相似三角形性质判定27.2.2
27.2.2相似三角形的性质.ppt

都等于相似比.
角 对应角平分线的比
形 周长的比
相似三角形的性质
问题:两个相似三角形的面积 之间有什么关系呢?
用心观察 当相似比=k时,面积比=k2.
(1)
1
(2)
2
(3)
3
(1)与(2)的相似比=_1_∶___2_, (1)与(2)的面积比=___1_∶__4 (2)与(3)的相似比=___2∶___3, (2)与(3)的面积比=___4_∶__9
其中AD、 AD分别为BC、 BC边上的高,
由ABD ∽ABD能否得到 AD 等于什么?
AD
因为ABD∽ ABD,
所以 AD AB (相似三角形的对应边成比例)
AD AB
k
结论:相似三角形对应高
的比等于相似比.
图 18.3.9
图 18.3
自主思考---类似结论
问题2 : 如图, ABC∽ ABC,相似比为k,
相似三角形面积的比等于相似比的平方.
已知△ABC∽△ A,B且C 相似比为k,
AD、 分A别D是△ABC、△ 对AB应C边 BC、
上的高B,C求 证:
证明:∵△ABC∽△ABC
S ABC k 2
S ABC
A
∴ AD k, BC k
AD BC
B
D
C
∴ SABC
1 AD• BC 2
k2
A'
SABC 1 AD • BC
4.如图,在 ABCD中,若E是AB的中点,
则(1)∆AEF与∆CDF的相似比为__1__: _2_.
(2)若∆AEF的面积为5cm2,
k AE 1 CD 2
则∆CDF的面积为____2_0_c.m2 D
27.2.2 相似三角形的性质课件(共21张PPT)

∴ AD//BC,AD = BC,AE:BC=2:5.
∵△AEF∽△CBF, ∴ S△AEF:S△CBF = 4:25.
注意:
②当 AE:ED = 3:2时,AE:AD = 3:5,
AE: ED要分两种
同理可得, S△AEF:S△CBF = 9:25.
情况讨论.
27.2.2 相似三角形的性质
D'
C
C'
27.2.2 相似三角形的性质
(2)玻璃样品的角平分线和图纸上的角平分线相对应吗?如图,△ABC
∽△A′B′C′,相似比为 k,求它们对应角平分线的比.
A
解:如图,分别作出 △ABC 和△A' B' C' 的角平分线
AD 和 A'D',则∠BAD =∠B' A' D'
∵△ABC ∽△A′B′C′
∵△CEB的面积为9,∴△FDE的面积为1,∴△ABF的面积为4,
∴▱ABCD的面积=9-1+4=12.
27.2.2 相似三角形的性质
课堂小结
对应角相等
相
似
三
角
形
的
性
质
对应边成比例
对应边的比叫做相似比
对应高的比,对应中线的比、对应角平分线的比都等于
相似比.
周长的比等于相似比
面积的比等于相似比的平方
(5)图纸中图形与三角形玻璃样品面积比也等于相似比吗?为什么?
如图,△ABC ∽△A′B′C′,相似比为 k,它们的面积比是多少?
A
B
A'
C
B'
C'
27.2.2 相似三角形的性质
最新人教版九年级数学相似三角形27.2.2相似三角形的性质

27.2.2相似三角形的性质
知识点
1.如何灵活应用相似三角形的判定方法
(1)条件中若有平行线,可以采用找角相等证明两个三角形相似
(2)条件中若有一对等角,可再找一对等角或者再找此角所在的两边比对应相等
(3)条件中若有两边比对应相等,可找夹角相等或者第三边的比对应相等
(4)条件中若有一对直角,可考虑再找一对等角或两直角边的比对应相等
(5)条件中若有等腰三角形,可找顶角相等或找一对底角相等或找腰和底的比对应相等
2.相似三角形的性质:对应边的比相等,对应角相等(画出图形,并且用数学符号语言表示)
3.相似三角形对应线段(对应高,对应中线,对应角分线)的比:等于相似比(画出图形,写出已知求证并证明)
4.相似三角形(多边形)的周长比:等于相似比(画出图形,写出已知求证并证明)
5.相似三角形(多边形)的面积比:等于相似比的平方(画出图形,写出已知求证并证明)
练习题
5.
6.。
27.2.2相似三角形的性质课件

练习
1、两个相似三角形对应高的长分别是6cm和18cm,若较大三角形的周长是42cm,面积是12cm2,则较小三角形的周长为____cm,面积为____cm2。
2、在△ABC中,DE∥BC,EF∥AB,已知△ADE和△EFC的面积分别为4和9,求△ABC的面积。
14
第10页/共20页
同理可证:相似三角形对应边上的中线,对应角平分线的比也等于K。结论: 相似三角形对应高的比,对应边上的中线,对应角平分线的比等于______。
相似比
第2页/共20页
知识点二:相似三角形的周长比
已知,如图,△ABC∽△A′B′C′,探究下列问题: △ABC与△A′B′C′的对应边有什么 关系?
相似比
相似比的平方
第12页/共20页
强化训练
1、连结三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于____,面积比等于____。
2、如果两个相似三角形面积的比为3∶5 ,那么它们的相似比为_______,周长的比为________。
第13页/共20页
强化训练
3、在一张复印出来的纸上,一个多边形的一条边由原图中的2cm变成了6cm,这次复印的放缩比例是多少?这个多边形的面积发生了怎样的变化?
知识点一:相似三角形对应高的比、对应中线的比、对应角平分线的比
已知,如图,△ABC∽△A′B′C′AD,A′D′分别是△ABC与△A′B′C′的高,(1)相似三角形的对应高的比与相似比有什么关系? 写出推导过程。
相等
第1页/共20页
证明:(1)∵△ABC∽△A′B′C′ ∴ ∠B=∠ B′ 又∵AD⊥BC A′D′⊥B′C′ ∴∠ADB=∠ A′D′B′=90° ∴△ABD∽△A′B′D′ ∴
人教版九年级下册27.2.2相似三角形的性质优秀教学案例

一、案例背景
本节内容是“人教版九年级下册27.2.2相似三角形的性质”,是学生在掌握了相似三角形的概念后,进一步探究相似三角形的性质。通过学习,学生能理解和掌握相似三角形的性质,提高他们的几何思维能力,为解决实际问题打下基础。
在教学过程中,我以生活中常见的几何图形为切入点,引导学生发现相似三角形的性质,并通过丰富的教学活动,让学生在实践中体验和感悟这些性质。同时,我注重培养学生的合作交流能力,让他们在讨论中加深对知识的理解。
2.培养学生运用类比、归纳等数学方法,发现和总结数学规律的能力。引导学生从特殊到一般,再从一般到特殊的思考方式,形成良好的数学思维习惯。
3.使学生掌握相似三角形的判定方法,能运用判定方法判断两个三角形是否相似。通过对比、分析,让学生理解判定方法的本质,提高他们的数学分析能力。
(二)过程与方法
1.培养学生主动探究、合作交流的能力。鼓励学生在课堂上积极提问、发表见解,与他人分享自己的思考和发现。通过小组讨论、合作探究等形式,让学生在互动中学习,提高他们的沟通与合作能力。
2.利用多媒体技术,如图片、视频等,展示相似三角形的实际案例,让学生直观地感受相似三角形的性质,提高他们的空间想象力。
3.设计具有启发性的问题,引导学生主动探究相似三角形的性质。如通过提出“为什么相似三角形的性质是这样的?”等问题,激发学生的好奇心,培养他们的思考能力。
(二)问题导向
1.引导学生发现和提出问题。鼓励学生在学习过程中主动发现问题,并大胆提出来,与他人共同探讨。如在学习相似三角形的性质时,学生可以提出“如何判断两个三角形是否相似?”等问题。
2.教师可提出一些与相似三角形相关的问题,如“你们知道相似三角形的性质吗?它们有哪些实际应用?”等,引发学生的思考,为导入新课做好铺垫。
人教版数学九年级下册《27.2.2相似三角形的性质》说课稿2

人教版数学九年级下册《27.2.2相似三角形的性质》说课稿2一. 教材分析《27.2.2相似三角形的性质》这一节的内容是人在版数学九年级下册的重要内容,主要介绍了相似三角形的性质。
相似三角形是指有两个角相等,且对应边成比例的两个三角形。
本节内容通过实例引导学生探究相似三角形的性质,并运用这些性质解决实际问题。
教材通过详细的讲解和丰富的练习,帮助学生深入理解和掌握相似三角形的性质。
二. 学情分析九年级的学生已经学习了三角形的性质,角的概念等基础知识,对图形的变换也有一定的了解。
但学生对于相似三角形的性质的理解和运用还需要加强。
因此,在教学过程中,我将以学生已有的知识为基础,引导学生通过观察,操作,思考,推理等过程,探究相似三角形的性质,并能够运用这些性质解决实际问题。
三. 说教学目标1.知识与技能目标:通过探究相似三角形的性质,使学生能够理解并掌握相似三角形的性质,能够运用相似三角形的性质解决实际问题。
2.过程与方法目标:通过观察,操作,思考,推理等过程,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:通过小组合作,培养学生的团队协作能力,激发学生对数学的兴趣和探究欲望。
四. 说教学重难点1.教学重点:相似三角形的性质及其应用。
2.教学难点:相似三角形的性质的推导和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过观察,操作,思考,推理等过程,自主探究相似三角形的性质。
2.教学手段:利用多媒体课件,展示相似三角形的性质的实例,引导学生直观理解。
同时,利用几何画板等软件,让学生进行实时的操作和演示,加深对相似三角形性质的理解。
六. 说教学过程1.导入:通过展示一些实际的例子,引导学生观察和思考,激发学生对相似三角形性质的兴趣。
2.探究相似三角形的性质:引导学生通过小组合作,观察,操作,推理等过程,自主探究相似三角形的性质。
3.性质的验证与应用:通过几何画板等软件,让学生进行实时的操作和演示,验证相似三角形的性质,并运用这些性质解决实际问题。
27.2.2相似三角形的判定(2)预备定理.

再见
直觉告诉我们, △ADE与△ABC相似,我们通 过相似的定义证明这个结论. 先证明两个三角形的对应角相等.
在△ADE与△ABC中, ∠A=∠A,
∵DE//BC,
∴∠ADE=∠B, ∠AED=∠C.
再证明两个三角形的对应边的比相等. 过E作EF//AB,EF交BC于F点. 在平行四边形BFED中,DE=BF,DB=EF.
2、△ABC与△A´B´C´相似比为k, 则△A´B´C´与
△ABC相似比为 1 k
平行线分线段成比例定理:
三条平行线截两条直线,所得的对
应线段的比相等.
符号语言:∵ l3∥l4 ∥l5 ,
∴
AB BC
DE , EF
BC AB
EF , DE
l1
l2
A
D
l3
AB DE , AC DF
AC DF AB DE
27.2相似三角形的判定
预备定理
相似三角形的判定:
对应角相等,三组对应边的比也相等的两个三
角形是相似三角形. 符号语言:
A
B
C B′
A′
在△ABC和△A´B´C´中,
∵A A, B B, C C
AB BC CA .
C′
AB BC CA
∴△ABC∽△A´B´C´
三角形相似具有
传递性!
或:Δ OEF∽Δ OAB Δ OEF∽Δ OCD
Δ OAB∽Δ OCD
9.已知EF∥BC,求证:
BD DC EG GF
A
E
F
G
B
D
C
F
GE
A
B
D
C
相似三角形判定方法
27.2.2 相似三角形的性质

相 似 三 角 形
如图,△ABC~△A'B'C',它们对应的高,对 应的中线,对应角平分线的比与相似比一样 吗?
A
A′
B
D
C
B′
D′
C′
如图AD、 A′D′ 分别是锐角△ABC和锐角 △A′B′C′的高,且△ABC∽ △A′B′C′,则 AD:A’D’=AB:A’B’. ∵ △ABC∽ △A′B′C′, A ∴∠B=∠B’ 又因为AD、 A′D′ 分别是 △ABC和△A′B′C′的高 C ∴∠ADB=∠A’D’B’=9 B D 0° ABD和△A′B′D′中 在△ A′ ∠B=∠B’ ∠ADB=∠A’D’B’ ∴ △ABD∽ △A′B′D′,
判断题(正确的打“√”,错误的画“×”) (1)一个三角形的各边长扩大为原来的5倍,这个三角形的 角平分线也扩大为原来的5倍
( √ )
(2)一个三角形的各边长扩大为原来的9倍,这个三角形的
面积也扩大为原来的9倍
( ×)
B′ D′ C′
∴AD:A’D’=AB:A’B’.
相似三角形对应高的比,对应中线的比、对应 角平分线的比都等于相似比.
填空: (1)两个三角形的对应边的比为3:4,则这两 个三角形的对应角平分线的比为__3:4___ ,对 应边上的高的比为_3:4___,对应边上的中线的 比为__3:4__ (2)相似三角形对应角平分线比为0.2,则相似比 为___0.2___,对应中线的比等于__0.2___;
对应角相等 相 似 三 角 形 的 性 质
对应边成比例 相似比等于对应边的比 对应高的比,对应中线的比、对应角平分 线的比都等于相似比. 周长的比等于相似比 面积的比等于相似比的平方
1、两个相似多边形的面积比为4:1,则它们的 2:1 。 2:1 ,周长比为_______ 相似比为_______ 2、如果把一个三角形的三条边长都扩大为原 10000 来 100 的100倍,则面积扩大为原来的 _______倍,周长 扩大为______倍。 3、如果把一个三角形的面积扩大为原来的100 10 倍,周长为原来的 倍,则边长为原来的_____ 10 倍。 ______
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谢谢各位
探究:
A' B' B' C' A' C ' 1、 AB , BC , AC
A' B ' B 'C ' A'C ' 相等吗?AB = BC = AC = k 相等
2、A'B'、B'C'、A'C'与AB、BC、AC对应成比 A' B ' B 'C ' A'C ' 例吗? = =
3、∠A=∠A'吗? ∠B=∠B'吗? ∠C=∠C'吗? 相等
相似三角形的性质和判定 (一)
蓦然回首
1、什么叫做全等三角形?
能够完全重合的两个三角形叫做全等三 角形。(如右图△ABC≌△DEF)
B
A D C E F
2、全等三角形的对应边、对应角之 间各有什么关系?
对应边相等、对应角相等。
3.怎样判定两个三角形全等?
SAS,ASA,AAS,SSS,(HL).
探究新知
判定定理1 三边对应成比例的两 个三角形相似
如图: 如果
图 18.3.3
AB = A'B'
BC AC = A'C' B'C'
那么
△ABC∽△A’B’C’
例题赏析
例1、在△ABC和△A′B′C′中,已知:AB=6cm,BC=8cm, AC=10cm,A′B′=18cm,B′C′=24 cm,A′C′= 30cm.试判定△ABC与△A′B′C′是否相似,并说明理 由。
1、如图所示如果△ADE∽△ABC,那么哪些角是对应角?哪 些边是对应边?对应角有什么关系?对应边呢?
C E
A
D
B
对应角相等即∠A=∠A, ∠ADE=∠B ,∠AED=∠C AD AE DE 对应边成比例 = =
AB AC BC
两个全等三角形一定相似吗?为什么?它 与相似三角形有什么关系?
两个全等三角形的对应边相等,对应角相等,由 对应边相等可知对应边一定成比例,且相似比为 1, 因此满足相似三角形的两个条件,所以两个全等 三角形一定相似。全等三角形是相似三角形的特 殊形式!
4、两个三角形三边对应比例,它们的对应角相等吗? 两个三角形三边对应成比例,它们的对应角相等。 5、△ABC与△A’B’C’相似吗?为什么?
相似。由定义可知三边对应成比例,且对应角相等的两 个三角形是相似三角形。
AB
BC
AC
6、三边对应成比例的两个三角形相似吗?
感悟与反思
通过前面的动手、探索与展示,我们又得到 识别两个三角形相似的一个方法:
角形相似,所以
2 x y 1, = = , 4 5 6
2 x y 3, = = , 6 5 4 10 4 解得:x=2.5 y=3. 解得:x=1.8 y=2.4. 解得:x= y= . 3 3 4 答:有三种方案即另两边长分别为2.5、或 3 1.8、 2.4或10 、 3 3。
2 x y 2, = = , 5 4 6
探 索2:
A
三组对应边成比例
A’
B C
B’
C’
A'B' B' C' A'C' = = AB BC AC
是否有△ABC∽△A’B’C’?
动手:
1、请同学们在所发的方格纸上任意画一个△ABC, 使点A、B、C三点均在格点上。 2、作△A‘B’C‘,使A‘、B’、C‘各点也在格 点上。且A'B'=kAB,B'C'=kBC,A'C'=kAC.出∠A、∠B、 ∠C与∠A'、∠B'、∠C'的 度数。
(温馨提示:大对大,小对小,中对中)
练习2:如图在正方形网格上有△A 1 B1C1和△ A2 B2 C 2, 它们相似吗?如果相似,求出相似比;如果 不相似,请说明理由。
解:设正方形边长为1,由图及勾股定理可得:
A1 B1 = 2 2, A1C1 = 4, B1C1 = 2 10 A2 B2 = 2, A2C2 = 2, B2C2 = 10 A1 B1 A1C1 B1C1 = 2, = 2, = 2, A2 B2 A2C2 B2C2 A1 B1 A1C1 B1C1 \ = = A2 B2 A2C2 B2C2 \ D A1B1C1 D A 2 B2 C2 (三边对应成比例的两个三角形相似)
1、如果两个三角形全等,则它们必相似。 √ 2、三角形的三条中位线围成的三角形与原 三角形相似,且相似比为1/2. √ 3、如果两个三角形均与第三个三角形相 √ 似,则这两个三角形必相似。 × 4、相似的两个三角形必定大小不等。 5、两个等边三角形必定相似。
√
试一试身手
填一填 : 1、若△ABC与△A′B′C′相似,一组对应边的长为 AB=3 cm,A′B′=4 cm,那么△A′B′C′与△ABC的 4︰ 3 相似比是____; 2、若△ABC 的三条边长为3cm、5cm、6cm,与其相似 的另一个△A′B′C′的最小边长为12 cm, 那么 24cm △A′B′C′的最大边长是_____; 3、若△ABC的三条边长3cm,4cm,5cm,且 直角三角形 △ABC∽△A1B1C1,那么△A1B1C1的形状是______.
1.相似三角形的定义、性质
及相似比;
注意顺序 喔!
2.相似三角形的判定定理1.
要做两个形状相同的三角形框架,其中一个三角形框架 的三边的长分别为4、5、6,另一个三角形框架的一边长 为2,请你想一想应该怎样选择材料可使这两个三角形相 似?你有几种选材方案?
解:设另一个三角形的另两边的长分别为x、y。因为这两个三
(三边对应成比例的两个三角形相似)
练习1: 已知△ABC和 △DEF,根据下列 条件判断它们是否相似.
(1) AB=3, BC=4, AC=6 否 DE=6, EF=8, DF=9 (2) AB=4, BC=8, AC=10 是 DE=20, EF=16, DF=8 (3) AB=12, BC=15, AC=24 否 DE=16, EF=20, DF=30
定义:三个角对应角相等、三条边对应
A
边成比例的两个三角形叫作相似三角形。
C B D
相似比:相似三角形对应边的比k叫做相似比 (求相似三角形的相似比要注意顺序性)
F
如右图所示:△ABC相似于△DEF就可表示为: E “△ABC∽△DEF”读作“△ABC相似于△DEF” 对应顶点一定要写在对应位置,这样可以准 确地找出相似三角形的对应角和对应边。
解: AB <BC<AC, A'B'<B'C'<A'C',
AB 6 1 BC 8 1 AC 10 1 = = , = = , = = , A ' B ' 18 3 B ' C ' 24 3 A ' C ' 30 3 AB BC AC \ = = , A' B ' B 'C ' A 'C ' \ D ABC D A'B'C'