几何初步与三角形知识点与对应习题

几何初步与三角形知识点与对应习题
几何初步与三角形知识点与对应习题

初三数学寒假课程(6)

教案编写日期:2012.01.11 课程教授日期:2011.01.29

应到人数: 18 实到人数:

授课课题: 几何初步与三角形授课人:

教学目标:掌握几何基本概念以及三角形的相关内容

教学重难点:

重点:三角形的性质

难点:特殊三角形的综合运用

教学过程:

一、知识点例题讲解

一、相交线与平行线

1.线段,射线,直线,延长线

(1)两点之间,线段最短.

(2)把线段向一方无限延伸所形成的图形叫做射线.

(3)把线段向两方无限延伸所形成的图形叫做直线.经过两点有一条直线,并且只有一条直线.即两点确定一条直线.

提示:直线、射线、线段的区别主要看端点个数,直线无端点,射线有一个端点,线段有两个端点.

(4)过N个点可以最多画几条直线

(5)无图线段长度的两边两种情况,例,线段AB长5,AC=2,则CB=多少,两种情况2.角

有公共端点的两条射线组成的图形叫做角;如果一个角的两边成一条直线,那么这个角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做钝角;大于00小于直角的角叫做锐

角.

提示:

1周角=2平角=4直角=360°;

1平角=2直角=180°;1直角=90°;

1度=60分=3600秒(即:1°=60ˊ=3600");

1分=60秒(即:1ˊ=60").

1.时钟的分针从3点整的位置起,经过多长时间时针与分针第一次重合?

3.角的特殊关系

互为补角:如果两个角的和是一个平角,那么这两个角叫做互为补角.

互为余角:如果两个角的和是一个直角,那么这两个角叫做互为余角.

互为邻补角:两条直线相交得到的四个角中,有一条公共边的两个角,叫做互为邻补角. 提示:同角或等角的余角相等;同角或等角的补角相等.

4.角平分线

5.对顶角

6.平行线概念,平行的判定,性质

1.定义:在同一平面内,不相交的两条直线叫做平行线。

2.判定:

(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角相等,两直线平行。

(4)垂直于同一直线的两直线平行。

3.性质:

(1)经过直线外一点,有且只有一条直线与这条直线平行。

(2)如果两条直线都与第三条直线平行,那么这两条直线平行。

(3)两直线平行,同位角相等。

(4)两直线平行,内错角相等。

(5)两直线平行,同旁内角互补。

二、旋转,平移,轴对称与轴对称图形,中心对称与中心对称图形.

1.轴对称

轴对称

考点分析:

如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做轴对称,我们也说这个图形关于这条直线的轴对称。

关于轴对称的两个图形,对应点连线被对称轴_________;对应线段交于对称轴或对应线段延长线的交点在对称轴上或与对称轴_________。

轴对称图形

考点分析:轴对称是两个图形关于某一条直线对称,而中心对称是两个图形关于某一点对称,成轴对称和中心对称的两个图形全等。

2.中心对称

⑴中心对称

考点分析:中心对称图形是旋转角为180°的旋转对称图形,关于中心对称的两个图形一定全等,但两个全等的图形不一定成对称图形。

⒈定义:把一个图形绕着一个点旋转_________后,如果它能与另一个图形_________,则这两个图形形成_________。个点叫_________。

⒉判定:如果两个点A、B的连线经过点O,且被O点_________(即OA=OB),则点A、B 关于点O成中心对称。

⒊特征:在成中心对称的两个图形中,对称点连线都经过_________且被_________平分;对应线段_________(或在同一条直线上)且_________。

⑵中心对称图形

考点分析:如果一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形叫做中心对称图形。而这个中心点,叫做中心对称点。如:线段、平行四边形、正偶数边形、圆、双曲线等

3.旋转图形,任意角

4.平移

平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。

格点,坐标的变化

5.旋转

考点分析:①旋转中心在旋转过程中保持不动。②图形的旋转是由旋转中心、旋转方向和旋转角度决定的。③将一个图形绕着某个点沿着某个方向旋转一个角度,意味着图形上每个点同时按相同的方向旋转相同的角度。

旋转多少都判断技巧:就看一边旋转多少。

三、三角形 1.三角形分类

不等边三角形 三角形

(按边分) 底和腰不相等垢等腰三角形 等腰三角形

等边三角形

直角三角形 三角形(按角分)

锐角三角形 斜三角形

钝角三角形

2.三角形三边三角关系

三角形的三边关系定理:三角形的任意两边之和大于第三边,任意两边之差小于第三边. 它常用于:(1)解决几何图形中线段的不等关系;

(2)在给定三条线段的长度后,判断它们是否构成三角形; (3)与方程知识结合的综合题目. 大角对大边可以用来找对应边,对应角 角与角的关系:

三个内角的和等于180°;

一个外角等于和它不相邻的两个内角之和,并且大于任何—个和它不相邻的内角。 边与边的关系:

三角形中任两边之和大于第三边,任两边之差小于第三边。 边与角的大小对应关系:

在一个三角形中,等边对等角;等角对等边。

1.一个三角形的两边长为3和6,第三边的长是方程()()240x x --=的根,则这个三角形的周长是( )

A .11

B .11或13

C .13

D .11和13

3.两根木棒长分别为5和7,要选择第三根木棒,将其钉成三角形,若第三根木棒和长选取偶数,有 种取值情况.

4.已知三角形两边长为a 、b ,其中a b >,则周长是l 是( )

A .33a l b <<

B .()22b l a b <<-

C .()22a l a b <<+

D .()22b l a b <<+ 5.若等腰ABC ?的边长都是方程2

680x x -+=,则ABC ?的周长是是 . 6.已知ABC ?的两边长AB=5,AC=3,求BC 边上的中线AD 长度的取值范围.

4.外角

三角形的外角性质1:三角形的一个外角等于和它不相邻的两个内角的和;

三角形的外角性质2:三角形的一个外角大于和它不相邻的任何一个内角;

三角形的外角和定理:三角形的外角和等于360?

5.三角形的特殊线段

角平分线:三角形的一个角的角平分线和它的对边相交,这个角的顶点与交点之间的线段. 中线:连接三角形的一个顶点与它的对边的中点的线段.

高:从三角形的一个顶点到它的对边所在直线的垂线段.

中位线:连接三角形两边的中点的线段.

(特别提示:三角形的角平分线、中线、高、中位线都是线段)

6.中位线

三角形的中位线平行于第三边,并且等于第三边的一半.如图,EF//BC,且

1

2

EF BC

=.

7.等腰三角形

性质

等腰三角形两腰相等,两底角相等。

等腰三角形顶角的平分线垂直底边,也就是说:等腰三角形顶角的平分线、度边上的中线、底边上的高“三线合一”。

等腰三角形是轴对称图形,有一条或三条对称轴。

判断

(1)有两边相等的三角形是等腰三角形;

(2)有两角相等的三角形是等腰三角形;

(3)用“三线合一”的逆定理也可判断三角形为等腰三角形.

8.全等三角形

性质

等边三角形是特殊的等腰三角形,因此它具有等腰三角形的所有性质,另外①等边三角形三边相等;②三角相等都为60?;③内心与外心重合;④它是轴对称图形,有三条对称轴。

判断

(1)三边都相等的三角形是等边三角形;

(2)三角都相等的三角形是等边三角形;

(3)有一个角为60?的等腰三角形是等边三角形.

9.直角三角形

性质

(1)两锐角互余;

(2)斜边上的中线等于斜边的一半;证明

(3) 勾股定理;

(4) 30?

角所对的直边是斜边的一半; (5) 外接圆半径2

C

R =

=斜边上的中线长,内切圆半径2a b c r +-=;

(直角三角形的外心在斜边上的中点,内心在直角三角形内部)

判断

(1) 有一个角是直角的三角形是直角三角形;

(2) 如果三角形一边上的中线等于这边的一半,则三角形为直角三角形; (3) 若2

2

2

a b c +=,则以a 、b 、c 为边的三角形是直角三角形. 10. 三角形的面积

(1) 一般三角形:S △ = 21

a h ( h 是a 边上的高 ) (2) 直角三角形:S △ = 21a

b = 2

1

c h (a 、b 是直角边,c 是斜边,h 是斜边上的高)

(3) 等边三角形: S △ =

4

3a 2

( a 是边长 ) (4) 等底等高的三角形面积相等;等底的三角形面积的比等于它们的相应的高的比;等高的三角形的面积的比等于它们的相应的底的比。 11.全等三角形

两个能够完全重合的三角形叫全等三角形,全等三角形的对应角相等,对应边相等,其他的对应线段也相等。

判定两个三角形全等的公理或定理: ①一般三角形有SAS 、ASA 、AAS 、SSS ; ②直角三角形还有HL

二、练习设计

1.下列图形中,为轴对称图形的是( )

2.如图,①是由若干个小正方体所搭成的几何体,②是①的俯视图,则①的左视图是( )

3.同一平面有四点,每过两点画一条直线,则直线的条数是( ) (A )1条 (B )4条 (C )6条 (D )1条或4条或6条

4.在同一平面内,有三条直线a ,b ,c ,如果a ⊥c, b ⊥c 那么a 与b 的位置关系是( ) (A )相交 (B )平行 (C )垂直 (D )不能确定

5.在同一平面内,两条不重合直线的位置关系可能是( )

(A )平行或相交 (B )垂直或相交 (C )垂直或平行 (D )平行、垂直或相交 6.若三角形的一个内角等于其他两个内角的差,那么此三角形是 ( ).

A.锐角三角形

B.直角三角形

C.钝角三角形

D.等腰三角形 7.一个三角形的两边分别3和7,且第三边长为整数,这样的三角形的周长最小值是( ) A .14 B .15 C .16 D .17 8.在ABC ?中,ABC ∠和ACB ∠的外角平分线交于点O ,如图,设BOC α∠=,则A ∠等于( )

A .902α?

- B .1

902

α?

- C .1802α?- D .11802

α?

- 9.在ABC ?中,AD 是BC 边上的中线, G 是重心,如果6AG =,那么DG 的长为( ) A.2 B.3 C.6 D.12

10.延长AB 到点C ,使BC=

AB 3

1

,D 为AC 的中点,且AB cm DC 则,6=的长是 cm.

11.已知点O 在直线AB 上,且线段OA 的长度为4cm ,线段OB 的长度为6cm ,E 、F 分别为线段OA 、OB 的中点,则线段EF 的长度为 cm.

12.A 看B 的方向是北偏东50°,则B 看A 的方向是 .

13.时钟在3点半时,它的时针和分针所成的锐角是 .

14.∠1和∠2互余,∠2和∠3互补,如果∠1=63°,那么∠3= .

15.已知一个角的补角比这个角的余角的3倍大10°,则这个角的度数为 .

16.等腰三角形有两条边长分别为2和4,则与底边平行的中位线的长度是 . 17.已知等腰三角形一腰上的中线把等腰三角形的周长分成15和12两部分,则等腰三角形的腰长为 .

18.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=55°,则∠2的度数为 .

19.如图,AB ∥CD ,若∠ABE=120°,∠DCE=35°,则有∠BEC= 度.

20.如图,ABC ?中,

90C ?∠=,60ABC ?

∠=,BD 平分ABC ∠,若AD=6,则CD= . 21.如图AB//CD ,∠1与∠A 互补,试证明:EF//CD .(用两种证法)

22.如图,在ABC ?中,2B C ∠=∠,AD 是中线,BC=2AB .求证:ABD ?是等边三角形.

23.已知直角三角形的周长等于30,斜边上的中线长为6.5,求斜边上的高和三角形的面积.

24.已知直角ABC ?的周长为14,面积为7,试求它的三边长.

D

C

附加题

1.如图,等腰三角形ABC ?中,2AB AC ==,BC 边上有200个不同的点123200P ,P ,P ,

,P ,

记()2123200i i i i m AP BP PC i ,,,

,=+?=,则12200m m m ++

+= .

P

2.如图中螺旋由一系列等腰直角三角形组成,其序号依次为①,②,③,④,⑤,,则

第n 个等腰直角三角形的斜边长为 .

3.ABC ?中,BC a =,AC b =,AB c =,若90C ?

∠=,如图(1)根据勾股定理,则

222a b c +=,若ABC ?不是直角三角形,如图(2)和图(3),请你类比勾股定理,试猜

想2

2

a b +与2

c 的关系,并证明你的结论.

一、选择题:

1.如图,若AB∥CD,∠C = 60o,则∠A+∠E=()

A.20oB.30oC.40oD.60o

2.如图,∠1=∠2,则下列结论一定成立的是()

A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠4 3.如图,AD⊥BC,DE∥AB,则∠B和∠1的关系是()

A. 相等

B. 互补

C. 互余

D. 不能确定

4.如图,下列判断正确的是()

A.∠1和∠5是同位角;B.∠2和∠6是同位角;

C.∠3和∠5是内错角;D.∠3和∠6是内错角.

5.下列命题正确的是()

A.两直线与第三条直线相交,同位角相等;

B.两直线与第三条直线相交,内错角相等;

C.两直线平行,内错角相等;

D.两直线平行,同旁内角相等。

6.如图,若AB∥CD,则()

A.∠1 = ∠4 B.∠3 = ∠5

C.∠4 = ∠5 D.∠3 = ∠4

7.如图,l1∥l2,则α= ()

A.50°B.80°

C.85°D.95°

8.下列长度的三条线段能组成三角形的是()

A.3cm,4cm,8cm

B.5cm,6cm,11cm

C.5cm,6cm,10cm

D.3cm,8cm,12cm

9.等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为()

D

A

B

C

E

A.150°

B.80°

C.50°或80°

D.70° 10. 如图,点D 、E 、F 是线段BC 的四等分点,点A 在BC 外, 连接AB 、AD 、AE 、AF 、AC ,若AB = AC ,则图中的全等三角形 共有( )对

A. 2

B. 3

C. 4

D. 5

11. 三角形的三边分别为 a 、b 、c ,下列哪个三角形是直角三角形?( ) A. a = 3,b = 2,c = 4 B. a = 15,b = 12,c = 9 C. a = 9,b = 8,c = 11 D. a = 7,b = 7,c = 4 12. 如图,△AED ∽ △ABC ,AD = 4cm ,AE = 3cm , AC = 8cm ,那么这两个三角形的相似比是( )

A .43

B .21

C .8

3

D .2

13. 下列结论中,不正确的是( ) A .有一个锐角相等的两个直角三角形相似; B .有一个锐角相等的两个等腰三角形相似; C .各有一个角等于120°的两个等腰三角形相似; D .各有一个角等于60°的两个等腰三角形相似。 二、填空题:

14. 如图,直线a ∥b ,若∠1 = 50°,

则∠2 = 。

15. 如图,AB ∥CD ,∠1 = 40°,

则∠2 = 。

16. 如图,DE ∥BC ,BE 平分∠ABC ,

若∠ADE = 80°,则∠1 = .

17. 如图, l 1∥l 2,∠1 = 105°,∠2 = 140°,

则∠α = .

18.△ABC中,BC = 12cm,BC边上的高

AD = 6cm,则△ABC的面积为。

19.如果一个三角形的三边长分别为x,2,3,

那么x的取值范围是。

20.在△ABC中,AB = AC,∠A = 80°,则∠B = ,∠C = 。21.在△ABC中,∠C = 90°,∠A = 30°,BC = 4cm,则AB = 。22.已知直角三角形两直角边分别为6和8,则斜边上的中线长是。23.等腰直角三角形的斜边为2,则它的面积是。

24.在Rt△ABC中,其中两条边的长分别是3和4,则这个三角形的面积等于。

25.已知等腰三角形的一边长为6,另一边长为10,则它的周长为。

26.等腰三角形底边上的高等于腰长的一半,则它的顶角度数为。

27.如图,A、B两点位于一个池塘的两端,冬冬想用绳子

测量A、B两点间的距离,但绳子不够长,一位同学帮他

想了一个办法:先在地上取一个可以直接到达A、B的

点C,找到AC,BC的中点D、E,并且测得DE的长

为15m,则A、B两点间的距离为__________.

28.如图,在△ABC和△DEF中,AB=DE,

∠B=∠E.要使△ABC≌△DEF,需要补充的

是一个

..条件:。

29.太阳光下,某建筑物在地面上的影长为36m,同时

量得高为1.2m的测杆影长为2m,那么该建筑物的高为。三、解答题:

30. 如图,已知△ABC 中,AB = AC ,AE = AF ,D 是BC 的中点 求证: ∠1 = ∠2

31. 如图,已知D 是BC 的中点,BE ⊥AE 于E ,CF ⊥AE 于F 求证:BE = CF

32. 如图,CE 平分∠ACB 且CE ⊥BD ,∠DAB =∠DBA ,AC = 18,△CDB 的周长是28。求BD 的长。

33. 已知:如图,点D 、E 在△ABC 的边BC 上,AD =AE ,BD =EC ,

求证:AB =AC

E D

C

B

三、教学小结

1.注重基本概念的理解

2.特殊三角形的运用与证明

3.特别要记住直角三角形的证明与运用,斜边上的中线等于斜边的一半

四、教学反馈

相似三角形经典大题(含答案)

相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC ,B C 边的长为8,B C 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作M N B C ∥,交A C 于点N ,在A M N △中,设M N 的长为x ,M N 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿M N 折叠,使A M N △落在四边形B C N M 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形B C N M 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)M N B C ∥ A M N A B C ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AM N A M N △≌△ 1A M N ∴△的边M N 上的高为h , ①当点1A 落在四边形B C N M 内或B C 边上时, 1A M N y S =△= 2 11332 2 4 8 M N h x x x = = ·· (04x <≤) ②当1A 落在四边形B C N M 外时,如下图(48)x <<, 设1A EF △的边E F 上的高为1h , 则132662h h x =-= - 11EF M N A EF A M N ∴ ∥△∽△ 11A M N ABC A EF ABC ∴ △∽△△∽△

12 16A EF S h S ??= ??? △△ABC 168242 A B C S = ??= △ 2 2 3632241224 62EF x S x x ?? - ?∴==?=-+ ? ??? 1△A 112 223 3912241224828A M N A EF y S S x x x x x ??=-= --+=-+- ??? △△ 所以 2 91224 (48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取163 x = ,8y =最大 86> ∴当163 x = 时,y 最大,8y =最大 M N C B E F A A 1

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

鲁教版五四制七年级上册认识三角形知识点

鲁教版五四制七年级上册认识三角形知识点梳理 一、学习目标 1. 掌握三角形的三边关系与三角形内角和性质; 2. 理解三角形、三角形的中线、三角形的高、三角形的角平分线的概念; 3. 了解图形的全等,能利用全等图形进行简单的图形设计; 4. 掌握全等三角形的性质,能进行简单的推理和计算,解决一些实际问题. 二、知识归纳 1.三角形的三边关系 (1)三角形的任意两边之和大于第三边; (2)三角形的任意两边之差小于第三边. 二、 2. 三角形的内角和等于180°. 3. 三角形的中线、角平分线、高 连结三角形的顶点和它所对的边的中点所得到的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线;从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线,简称三角形的高. 4. 形状、大小相同的图形放在一起完全重合,像这样能够完全重合的两个图形叫做全等形. 5. 全等三角形 能够完全重合的两个三角形叫做全等三角形. 把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角. 6. 全等三角形的性质 全等三角形的对应边相等、对应角相等. 一、全等图形、全等三角形: 1.全等图形:能够完全重合的两个图形就是全等图形。2.全等图形的性质:全等多边形的对应边、对应角分别相等。3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。

说明:全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。注意:(1)周长相等的两个三角形,不一定全等;(2)面积相等的两个三角形,也不一定全等。 二、全等三角形的判定: 1.一般三角形全等的判定(1)边边边公理:三边对应相等的两个三角形全等(“边边边”或“SSS”)。(2)边角边公理:两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。(3)角边角公理:两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“ASA”)。(4)角角边定理:有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“AAS”)。 2.直角三角形全等的判定斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”).注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。 三、角平分线的性质及判定: 性质定理:角平分线上的点到该角两边的距离相等。 判定定理:到角的两边距离相等的点在该角的角平分线上。 四、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤: 1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系); 2.回顾三角形判定公理,搞清还需要什么; 3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。 1.1轴对称现象 1.轴对称图形:(1)如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,这个图形叫轴对称图形。这条直线叫对称轴。(注意:对称轴是一条直线,不是线段,也不是射线)。 (2)轴对称图形至少有一条对称轴,最多可达无数条。 例:①圆的对称轴是它的直径( ×) 直径是线段,而对称轴是直线(应说圆的对称轴是过圆心的直线或直径所在的直线); ②角的对称轴是它的角平分线( ×) 角平分线是射线而不是直线(应说角的对称轴是角平分线所在的直线);

初三数学相似三角形典型例题(含问题详解)

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质: ±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理: ①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则 ,,,…AB BC DE EF AB AC DE DF BC AC EF DF ===

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题解析 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A , 1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1) MN BC ∥ AMN ABC ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AMN A MN △≌△ 1A MN ∴△的边MN 上的高为h , ①当点1A 落在四边形BCNM 内或BC 边上时, 1A MN y S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<, 设1A EF △的边EF 上的高为1h , 则13 2662 h h x =-= - 11EF MN A EF A MN ∴∥△∽△ 11A MN ABC A EF ABC ∴△∽△△∽△

12 16A EF S h S ??= ??? △△ABC 1 68242 ABC S =??=△ 2 2 363224122 462EF x S x x ??- ?∴==?=-+ ? ? ?? 1△A 1122233912241224828A MN A EF y S S x x x x x ?? =-= --+=-+- ??? △△ 所以 2 91224(48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取16 3x = ,8y =最大 86> ∴当16 3 x =时,y 最大,8y =最大 2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式; (2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; M N C B E F A A 1

八年级上数学_全等三角形典型例题(一)

全等三角形典型例题: 例1:把两个含有45°角的直角三角板如图1放置,点D 在BC 上,连结BE ,AD ,AD 的延长线交BE 于点F .求 证:AF ⊥BE . 练习1:如图,在△ABC 中,∠BAC=90°,AB=AC , AE 是过点A 的直线,BD ⊥AE ,CE ⊥AE , 如果CE=3,BD=7,请你求出DE 的长度。 例2: △DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD ; (2)CM=CN ; (3) △CMN 为等边三角形;(4)MN ∥BC 。 例3:(10分)已知,△ABC 中,∠BAC = 90°,AB = AC ,过A 任作一直线l ,作BD ⊥l 于D ,CE ⊥l 于E ,观察三条线段BD ,CE ,DE 之间的数量关系. ⑴如图1,当l 经过BC 中点时,DE = (1分),此时BD CE (1分). ⑵如图2,当l 不与线段BC 相交时,BD ,CE ,DE 三者的数量关系为 ,并证明你的结论.(3分) ⑶如图3,当l 与线段BC 相交,交点靠近B 点时,BD ,CE ,DE 三者的数量关系为 . 证明你的结论(4分),并画图直接写出交点靠近C 点时,BD ,CE ,DE 三者的数量关系为 .(1分) 图1 图2 图3 C B A l B C A B C D E l A B C l E D

练习1:以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC。试说明:(1)EF=EC;(2)EB⊥CF B A F E 练习2: 如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,G是EF的中点吗?请证明你的结论。 若将⊿ABC的边EC经AC方向移动变为图(2)时,其余条件不变,上述结论还成立吗?为什么?

第二单元-认识三角形和四边形知识点及检验题

第二单元:认识三角形和四边形知识点及测试题 1.图形分为:立体图形和平面图形。 2.平面图形:a、圆(由曲线围成的图形)b、三角形、四边形、多边形(由线段围成的图形) 3.三角形内角和是180°。锐角:小于90°的角是锐角。钝角:大于90°的角是钝角。直角: 等于90°的角是直角。平角=180°;周角=360° 4.等腰三角形相等的两条边叫做腰。等腰三角形两腰间的夹角叫顶角。腰与底边的夹角叫底角。 5.等腰三角形包含:等腰三角形、等边三角形(又叫正三角形)、等腰直角三角形。 等边三角形是特殊的等腰三角形,它的每个内角都是60°。 6.三角形不易变形具有稳定性。四边形易变形具有不稳定性. 直角三角形(有一个直角两个锐角) 按角分锐角三角形(三个角都是锐角) 钝角三角形(有一个钝角两个锐角) 7 .三角形 (有三条边)等边三角形(三条边都相等)是对称图形,有三条对称轴 按边分等腰三角形(有两条边相等)是对称图形,有一条对称轴 不等边三角形(三条边都不相等) 8.三角形任意两边之和大于第三边。 9.由四条线段围成的封闭图形叫四边形四边形内角和是360°。 10.正方形是特殊的长方形。长方形和正方形是特殊的平行四边形。 11.平行四边形:两组对边分别平行且相等的四边形。 12.梯形:只有一组对边平行的四边形。 13.平行的两条边叫做梯形的底边,上面的一条叫上底,下面一条叫下底。 14.梯形的周长:上底+下底+腰+腰梯形的面积:(上底+下底)×高÷2 15..根据三角形的边长判定三角形的类型:

较小两边的平方和小于最长边的平方 钝角三角形 较小两边的平方和等于最长边的平方 直角三角形 较小两边的平方和大于最长边的平方 钝角三角形 16.. 等腰三角形的两个底角相等。等边三角形是特殊的等腰三角形。 一般平行四边形 平行四边形: 长方形 (两组对边分别平行且相等的四边形) 正方形 17. 四边形 一般四边形: (有四条边) (两组对边都不平行的四边形) 一般梯形 梯形: 等腰梯形:两条腰相等,同一底上的两个底角相等。 (只有一组对边平行的四边形) 直角梯形:一条腰垂直于的的梯形。 第二单元认识三角形和四边形测试题 一、 填空: 1.有一个角是直角的三角形是( )有一个角是钝角的三角形是( ),三个角是锐角的三角形是( )。任何三角形都有( )个角,( )条边,( )顶角。 2.等腰三角形相等的两条边叫( ),另一条边叫( );两腰的夹角叫( ),底边上的两个角叫( )。 3.三角形中三个角都相等的是( )三角形,又叫( )三角形。它的三天边都( ),每个角都是( )度。 4.三角形按角分可以分为( )( )( );按边分可以分为( )( )( )。三角形是( )图形,圆球是( )图形。 5.三角形最多有( )直角,最多有( )钝角,最多有( )锐角,至少有( )个锐角。 6.( )条边相等的三角形是等腰三角形,( )条边都相等的三角形是等边三角形。 7.三角形具有( )性,而( )易变形。

相似三角形经典模型总结与例题分类(超全)

相似三角形经典模型总结 经典模型 【精选例题】“平行型” 【例1】 如图,111EE FF MM ∥∥,若AE EF FM MB ===, 则1 11 1 1 1 :::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 【例2】 如图,AD EF MN BC ∥∥∥,若9AD =, 18BC =,::2:3:4AE EM MB =,则 _____EF =,_____MN = 【例3】 已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的 直线与AD ,BC ,CD 的延长线,AB 的延长线分别相交于点E ,F ,G ,H 求证: PE PH PF PG = M 1F 1E 1M E F A B C M N A B C D E F P H G F E D C B A

【例4】 已知:在ABC ?中,D 为AB 中点,E 为AC 上一点,且 2AE EC =,BE 、CD 相交于点F , 求BF EF 的值 【例5】 已知:在ABC ?中,12AD AB = , 延长BC 到F ,使1 3 CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE = 【例6】 已知:D ,E 为三角形ABC 中AB 、BC 边上的点,连接DE 并延长交AC 的延长线于点F ,::BD DE AB AC = 求证:CEF ?为等腰三角形 【例7】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. F E D C B A 【例8】 如图,找出ABD S ?、BED S ?、BCD S ?之间的关系,并证明你的结论. F E D C B A 【例9】 如图,四边形ABCD 中,90B D ∠=∠=?,M 是AC 上一点,ME AD ⊥于点E ,MF BC ⊥于点F 求证: 1MF ME AB CD += F E D C B A A B C D F E F E D C B A

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

全等三角形练习题(很经典)

第十二章 全等三角形 第Ⅰ卷(选择题 共30 分) 一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A.形状相同的两个三角形全等 B.面积相等的两个三角形全等 C.完全重合的两个三角形全等 D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( ) 3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C , 下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后 仍不一定能保证△ABC ≌△A /B /C /,则补充的这个条件是 ( ) A .BC= B / C / B .∠A=∠A / C .AC=A /C / D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA 6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂 线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE , 使A,C,E 在一条直线上(如图所示),可以说明 △EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角 7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不 正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A=∠2 C .△ABC ≌△CE D D .∠1=∠2 8. 在△ABC 和△FED 中,已知∠C=∠D ,∠B=∠E ,要判定 这两个三角形全等,还需要条件( ) 第3题图 第5题图 第7题图 第2题图 第6题图 A B C D

相似三角形经典题型

相似三角形知识点与经典题型 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =. ②()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、 d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2 1 5-=≈0.618AB .即 512AC BC AB AC -== 简记为:51 2 -长短==全长 注:黄金三角形:顶角是360的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()() ()a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? , 交换内项,交换外项. 同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=.

人教版八年级上全等三角形经典例题整理

全等三角形的典型习题 一、全等在特殊图形中的运用 1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数. 2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判 断△DEF 的形状. 3、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明△AGF 是等边三角形. Ex 、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由. 4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试说明BE 、CF 、EF 为边长的三角形是直角三角形。 A B A A

m 二.证明全等常用方法(截长法或补短法) 5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC . Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB . Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法,自己考虑) 6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF =45°.请你试用 补短法说明AE +CF =EF . Ex1.、如图所示,在△ABC 中,边BC 在直线m 上,△ABC 外的四边形ACDE 和四边形ABFG 均为正方形,DN ⊥m 于N ,FM ⊥m 于M .请你说明BC =FM +DN 的理由.(分别用截长法和补短法) (连结GE ,你能说明S △ABC =S △AGE 吗?) B B C F C A B

人教版八年级数学-三角形-知识点+考点+典型例题(含答案)

第七章三角形 【知识要点】 一.认识三角形 1.关于三角形的概念及其按角的分类 定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2.三角形的分类: ①三角形按角的大小分为三类:锐角三角形、直角三角形、钝角三角形。 ②三角形按边分为两类:等腰三角形和不等边三角形。 2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短) 根据公理“两点之间,线段最短”可得: 三角形任意两边之和大于第三边。 三角形任意两边之差小于第三边。 3.与三角形有关的线段 ..:三角形的角平分线、中线和高 三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段; 三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分; 三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。 注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线; ②任意一个三角形都有三条角平分线,三条中线和三条高; ③任意一个三角形的三条角平分线、三条中线都在三角形的部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的部;直角三角形有一条高在三角形的部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的部,另两条高在三角形的外部。 ④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。) 4.三角形的角与外角 (1)三角形的角和:180° 引申:①直角三角形的两个锐角互余; ②一个三角形中至多有一个直角或一个钝角; ③一个三角中至少有两个角是锐角。 (2)三角形的外角和:360° (3)三角形外角的性质: ①三角形的一个外角等于与它不相邻的两个角的和;——常用来求角度 ②三角形的一个外角大于任何一个与它不相邻的角。——常用来比较角的大小 5.多边形的角与外角 多边形的角和与外角和(识记)

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

全等三角形经典题型题带标准答案

全等三角形经典题型题带答案

————————————————————————————————作者:————————————————————————————————日期:

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥ AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. C D B A B A C D F 2 1 E

相似三角形经典习题

相似三角形 一.选择题 1.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是() A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB 2.如图,△ACD和△ABC相似需具备的条件是() A. B. C.AC2=AD?AB D.CD2=AD?BD 3.如图,在等边三角形ABC中,D为AC的中点,,则和△AED(不包含△AED)相似的三角形有() A.1个 B.2个 C.3个 D.4个 4.如图,已知点P是Rt△ABC的斜边BC上任意一点,若过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与△ABC相似,那么D点的位置最多有() A.2处 B.3处 C.4处 D.5处 5.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一定有() A.△ADE∽△ECF B.△BCF∽△AEF C.△ADE∽△AEF D.△AEF∽△ABF 6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()

A. B. C. D. 7.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③,④,⑤AC2=AD?AE,使△ADE与△ACB一定相似的有() A.①②④ B.②④⑤ C.①②③④ D.①②③⑤ 8.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为() A.3:4 B.9:16 C.9:1 D.3:1 9.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为() A.18 B.C. D. 10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论: ①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC 其中正确的是() A.①②③④ B.②③ C.①②④ D.①③④ :S 11.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S △DEF =4:25,则DE:EC=() △ABF

全等三角形经典例题(含答案)

全等三角形证明题精选 一.解答题(共30小题) 1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF; (2)若AC与BD相交于点O,求证:AO=CO. 2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长.

3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 4.如图,点O是线段AB和线段CD的中点. (1)求证:△AOD≌△BOC; (2)求证:AD∥BC.

5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D. 6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.

7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF. 8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE. 9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE.

10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.

11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB. 12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N.

相似三角形典型例题精选

相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD是等边三角形,A、C、D、B在同一直线上,且∠APB=120°. 求证:⑴△PAC∽△BPD;⑵ CD2 =AC·BD. 例2、如图,在等腰△ABC中, ∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C 重合),在AC上取一点E,使∠ADE=45° (1)求证:△ ABD∽△DCE; (2)设BD=x,AE=y,求y关于x函数关系式及自变量x值范围,并求出当x为何值时AE 取得最小值? (3)在AC上是否存在点E,使得△ADE为等腰三角形若存在,求AE的长;若不存在,请说明理由 例3、如图所示,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B: 1)求证:△ADF∽△DEC; 2)若AB=4,3 3 AD,AE=3,求AF的长。 A B C D F

考点二:射影定理: 例4、如图,在RtΔABC中,∠ACB=90°,CD⊥AB于D,CD=4cm,AD=8cm,求AC、BC及BD的长。 例5、如图,已知正方形ABCD,E是AB的中点,F是AD上的一点,且AF= 1 4 AD,EG⊥CF于点G, (1)求证:△AEF∽△BCE;(2)试说明:EG2=CG·FG. 例6、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE. (1)求证:四边形AFCE是菱形; (2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长; (3)在线段AC上是否存在一点P,使得2AE2=AC·AP若存在,请说明点P的位置,并予以证明;若不存在,请说明理由. A B C D E F G

相关文档
最新文档