共线。
这可以通过应用帕斯卡定理进行证明。
帕斯卡定理说明了当六个点(如H1、H2、H3、M1、M2、M3)都在一个圆上时,它们所构成的六边形的对角相交于一点(如I1、I2、I3)。
因此,我们可以得出结论:等边三角形ABC的三条高线、三条中线和三条角平分线重合于同一点,且该点是三角形ABC的重心。
2. 题目二:三角形三边之间的关系已知三角形ABC,边长分别为a、b、c。
证明:存在一个不等式关系,即a + b > c。
解析:根据三角形的定义,三条边的长度必须满足两边之和大于第三边的要求。
下面我们来证明这一不等式关系。
假设a、b、c分别是三角形ABC的三条边的长度。
令a + b = k,其中k为常数。
根据题目要求,我们需要证明c > k成立。
解三角形图形类问题(十大题型)(原卷版)-2025数学一轮复习(含2024年高考真题+回归教材)

重难点突破02解三角形图形类问题目录01方法技巧与总结 (2)02题型归纳与总结 (2)题型一:妙用两次正弦定理(两式相除消元法) (2)题型二:两角使用余弦定理建立等量关系 (4)题型三:张角定理与等面积法 (5)题型四:角平分线问题 (6)题型五:中线问题 (7)题型六:高问题 (9)题型七:重心性质及其应用 (10)题型八:外心及外接圆问题 (12)题型九:两边夹问题 (13)题型十:内心及内切圆问题 (14)03过关测试 (15)解决三角形图形类问题的方法:方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.题型一:妙用两次正弦定理(两式相除消元法)【典例1-1】(2024·河南·三模)已知P 是ABC 内一点,π3π,,,44PB PC BAC BPC ABP ∠∠∠θ====.(1)若π,24BC θ=,求AC ;(2)若π3θ=,求tan BAP ∠.【典例1-2】ABC 的内角,,A B C 的对边分别为,,,a b c AD 为BAC ∠平分线,::2:c AD b =(1)求A ∠;(2)AD 上有点,90M BMC ∠= ,求tan ABM ∠.【变式1-1】如图,在平面四边形ABCD 中,90ACB ADC ∠=∠=︒,AC =30BAC ∠=︒.(1)若CD =BD ;(2)若30CBD ∠=︒,求tan BDC ∠.【变式1-2】(2024·广东广州·二模)记ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos cos b A a B b c -=-.(1)求A ;(2)若点D 在BC 边上,且2CD BD =,cos 3B =,求tan BAD ∠.【变式1-3】在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且2cos (cos cos )A c B b C a +=.(1)求角A ;(2)若O 是ABC 内一点,120AOB ∠=︒,150AOC ∠=︒,1b =,3c =,求tan ABO ∠.题型二:两角使用余弦定理建立等量关系【典例2-1】如图,四边形ABCD 中,1cos 3BAD ∠=,3AC AB AD ==.(1)求sin ABD ∠;(2)若90BCD ∠=︒,求tan CBD ∠.【典例2-2】如图,在梯形ABCD 中,AB CD ∥,AD ==(1)求证:sin C A =;(2)若2C A =,2AB CD =,求梯形ABCD 的面积.【变式2-1】(2024·全国·模拟预测)在锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2232cos 235cos22C C π⎛⎫=-- ⎪⎝⎭.(1)求角C ;(2)若点D 在AB 上,2BD AD =,BD CD =,求AC BC的值.【变式2-2】平面四边形ABCD 中,1AB =,2AD =,πABC ADC ∠+∠=,π3BCD ∠=.(1)求BD ;(2)求四边形ABCD 周长的取值范围;(3)若E 为边BD 上一点,且满足CE BE =,2BCE CDE S S =△△,求BCD △的面积.题型三:张角定理与等面积法【典例3-1】(2024·吉林·模拟预测)ABC 的内角,,A B C 的对边分别是,,a b c ,且sin sin sin A B a c C a b --=+,(1)求角B 的大小;(2)若3b =,D 为AC 边上一点,2BD =,且BD 为B ∠的平分线,求ABC 的面积.【典例3-2】(2024·黑龙江哈尔滨·二模)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知4b =,2cos sin cos tan b B A A c C=+.(1)求角B 的大小;(2)已知直线BD 为ABC ∠的平分线,且与AC 交于点D ,若3BD =,求ABC 的周长.【变式3-1】(2024·吉林通化·梅河口市第五中学校考模拟预测)已知锐角ABC 的内角,,A B C 的对边分别为,,a b c ,且sin sin sin sin a B C b c A C-=+-.(1)求B ;(2)若bB 的平分线交AC 于点D ,1BD =,求ABC 的面积.【变式3-2】(2024·江西抚州·江西省临川第二中学校考二模)如图,在ABC 中,4AB =,1cos 3B =,点D 在线段BC 上.(1)若3π4ADC ∠=,求AD 的长;(2)若2BD DC =,ACD sin sin BAD CAD ∠∠的值.题型四:角平分线问题【典例4-1】(2024·全国·模拟预测)已知在△ABC 中,内角,,A B C 的对边分别为,,a b c ,且6,60a A =∠=︒.(1)若AD 为BC 边上的高线,求AD 的最大值;(2)已知AM 为BC 上的中线,BAC ∠的平分线AN 交BC 于点N ,且sin tan 2cos A B A=-,求△AMN 的面积.【典例4-2】如图所示,在ABC 中,3AB AC =,AD 平分BAC ∠,且AD kAC =.(1)若2DC =,求BC 的长度;(2)求k 的取值范围;(3)若1ABC S =△,求k 为何值时,BC 最短.【变式4-1】在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知2π3A =,22cos c b ac C -=.(1)求tan C ;(2)作角A 的平分线,交边BC 于点D ,若AD =AC 的长度;(3)在(2)的条件下,求ABC 的面积.【变式4-2】已知ABC 的内角,,A B C 的对边分别为,,a b c ,其面积为S ,且()()sin sin sin 6a b c a A B C S+-++=(1)求角A 的大小;(2)若3,a BA AC A ∠=⋅=-的平分线交边BC 于点T ,求AT 的长.题型五:中线问题【典例5-1】如图,在ABC 中,已知2AB =,AC =,45BAC ∠=︒,BC 边上的中点为M ,点N 是边AC 上的动点(不含端点),AM ,BN 相交于点P .(1)求BAM ∠的正弦值;(2)当点N 为AC 中点时,求MPN ∠的余弦值.(3)当NA NB ⋅ 取得最小值时,设BP BN λ= ,求λ的值.【典例5-2】(2024·辽宁沈阳·东北育才双语学校校考一模)如图,设ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知1c =且12sin cos sin sin sin 4c A B a A b B b C =-+,cos BAD ∠=(1)求b 边的长度;(2)求ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点(含端点),线段EF 交AD 于G ,且AEF △的面积为ABC 面积的16,求AG EF 的取值范围.【变式5-1】阿波罗尼奥斯(Apollonius )是古希腊著名的数学家,他提出的阿波罗尼奥斯定理是一个关于三角形边长与中线长度关系的定理,内容为:三角形两边平方的和,等于所夹中线及第三边之半的平方和的两倍,即如果AD 是ABC 中BC 边上的中线,则222222BC AB AC AD ⎡⎤⎛⎫+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(1)若在ABC 中,5AB =,3AC =,π3BAC ∠=,求此三角形BC 边上的中线长;(2)请证明题干中的定理;(3)如图ABC 中,若AB AC >,D 为BC 中点,3BD DC ==,()sin 3sin 3sin a A b B b A C +=-,2ABC S =△,求cos DAC ∠的值.【变式5-2】在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,30B ︒=.(1)已知b =cos cos 2b A a B +=(i )求C ;(ii )若a b <,D 为AB 边上的中点,求CD 的长.(2)若ABC 为锐角三角形,求证:3a c <【变式5-3】(2024·江苏南通·模拟预测)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,2c BA BC =⋅- ,其中S 为ABC 的面积.(1)求角A 的大小;(2)设D 是边BC 的中点,若AB AD ⊥,求AD 的长.题型六:高问题【典例6-1】(2024·河北秦皇岛·三模)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,π3C =且7a b +=,ABC (1)求ABC 的面积;(2)求ABC 边AB 上的高h .【典例6-2】(2024·四川·模拟预测)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin cos B b A B b ++=.(1)求角C 的大小;(2)若8a =,ABC 的面积为AB 边上的高.【变式6-1】在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知7,8a c ==.(1)若4sin 7C =,求角A 的大小;(2)若5b =,求AC 边上的高.【变式6-2】(2024·山东枣庄·一模)在ABC 中,角,,A B C 的对边分别为,,a b c ,且sin tan 22a C A c =.(1)求C ;(2)若8,5,ab CH ==是边AB 上的高,且CH mCA nCB =+ ,求m n .题型七:重心性质及其应用【典例7-1】(2024·四川内江·一模)ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,6a =,sin sin 2B C b a B +=.(1)求角A 的大小;(2)M 为ABC 的重心,AM 的延长线交BC 于点D ,且AM =ABC 的面积.【典例7-2】(2024·江西景德镇·一模)如图,已知△ABD 的重心为C ,△ABC 三内角A 、B 、C 的对边分别为a ,b ,c .且2cos 22A b c c+=(1)求∠ACB 的大小;(2)若π6CAB ∠=,求sin CDA ∠的大小.【变式7-1】(2024·高三·福建福州·期中)已知ABC 内角A ,B ,C 的对边分别为a ,b ,c ,点G 是ABC的重心,且0AG BG ⋅= .(1)若π6GAB ∠=,①直接写出AG CG=______;②设CAG α∠=,求tan α的值(2)求cos ACB ∠的取值范围.【变式7-2】(2024·浙江温州·模拟预测)ABC 的角,,A B C 对应边是a ,b ,c ,三角形的重心是O .已知3,4,5OA OB OC ===.(1)求a 的长.(2)求ABC 的面积.题型八:外心及外接圆问题【典例8-1】(2024·广东深圳·二模)已知在ABC 中,角,,A B C 的对边分别为,,,2,1a b c a b c ===.(1)求角A 的余弦值;(2)设点O 为ABC 的外心(外接圆的圆心),求,AO AB AO AC ⋅⋅ 的值.【典例8-2】已知ABC 的内角,,A B C 所对的边分别为,,,3,22cos a b c a c b a B =-=.(1)求A ;(2)M 为ABC 外心,AM 的延长线交BC 于点D ,且2MD =,求ABC 的面积.【变式8-1】ABC 的内角,,A B C 的对边分别为,,,,20,a b c c b AB AC ABC >⋅= 的面积为(1)求A ∠;(2)设O 点为ABC 外心,且满足496OB OC ⋅=- ,求a .【变式8-2】(2024·河南·模拟预测)已知ABC 的外心为O ,点,M N 分别在线段,AB AC 上,且O 恰为MN 的中点.(1)若1BC OA ==,求ABC 面积的最大值;(2)证明:AM MB AN NC ⋅=⋅.【变式8-3】(2024·安徽黄山·三模)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知c =(1cos )sin b C B +=.(1)求角C 的大小和边b 的取值范围;(2)如图,若O 是ABC 的外心,求OC AB CA CB ⋅+⋅ 的最大值.题型九:两边夹问题【典例9-1】在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若2cos sin 0sin cos A A B B +-=+,则a b c +的值是()A .2BC D .1【典例9-2】在ABC ∆中,a 、b 、c 分别是A ∠、B ∠、C ∠所对边的边长.若2cos sin 0cos sin A A B B +-=+,则a b c+的值是().A .1B CD .2【变式9-1】在ABC ∆中,已知边,,a b c 所对的角分别为,,A B C ,若2223sin 2sin sin si 2si n sin n C A B C B A ++=,则tan A =_________________【变式9-2】(2024·江苏苏州·吴江中学模拟预测)在ABC ∆中,已知边,,a b c 所对的角分别为,,A B C ,若22252cos 3cos 2sin sin sin sin --=+B C A B C A ,则tan A =_____.【变式9-3】在ABC ∆中,已知边a 、b 、c 所对的角分别为A 、B 、C ,若a =,2223sin 2sin sin si 2si n sin n C A B C B A ++=,则ABC ∆的面积S =______.【变式9-4】在ABC 中,若(cos sin )(cos sin )2A A B B ++=,则角C =__.题型十:内心及内切圆问题【典例10-1】(2024·全国·模拟预测)设ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且满足2cos 2a B b c +=,5a =.(1)求ABC 的周长的取值范围;(2)若ABC 的内切圆半径6r =,求ABC 的面积S .【典例10-2】(2024·湖南永州·一模)在ABC 中,设,,A B C 所对的边分别为,,a b c ,且满足cos cos c A a C a b -=+.(1)求角C ;(2)若5,c ABC = 的内切圆半径4r =,求ABC 的面积.【变式10-1】(2024·全国·模拟预测)已知ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,sin cos c A C -=.(1)求角A 的大小;(2)若7a =,ABC 外接圆的半径为R ,内切圆半径为r ,求R r的最小值.【变式10-2】(2024·全国·模拟预测)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且22sin 2sin 2sin sin 4A B A B ⋅⋅=.(1)求C ;(2)若2c =,求ABC 内切圆半径取值范围.【变式10-3】(2024·广西南宁·一模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2a =,且sin sin sin A B b c C b a+-=-.(1)求ABC 的外接圆半径R ;(2)求ABC 内切圆半径r 的取值范围.【变式10-4】(2024·吉林·二模)已知ABC 的三个内角,,A B C 的对边分别为,,,a b c ABC 的外接圆半径为222sin sin sin sin sin B C B C A +-=.(1)求a ;(2)求ABC 的内切圆半径r 的取值范围1.如图所示,在ABC 中,设,,a b c 分别为内角,,A B C 的对边,已知3b c a +=,()4b c a =-.(1)求角C ;(2)若7c =,过B 作AC 的垂线并延长到点D ,使,,,A B C D 四点共圆,AC 与BD 交于点E ,求四边形ABCD 的面积.2.如图,在梯形ABCD 中,//AB CD ,60D ∠= .(1)若3AC =,求ACD 周长的最大值;(2)若2CD AB =,45BCD ∠= ,求tan DAC ∠的值.3.(2024·全国·模拟预测)在ABC 中,已知sin()sin sin BAC B B C ∠-∠=+.(1)求BAC ∠.(2)若2AC AB =,BAC ∠的平分线交BC 于点D ,求cos ADB ∠.4.(2024·四川成都·模拟预测)在ABC 中,角,,A B C 所对的边分别为,,a b c sin sin 2B C a B +=,边BC 上有一动点D .(1)当D 为边BC 中点时,若2AD b ==,求c的长度;(2)当AD 为BAC ∠的平分线时,若4a =,求AD 的最大值.5.(2024·安徽合肥·模拟预测)已知函数()π2π1sin sin 332f x x x ⎛⎫⎛⎫=+⋅+- ⎪ ⎪⎝⎭⎝⎭,角A 为△ABC 的内角,且()0f A =.(1)求角A 的大小;(2)如图,若角A 为锐角,3AB =,且△ABC 的面积S E 、F 为边AB 上的三等分点,点D 为边AC 的中点,连接DF 和EC 交于点M ,求线段AM 的长.6.(2024·全国·模拟预测)在ABC 中,角,,A B C ,的对边分别为,,a b c ,ABC 的面积为S ,()2sin 213sin A B S b B ⎡⎤+=+⎢⎥⎣⎦.(1)求角A .(2)若ABC 的面积为a =,D 为边BC 的中点,求AD 的长.7.(2024·四川成都·三模)在ABC 中,15,6,cos 8BC AC B ===.(1)求AB 的长;(2)求AC 边上的高.8.(2024·江苏南通·三模)在ABC 中,角,,A B C 的对边分别为(),,,2cos cos a b c b c A a C -=.(1)求A ;(2)若ABCBC 边上的高为1,求ABC 的周长.9.(2024·高三·河南·开学考试)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且满足()()()10sin sin sin sin 2sin 2sin 3a b c A B C a B c A b c C ++++=+++.(1)求cos C ;(2)若AB 边上的高为2,c =,a b .10.(2024·高三·山东济南·开学考试)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知()cos 2cos b A a B =-.(1)求c a;(2)若2π3B =,且AC ABC 的周长.11.在ABC 中,设a ,b ,c 分别表示角A ,B ,C 对边.设BC 边上的高为h ,且2a h =.(1)把b cc b +表示为sin cos x A y A +(x ,R y ∈)的形式,并判断b c c b+能否等于(2)已知B ,C 均不是直角,设G 是ABC 的重心,BG CG ⊥,c b >,求tan B 的值.12.(2024·江苏苏州·二模)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin sin sin a b C B c A B+-=-.(1)求角A ;(2)若6a =,点M 为ABC 的重心,且AM =ABC 的面积.13.(2024·河南开封·模拟预测)记ABC 的内角,,A B C 的对边分别为,,a b c,已知sin cos cos ,B a C c A b G -==为ABC 的重心.(1)若2a =,求c 的长;(2)若AG =ABC 的面积.14.(2024·辽宁抚顺·一模)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知()()()sin sin sin sin a b A B c C B +-=-.(1)求角A ;(2)若6a =,点M 为ABC的重心,且AM =ABC 的面积.15.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a ,b ,c 是公差为2的等差数列.(1)若2sin 3sin C A =,求ABC 的面积.(2)是否存在正整数b ,使得ABC 的外心在ABC 的外部?若存在,求b 的取值集合;若不存在,请说明理由.16.(2024·湖北·模拟预测)已知ABC 的外心为O ,,M N 为线段,AB AC 上的两点,且O 恰为MN 中点.(1)证明:||||||||AM MB AN NC ⋅=⋅(2)若||AO ||1OM =,求AMN ABCS S V V 的最大值.17.在ABC 中,角,,A B C 所对的边分别为,,a b c ,满足3cos 5c a B b =+.(1)求cos A 的值;(2)当BC 与BC 边上的中线长均为2时,求ABC 的周长;(3)当ABC 内切圆半径为1时,求ABC 面积的最小值.18.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()cos b c a C C +=+.(1)求A ;(2)若2a =,求ABC 内切圆周长的最大值.19.(2024·浙江杭州·模拟预测)已知ABC 的周长为20,角A ,B ,C 所对的边分别为a ,b ,c (1)若π4C =,7c =,求ABC 的面积;(2)若ABC 7a =,求tan A 的值.20.(2024·高三·江苏扬州·开学考试)已知ABC 的内角,,A B C 的对边分别为,,a b c ,23A π=,10b =,6c =,ABC 的内切圆I 的面积为S .(1)求S 的值;(2)若点D 在AC 上,且,,B I D 三点共线,求BD BC ⋅ 的值.21.(2024·贵州·模拟预测)在ABC 中,AB =2AC =,π6C ∠=,N 为AB 的中点,A ∠的角平分线AM 交CN 于点O .(1)求CN 的长;(2)求AOC 的面积.22.(2024·广东梅州·二模)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,ccos sin B b A -=,2c =,(1)求A 的大小:(2)点D 在BC 上,(Ⅰ)当AD AB ⊥,且1AD =时,求AC 的长;(Ⅱ)当2BD DC =,且1AD =时,求ABC 的面积ABC S .23.(2024·甘肃陇南·一模)在ABC 中,内角A ,B ,C 的对边分别为,,a b c .已知cos cos 3c A a C +=.(1)求b ;(2)D 为边AC 上一点,π26AD DC,DBC ,AB BD =∠=⊥,求BD 的长度和ADB ∠的大小.24.(2024·全国·模拟预测)如图,四边形ABCD 为梯形,//AB CD ,2AB CD ==tan2A =,1cos 3ADB ∠=.(1)求cos BDC(2)求BC的长.。
三角形边角关系的若干问题

三角形边角关系的若干问题一利用三角形三边之间的关系(即三角形两边之和大于第三边,两边之差小于第三边)可以证明线段不等关系,如果直接证不出来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明.1.如图,在△ABC中,AB>AC,AD平分∠BAC,E为AD上一点,求证:①∠ADC>∠CAD;②AB﹣AC>EB﹣EC分析:①由AD为∠BAC的平分线,得到∠BAD=∠CAD,根据外角的性质即可得到结论;②在AB上取AP=AC,然后证明△APE和△ACE全等,根据全等三角形对应边相等得到EC=PE,再根据三角形的任意两边之差小于第三边证明即可.证明:①∵AD为∠BAC的平分线,∴∠BAD=∠CAD,∵∠ADC>∠BAD,∴∠ADC>∠CAD;②如图,在AB上截取AP,使AP=AC,连接PE,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,在△AEP和△ACE中,AP=AC、∠BAD=∠CAD、AE=AE,∴△AEP≌△ACE(SAS),∴PE=EC,在△PBE中,BP>EB﹣PE,即AB﹣AC>EB﹣EC2.如图,P是△ABC内一点,连接BP,PC,延长BP交AC于D.(1)图中有几个三角形;(2)求证:AB+AC>PB+PC分析:(1)直接找出图中的三角形即可,注意要不重不漏;(2)利用三角形的三边关系可得AB+AD>BD,PD+CD >PC,再把两个式子相加进行变形即可.(1)解:图中三角形有△ABC,△ABD,△BPC,△PDC,△BDC,共5个.(2)证明:∵AB+AD>BD,PD+CD>PC,∴AB+AD+PD+CD>BD+PC,∴AB+AD+PD+CD>BP+PD+PC,∴AB+AC>PB+PC.3.如图1,D、E为△ABC内两点,求证:AB+AC>BD+DE+CE.证明:(法一)将DE两边延长分别交AB、AC于M、N,在△AMN中,AM+AN>MD+DE+NE;(1)在△BDM中,MB+MD>BD;(2)在△CEN中,CN+NE>CE;(3)由(1)+(2)+(3)得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE,∴AB+AC>BD+DE+EC (法二:图2)延长BD交AC于F,廷长CE交BF于G,在△ABF和△GFC和△GDE中有:AB+AF>BD+DG+GF(三角形两边之和大于第三边)…(1)GF+FC>GE+CE(同上)(2)DG+GE>DE(同上)(3)由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+EC。
三年级数三角形数量的题目

三年级数三角形数量的题目这是一个经典的数学问题,通常被称为“三角形计数问题”。
题目:一个等边三角形的每一边上都有 n 个点(包括两个端点)。
这些点中任意三个点都不共线。
那么这个三角形内有多少个三角形?解答:1. 当 n = 2 时,每条边上只有两个点,所以总共有 2 个三角形。
2. 当 n = 3 时,每条边上都有三个点,因此总共有 6 个三角形。
3. 当 n = 4 时,每条边上都有四个点,因此总共有 12 个三角形。
4. 当 n = 5 时,每条边上都有五个点,因此总共有 20 个三角形。
5. 当 n = 6 时,每条边上都有六个点,因此总共有 30 个三角形。
6. 当 n = 7 时,每条边上都有七个点,因此总共有 42 个三角形。
7. 当 n = 8 时,每条边上都有八个点,因此总共有 56 个三角形。
8. 当 n = 9 时,每条边上都有九个点,因此总共有 72 个三角形。
9. 当 n = 10 时,每条边上都有十个点,因此总共有 90 个三角形。
通过观察可以发现以下规律:1. 当 n = 1 时,总共有 1 个三角形。
2. 当 n = 2 时,总共有 2^2 - 2 = 2 个三角形。
3. 当 n = 3 时,总共有 3^2 - 3 = 6 个三角形。
4. 当 n = 4 时,总共有 4^2 - 4 = 12 个三角形。
5. 当 n = n 时,总共有 n^2 - n 个三角形。
这个规律可以解释为:每个顶点都可以与另外两个顶点构成一个三角形,但是要减去三个在边的交点处生成的重复的三角形。
所以总共的三角形数量就是顶点的数量减去三。
解三角形图形类问题

解三角形图形类问题三角形是几何学中的基本形状之一,它有着丰富的性质和特点。
解三角形图形类问题是数学学习中的重要内容之一。
本文将通过实例来解释和探讨不同类型的三角形图形问题,并给出相应的解决方法。
一、等边三角形问题等边三角形是一种特殊的三角形,它的三边长度相等,三个角也都是60度。
求解等边三角形问题需要考虑到等边三角形的性质以及利用相应的公式进行计算。
实例1:已知等边三角形的周长是18cm,求其面积。
解:设等边三角形的边长为a,则根据周长的定义,有3a=18cm,解得a=6cm。
等边三角形的面积公式为S=(√3/4)a²,带入边长a=6cm,即可计算得到三角形的面积S=9√3 cm²。
二、直角三角形问题直角三角形是一种至少有一个直角的三角形,其特点是其中一边的平方等于另外两边平方的和。
求解直角三角形问题通常包括求解三角形的边长、角度、面积等。
实例2:已知直角三角形的直角边长分别为3cm和4cm,求其斜边的长度。
解:根据直角三角形的性质,设斜边长度为c,根据勾股定理,有a²+b²=c²。
代入已知的直角边长,得到3²+4²=c²,解得c=5cm。
因此,直角三角形的斜边长度为5cm。
三、等腰三角形问题等腰三角形是一种至少有两边长度相等的三角形,其特点是两个底角也相等。
求解等腰三角形问题常常需要考虑到等腰三角形的性质和相关定理。
实例3:已知等腰三角形的顶角为30度,底边长度为8cm,求其周长和面积。
解:设等腰三角形的腰长为a,根据等腰三角形的性质,有顶角的度数等于底角的度数,所以底角度数为30度。
根据三角形角度和的性质,可以得到腰角的度数为(180-30)/2=75度。
根据正弦定理,可以得到a/√3=sin75°/sin30°。
通过计算,得到a≈6.93cm。
因此,等腰三角形的周长等于2a+8=21.86cm,面积等于(1/2)×8×6.93=27.72cm²。
四年级下册数学《三角形解决问题》常考题

《三角形解决问题》常考题1、下面是三块三角形玻璃打碎后留下的碎片,你能判断出它们原来各是什么三角形吗?第一块玻璃:180°-30°-40°=110°是钝角三角形第二夸玻璃:18°0-60°×2=60°是等边三角形第三块玻璃:180°-50°-40°=90°是直角三角形2、你能解释为什么吗?答:因为三角形具有稳定性3、等腰三角形的周长是40厘米,它的一条腰长12厘米,那么,它的底边长多少厘米?40-12×2=16(厘米)答;它的底边长16厘米四年级下册数学《三角形解决问题》常考题4、一个一块等腰三角形广告牌,它的一个底角是65°,它的顶角是多少度?180°-65°×2=50答:它的顶角是50度。
5、王爷爷有一块菜地的形状是近似的等边三角形,一边长16cm。
如果在菜地的外面围上一圈篱笆,这个篱笆的周长大约是多少?16×3=48(厘米)答:这个篱笆的周长大约是48厘米6、已知∠1、∠2、∠3是三角形ABC的三个内角,∠1=48°,∠2=72°,求∠3的度数。
按角分,这是个什么三角形?∠3=180°-48°-72°=60°答:按角分,这是个锐角三角形。
7、已知一个三角形(每条边长都是整厘米数)的周长是20 cm,它的最长边的长度最大是几厘米?20÷2=10(厘米)10-1=9(厘米)答:它的最长边的长度最大是9厘米。
三角形的测试题及答案

三角形的测试题及答案# 三角形的测试题及答案题目一:三角形的边长问题:已知三角形ABC,其中AB = 5cm,BC = 7cm,AC = 6cm。
请问这个三角形是什么类型的三角形?答案:这个三角形是锐角三角形,因为三边满足三角形的不等式定理(任意两边之和大于第三边)。
题目二:三角形的内角和问题:一个三角形的三个内角之和是多少度?答案:一个三角形的三个内角之和是180度。
题目三:三角形的高问题:在题目一中的三角形ABC,如果从顶点A向BC作垂线,求这条高的长度。
答案:使用海伦公式或勾股定理,可以计算出高的长度。
设高为h,根据三角形面积公式(面积 = 1/2 * 底 * 高),我们可以得出高h = 面积 * 2 / 底。
首先计算面积,使用海伦公式:面积= √[p * (p - AB) *(p - BC) * (p - AC)],其中p为半周长,p = (AB + BC + AC) / 2。
代入数值得到p = 9,面积= √[9 * (9 - 5) * (9 - 7) * (9 - 6)] = 6√6。
然后计算高h = (2 * 面积) / 底BC = (2 * 6√6) / 7 ≈ 3.84cm。
题目四:三角形的外角问题:在三角形ABC中,如果角A = 40°,角B = 60°,求角C的外角。
答案:角C的外角等于180° - 角C。
由于三角形内角和为180°,所以角C = 180° - 40° - 60° = 80°。
因此,角C的外角= 180° - 80° = 100°。
题目五:相似三角形的判定问题:两个三角形的对应角相等,且对应边的比例相等,这两个三角形是什么关系?答案:这两个三角形是相似的。
根据相似三角形的判定定理,如果两个三角形的对应角相等,并且对应边的比例相等,那么这两个三角形是相似的。
高中数学解三角形精选题目(附答案)

高中数学解三角形精选题目(附答案)一、解三角解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A+B+C=π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A +B+C=π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角.(4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边.1.设锐角△ABC的内角A,B,C的对边分别为a,b,c,且有a=2b sin A.(1)求B的大小;(2)若a=33,c=5,求b.1.解:(1)由a=2b sin A,根据正弦定理得sin A=2sin B sin A,所以sin B=1 2,由于△ABC是锐角三角形,所以B=π6.(2)根据余弦定理,得b2=a2+c2-2ac cos B=27+25-45=7,所以b=7.注:利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.2.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°解析:选A 由正弦定理可知c =23b ,则cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,所以A =30°,故选A.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B.932C.332 D .33解析:选C ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.解析:依题意得,由正弦定理知:1sin π6=3sin B ,sin B =32,又0<B <π,b >a ,可得B =π3或2π3.答案:π3或2π35.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值.解:(1)证明:∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B .∵sin B =sin[π-(A +C )]=sin(A +C ),∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac≥2ac -ac 2ac =12, 当且仅当a =c 时等号成立.∴cos B 的最小值为12.二、三角形的形状判定三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C 2. (2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.6.在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),∴a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2sin A cos B .法一:(化边为角)由正弦定理得2sin 2A cos A sin B =2sin 2B sin A cos B , 即sin 2A ·sin A sin B =sin 2B ·sin A sin B .∵0<A <π,0<B <π,∴sin 2A =sin 2B ,∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.法二:(化角为边)2a 2cos A sin B =2b 2cos B sin A ,由正弦、余弦定理得a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+c 2-b 22ac ,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),即(a 2-b 2)(c 2-a 2-b 2)=0.∴a =b 或c 2=a 2+b 2,∴△ABC 为等腰三角形或直角三角形.注:根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有:①通过正弦定理实现边角转化;②通过余弦定理实现边角转化;③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.7.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选D ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,∴cos A (sin B -sin A )=0,∴cos A =0或sin B =sin A ,∴A =π2或B =A 或B =π-A (舍去).故△ABC 为直角三角形或等腰三角形.8.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形解析:选C ∵A ,B ,C 成等差数列,∴A +C =2B ,即3B =π,解得B =π3.∵3b =23a sin B ,∴根据正弦定理得3sin B =23sin A sin B .∵sin B ≠0,∴3=23sin A ,即sin A =32,即A =π3或2π3,当A =2π3时,A +B =π不满足条件.∴A =π3,C =π3.故A =B =C ,即△ABC 的形状为等边三角形.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,a 2=b 2+c 2-2bc cos A ,∴bc =-2bc cos A ,cos A =-12. 又0<A <π,∴A =2π3.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C ,∴sin 2A =(sin B +sin C )2-sin B sin C .又sin B +sin C =1,且sin A =32,∴sin B sin C =14,因此sin B =sin C =12.又B ,C ∈⎝ ⎛⎭⎪⎫0,π2,故B =C . 所以△ABC 是等腰的钝角三角形.三、实际应用(1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的.(2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.10.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.[解] (1)依题意,∠BAC =120°,AB =12海里,AC =10×2=20(海里),∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784.解得BC =28海里.∴渔船甲的速度为BC 2=14(海里/小时).(2)在△ABC 中,AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°.即sin α=AB sin 120°BC=12×3228=3314.故sin α的值为33 14.注:应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.11.要测量底部不能到达的电视塔AB的高度,如图,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.10 2 m B.20 mC.20 3 m D.40 m解析:选D设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x =40或x=-20(舍去).故电视塔的高度为40 m.12.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m,则旗杆的高度为________m.解析:设旗杆高为h m,最后一排为点A,第一排为点B,旗杆顶端为点C,则BC=hsin 60°=233h.在△ABC中,AB=106,∠CAB=45°,∠ABC=105°,所以∠ACB=30°,由正弦定理,得106sin 30°=233hsin 45°,故h=30(m).答案:3013.某高速公路旁边B处有一栋楼房,某人在距地面100米的32楼阳台A处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D处.(假设客车匀速行驶)(1)如果此高速路段限速80千米/小时,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E处,问此时客车距离楼房多远?解:(1)在Rt△ABC中,∠BAC=60°,AB=100米,则BC=1003米.在Rt△ABD中,∠BAD=45°,AB=100米,则BD=100米.在△BCD中,∠DBC=75°+15°=90°,则DC=BD2+BC2=200米,所以客车的速度v=CD10=20米/秒=72千米/小时,所以该客车没有超速.(2)在Rt△BCD中,∠BCD=30°,又因为∠DBE=15°,所以∠CBE=105°,所以∠CEB=45°.在△BCE中,由正弦定理可知EBsin 30°=BCsin 45°,所以EB=BC sin 30°sin 45°=506米,即此时客车距楼房506米.巩固练习:1.在△ABC中,若a=7,b=3,c=8,则其面积等于()A.12 B.21 2C.28D.63解析:选D由余弦定理得cos A=b2+c2-a22bc=32+82-722×3×8=12,所以sin A=32,则S△ABC=12bc sin A=12×3×8×32=6 3.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.若3a=2b,则2sin2B-sin2Asin2A的值为()A.19 B.13C.1 D.7 2解析:选D由正弦定理可得2sin2B-sin2Asin2A=2b2-a2a2=2·⎝ ⎛⎭⎪⎫32a2-a2a2=72.3.在△ABC中,已知AB=2,BC=5,△ABC的面积为4,若∠ABC=θ,则cos θ等于()A.35B.-35C.±35D.±45解析:选C∵S△ABC =12AB·BC sin∠ABC=12×2×5×sin θ=4.∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin2θ=±3 5.4.某人从出发点A向正东走x m后到B,向左转150°再向前走3 m到C,测得△ABC的面积为334m2,则此人这时离开出发点的距离为()A.3 m B. 2 mC.2 3 m D. 3 m解析:选D在△ABC中,S=12AB×BC sin B,∴334=12×x×3×sin 30°,∴x= 3.由余弦定理,得AC=AB2+BC2-2AB×BC×cos B=3+9-9=3(m).5.在△ABC中,A=60°,AB=2,且△ABC的面积S△ABC=32,则边BC的边长为()A.3B.3C.7D.7解析:选A∵S△ABC =12AB·AC sin A=32,∴AC=1,由余弦定理可得BC2=AB2+AC2-2AB·AC cos A=4+1-2×2×1×cos 60°=3,即BC= 3.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B =a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B∵b cos C+c cos B=b·b2+a2-c22ab+c·c2+a2-b22ac=b2+a2-c2+c2+a2-b22a=2a22a=a=a sin A,∴sin A=1.∵A∈(0,π),∴A=π2,即△ABC是直角三角形.7.在△ABC中,B=60°,b2=ac,则△ABC的形状为____________.解析:由余弦定理得b2=a2+c2-2ac cos B,即ac=a2+c2-ac,∴(a-c)2=0,∴a=c.又∵B=60°,∴△ABC为等边三角形.答案:等边三角形8.在△ABC中,a=b+2,b=c+2,又知最大角的正弦等于32,则三边长为________.解析:由题意知a边最大,sin A=32,∴A=120°,∴a2=b2+c2-2bc cos A.∴a2=(a-2)2+(a-4)2+(a-2)(a-4).∴a2-9a+14=0,解得a=2(舍去)或a=7.∴b=a-2=5,c=b-2=3.答案:a=7,b=5,c=39.已知三角形ABC的三边为a,b,c和面积S=a2-(b-c)2,则cos A=________.解析:由已知得S=a2-(b-c)2=a2-b2-c2+2bc=-2bc cos A+2bc.又S=12bc sin A,∴12bc sin A=2bc-2bc cos A.∴4-4cos A=sin A,平方得17cos2A-32cos A+15=0.∴(17cos A-15)(cos A-1)=0.∴cos A=1(舍去)或cos A=15 17.答案:15 1710.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=23,sin B=5cos C.(1)求tan C的值;(2)若a=2,求△ABC的面积.解:(1)因为0<A<π,cos A=2 3,所以sin A=1-cos2A=5 3,又5cos C=sin B=sin(A+C)=sin A cos C+cos A sin C=53cos C+23sin C,所以253cos C=23sin C,tan C= 5.(2)由tan C=5得sin C=56,cos C=16,于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C 得c =3,所以△ABC 的面积S △ABC =12ac sinB =12×2×3×56=52. 11.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B=437×12-17×32=3314.(2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3. 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49. 所以AC =7.12.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,c =2,C =π3,求△ABC 的面积.解:(1)证明:∵m∥n,∴a sin A=b sin B,∴a·a=b·b,即a2=b2,a=b,∴△ABC为等腰三角形.(2)由m⊥p,得m·p=0,∴a(b-2)+b(a-2)=0,∴a+b=ab.由余弦定理c2=a2+b2-2ab cos C,得4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,解得ab=4(ab=-1舍去),∴S△ABC =12ab sin C=12×4×sinπ3= 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一三角形问题、找零钱最佳组合问题的第一次测试
一、实验目的
通过本次实验使学生对软件测试过程有个初步了解,并具备针对功能的测试用例的设计。
二、实验环境
硬件环境:微型计算机。
软件环境:Windows 操作系统,Microsoft Visual Studio 2005等。
三、实验内容
题目一:三角形问题
输入三个整数a、b、c,分别作为三角形的三条边,通过程序判断这三条边是否能构成三角形?如果能构成三角形,则判断三角形的类型(等边三角形、等腰三角形、一般三角形)。
要求输入三个整数a、b、c,必须满足以下条件:1≤a≤200;1≤b≤200;1≤c≤200。
题目二:找零钱最佳组合问题
假设商店货品价格(R)皆不大于100 元(且为整数),若顾客付款在100 元内 (P) ,求找给顾客最少货币个(张)数?(货币面值50 元10 元,5 元,1 元四种)1.仿照NextDate问题,分析三角形问题的功能,针对三角形问题的功能设计测试用例,并对测试结果进行分析。
2.仿照NextDate问题,分析找零钱最佳组合问题的功能,针对找零钱最佳组合问题的功能设计测试用例,并对测试结果进行分析。
四、实验步骤
1.编写程序三角形问题和找零钱最佳组合问题
(1)#include<stdio.h>
void main(){
while(1){
int a,b,c;
printf("please Input a,b,c:");
scanf("%d %d %d",&a,&b,&c);
if(a<1 || a>200 || b<1 || b>200 || c<1 || c>200)
printf("please Input the edge in the 100 to 200 !!!\n");
else if(a+b>c && a+c>b && b+c>a) {
if(a==b && b==c && c==a) {
printf("deng bian\n");
}
else if(a==b || b==c || a==c) {
printf("deng yao\n");
}
else{
printf("common\n"); }
}
else{
printf("Not triangle"); }
getch();
}
}
(2)#include<stdio.h>
void main(){
while(1){
gui();
getch();}
}
gui(){
int a,b,c;
printf("pay:");
scanf("%d",&a);
printf("price:");
scanf("%d",&b);
c = a - b;
if(c > 0){
printf("change:%d",c);
method(c);
}
else{
gui();
}
}
method(int c){
int a,b,x,y;
a = c/50;
if(a > 0){
b = (
c - 50)/10;
if(b>0){
x = (c - 50)%10 / 5;
if(x>0){
y = (c - 50)%10-5; }
else{
y = (c - 50)%10;
}
}
else{
x = (c - 50) / 5;
if(x > 0) {
y = (c - 50) - 5;
}
else {
y = c - 50;
}
}
}
else{
b = c/10;
if(b > 0) {
x = c%10 / 5 ;
if(x > 0) {
y = c%10-5;
}
else{
y = c%10;
}
}
else{
x = c/5;
if(x > 0) {
y = c - 5;
}
else{
y = c;
}
}
}
printf("\n");
printf("\n$50: %d",a);
printf("\n$10: %d",b);
printf("\n$ 5: %d",x);
printf("\n$ 1: %d",y);
printf("\n\ntotal:%d",a+b+x+y);
}
2.三角形问题的测试
(1)三角形问题的功能分析
a、判断能否组成三角形:任意两边的和大于第三边。
b、识别等边三角形:在第一步的基础上在判断三条边是否相等。
c、识别等腰三角形:判断任意两边有无相等。
d、识别任意三角形。
(2)针对功能分析设计的测试用例
3.找零钱最佳组合问题的测试
(1)找零钱问题功能分析
在输入的顾客金额以及消费金额后计算找回零钱,并判断以50元10元5元1元最少的张数找回零钱。
(2)针对功能分析设计的测试用例
(3)执行测试用例,分析测试结果。
五、实验心得体会
通过本次试验我对软件测试有了基本的了解,对边界的测试有了更深入的了解和体会。
更加熟练掌握C语言这种语言的编程和测试。