高考数学选择题解题策略
全国卷数学选择题答题规律技巧

全国卷数学选择题答题规律技巧全国卷数学选择题答题规律技巧数学选择题的答案(ABCD)答案基本分布都是比较均匀的,一般不会连续三道题都是选择同一个选项,基本这ABCD会出2到4次,记得小编在做数学题的时候,一本会采用2334的原则,相信大部分的同学都会采用这种方法。
其实数学选择题答题是没有什么规律可言的,但是数学选择题的题型一半我们都在平时的练习的时候做过,那几道选择体会比较难,那几道选择题是简单的,这老师都会说,我们在平时做题的时候,也能够感觉到。
我们在答数学选择题的时候,可以采用先看答案的方法,然后再去读题目,一定要把题干读懂,这样做题的效率会高一些,也可以把答案带入到题干当中,采用排除法的方式,选择最佳答案。
如果是自己会做,那么直接选择就可以了,这也会简便很多。
一定要认真审题,有时候,差一个字可能对答案都是有影响的,同学们在做选择题,不要着急选择答案,要把题读懂再去选择答案,这样准确率才会高一些,能够发现题干当中所隐含的条件,有些时候,题干不会直接给出已知条件,需要我们去反推,这样会增加我们的准确率。
学会采用剔除的方法,根据已知条件,找到相对应的答案,把错误的是三个选项剔除,找出最正确的答案,如果是你的推理能力很强,还可以采用推理的方法,找到最佳答案,利用数学定理和公式的,推算出最终的结果,这也是答数学选择题的一种最好的方法。
高考数学答题思路1、函数与方程思想函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2、数形结合思想中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
高中数学题型1000例

高中数学题型1000例一、引言高中数学是高考的重要组成部分,对于学生未来的专业学习和综合素质培养具有重要意义。
为了帮助同学们更好地掌握高中数学知识,提高解题能力,我们整理了高中数学题型1000例,旨在让大家通过大量练习,熟练掌握各类题型和解题方法。
二、高中数学主要题型及解题方法1.选择题解题技巧(1)分析题干信息:在做选择题时,首先要仔细阅读题干,提取关键信息,明确题目所求。
(2)解题方法总结:针对不同类型的选择题,可以运用代入法、排除法、特殊值法等方法求解。
2.填空题解题策略(1)审题要细:在做填空题时,要仔细阅读题目,明确已知条件和所求答案。
(2)快速求解方法:针对不同题型,掌握快速求解的方法,如裂项求和、数形结合等。
3.解答题解题步骤(1)解题思路梳理:在做解答题时,首先要理清解题思路,明确解题步骤。
(2)答题规范要点:在解答过程中,注意答题规范,写出详细的解题过程。
三、高中数学题型1000例详解本部分按照题型分类,给出典型例题及详细解答。
同学们可以通过学习,了解各类题型的解题思路和方法。
1.代数题型(1)例题1:已知函数f(x)=ax+bx+c(a≠0),求f(x)的极值。
(2)解答:利用导数求解,步骤如下:2.几何题型(1)例题2:已知圆O的半径为r,点A在圆上,求OA的长度。
(2)解答:利用勾股定理求解,步骤如下:3.函数与导数题型(1)例题3:已知函数f(x)=x-6x+9x-1,求f"(x)。
(2)解答:利用导数的求导法则求解,步骤如下:四、高中数学题型练习及解析本部分给出练习题及答案解析,供同学们巩固基础知识、提高解题能力、拓展思维广度。
1.巩固基础知识(1)练习题1:已知等差数列的前n项和为Sn,求通项公式。
(2)答案解析:利用等差数列求和公式求解,步骤如下:2.提高解题能力(1)练习题2:已知函数f(x)=2x-3x+1,求f(x)在区间[0,2]上的最大值和最小值。
1学生用高考数学选择题的解题策略

第1讲 高考数学选择题的解题策略一、知识整合1.高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大.解答选择题的基本要求是四个字——准确、迅速.2.选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面. 解答选择题的基本策略是:要充分利用题设和选择支两方面提供的信息作出判断。
一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接解;对于明显可以否定的选择应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。
解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
3.解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题的方法.二、方法技巧 1、直接法:直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.例1.若sin 2x >cos 2x ,则x 的取值范围是( )(A ){x |2k π-34π<x <2k π+π4,k ∈Z } (B ) {x |2k π+π4<x <2k π+54π,k ∈Z }(C ) {x |k π-π4<x <k π+π4,k ∈Z } (D ) {x |k π+π4<x <k π+34π,k ∈Z }例2.设f (x )是(-∞,∞)是的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于( )(A ) 0.5 (B ) -0.5 (C ) 1.5 (D ) -1.5例3.七人并排站成一行,如果甲、乙两人必需不相邻,那么不同的排法的种数是( ) (A ) 1440 (B ) 3600 (C ) 4320 (D ) 4800直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解.直接法适用的范围很广,只要运算正确必能得出正确的答案.提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建在扎实掌握“三基”的基础上,否则一味求快则会快中出错.2、特例法:用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.例4.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(44,0),1x 2,tan x θ<<若则的取值范围是( ) (A ))1,31( (B ))32,31((C ))21,52((D ))32,52(例5.如果n 是正偶数,则C n 0+C n 2+…+C n n -2+C nn =( ) (A ) 2n (B ) 2n -1 (C ) 2n -2 (D ) (n -1)2n -1例6.等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ) (A )130 (B )170 (C )210 (D )260例7.若1>>b a ,P =b a lg lg ⋅,Q =()b a lg lg 21+,R =⎪⎭⎫⎝⎛+2lg b a ,则( ) (A )R <P <Q (B )P <Q <R(C )Q <P <R (D )P <R <Q当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略.近几年高考选择题中可用或结合特例法解答的约占30%左右.3、筛选法:从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断.例8.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( ) (A )(0,1) (B )(1,2) (C )(0,2) (D ) [2,+∞)例9.过抛物线y 2=4x 的焦点,作直线与此抛物线相交于两点P 和Q ,那么线段PQ 中点的轨迹方程是( )(A ) y 2=2x -1 (B ) y 2=2x -2(C ) y 2=-2x +1 (D ) y 2=-2x +2筛选法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选择支中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小的选择支的范围那找出矛盾,这样逐步筛选,直到得出正确的选择.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中约占40%.4、代入法:将各个选择项逐一代入题设进行检验,从而获得正确的判断.即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案.例10.函数y =sin(π3-2x )+sin2x 的最小正周期是( )(A )π2(B ) π (C ) 2π (D ) 4π例11.函数y =sin (2x +25π)的图象的一条对称轴的方程是( )(A )x =-2π(B )x =-4π(C )x =8π(D )x =45π代入法适应于题设复杂,结论简单的选择题。
高考数学答题策略与技巧

高考数学答题策略与技巧一、历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。
假如前问是证明,即使可不能证明结论,该结论在后问中也能够使用。
因此,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。
一样来说,选择题的后两题,填空题的后一题,解答题的后两题是难题。
因此,关于不同的学生来说,有的简单题目也可能是自己的难题,因此题目的难易只能由自己确定。
一样来说,小题摸索1分钟还没有建立解答方案,则应采取“临时性舍弃”,把自己可做的题目做完再回头解答;2.选择题有其专门的解答方法,第一重点把握选择支也是已知条件,利用选择支之间的关系可能使你的答案更准确。
切记不要“小题大做”。
注意解答题按步骤给分,依照题目的已知条件与问题的联系写出可能用到的公式、方法、或是判定。
尽管不能完全解答,然而也要把自己的方法与做法写到答卷上。
多写可不能扣分,写了就可能得分。
三、答题思想方法1.函数或方程或不等式的题目,先直截了当摸索后建立三者的联系。
第一考虑定义域,其次使用“三合一定理”。
2.假如在方程或是不等式中显现超越式,优先选择数形结合的思想方法;3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有阻碍到的不变的性质。
如所过的定点,二次函数的对称轴或是……;4.选择与填空中显现不等式的题目,优选专门值法;5.求参数的取值范畴,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6.恒成立问题或是它的反面,能够转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;8.求曲线方程的题目,假如明白曲线的形状,则可选择待定系数法,假如不明白曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的专门点);9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范畴;11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种专门数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;12.立体几何第一问假如是为建系服务的,一定用传统做法完成,假如不是,能够从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练把握它们之间的三角函数值的转化;锥体体积的运算注意系数1/3,而三角形面积的运算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”制造直角三角形解题;13.导数的题目常规的一样不难,但要注意解题的层次与步骤,假如要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该舍弃;重视几何意义的应用,注意点是否在曲线上;14.概率的题目假如出解答题,应该先设事件,然后写出使用公式的理由,因此要注意步骤的多少决定解答的详略;假如有分布列,则概率和为1是检验正确与否的重要途径;15.三选二的三题中,极坐标与参数方程注意转化的方法,不等式题目注意柯西与绝对值的几何意义,平面几何重视与圆有关的知积,必要时能够测量;16.遇到复杂的式子能够用换元法,使用换元法必须注意新元的取值范畴,有勾股定理型的已知,可使用三角换元来完成;17.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;18.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;19.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;20.关于中心对称问题,只需使用中点坐标公式就能够,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
高考数学选择题解题策略

高考数学选择题的解题策略摘要:在做高考数学试卷时,选择题的做法灵活多样,可以采用直接法、特殊值法、排除法、代入法、图解法(数形结合法)等。
关键词:直接法;特殊值法;排除法;代入法;图解法(数形结合法)数学选择题在当今高考试卷中,不但题目多,而且占分比例高,此类题型具有概括性强、知识覆盖面广、小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。
因此,如何巧解、快解、准确地得出结论就显得越来越重要。
下面通过一些实例来介绍一些常用的解题方法。
一、直接法直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.到此就应该停笔,结合答案很快就选a.点拨:直接法是解答选择题最常用的基本方法,经过统计研究表明,大部分选择题的解答用的是此法.但解答中也要注意结合选项特点灵活做题,注意题目的隐含条件,争取少算.这样既节约了时间,又提高了命中率.二、特殊值法用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而做出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.三、排除法从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断.四、代入法将各个选择项逐一代入题设进行检验,从而获得正确的判断.即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案.五、图解法(数形结合法)据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断.习惯上也叫数形结合法.严格地说,图解法并非属于选择题解题思路范畴,而是一种数形结合的解题策略,但它在解有关选择题时非常简便有效.不过运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则错误的图象反而会导致错误的选择.总之,解答选择题要看到各类常规题的解题思想原则上都可以指导选择题的解答,但更应该充分挖掘题目的“个性”,寻求简便解法,充分利用选择肢的暗示作用,迅速地作出正确的选择.这样不但可以迅速、准确地获取正确答案,而且可以提高解题速度,为后续解题节省时间.(作者单位陕西省咸阳市乾县杨汉中学)。
高考数学单选题和多选题的答题技巧

高考数学单选题和多选题的答题技巧【命题规律】高考的单选题和多选题绝大部分属于中档题目,通常按照由易到难的顺序排列,每道题目一般是多个知识点的小型综合,其中不乏渗透各种数学的思想和方法,基本上能够做到充分考查灵活应用基础知识解决数学问题的能力.(1)基本策略:单选题和多选题属于“小灵通”题,其解题过程可以说是“不讲道理”,所以其解题的基本策略是充分利用题干所提供的信息作出判断和分析,先定性后定量,先特殊后一般,先间接后直接,尤其是对选择题可以先进行排除,缩小选项数量后再验证求解.(2)常用方法:单选题和多选题也属“小”题,解题的原则是“小”题巧解,“小”题快解,“小”题解准.求解的方法主要分为直接法和间接法两大类,具体有:直接法,特值法,图解法,构造法,估算法,对选择题还有排除法(筛选法)等.【核心考点目录】核心考点一:直接法核心考点二:特珠法核心考点三:检验法核心考点四:排除法核心考点五:构造法核心考点六:估算法核心考点七:坐标法核心考点八:图解法【真题回归】1.(2022·天津·统考高考真题)函数()21x f x x-=的图像为()A .B .C .D .2.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为()A .23B .24C .26D .273.(2022·全国·统考高考真题)函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .4.(2022·北京·统考高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-5.(多选题)(2022·全国·统考高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥6.(多选题)(2022·全国·统考高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =7.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C D 8.(多选题)(2022·全国·统考高考真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【方法技巧与总结】1、排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论.2、特殊值法:从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特值法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.3、图解法:对于一些含有几何背景的题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等.4、构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模型,揭示问题的本质,从而找到解题的方法5、估算法:由于选择题提供了唯一正确的选项,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量.6、检验法:将选项分别代人题设中或将题设代人选项中逐一检验,确定正确选项.【核心考点】核心考点一:直接法【典型例题】例1.(2022春·贵州贵阳·高三统考期中)基本再生数0R 与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()e rtI t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 近似满足01R rT =+.有学者基于已有数据估计出0 3.28R =6T =.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间约为(ln 20.69≈)()A .1.8天B .2.5天C .3.6天D .4.2天例2.(2022春·广东深圳·高三深圳中学校考阶段练习)设函数()()πsin sin 03f x x x ωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π上有且仅有3个极值点,则ω的取值范围是().A .710,33⎛⎤⎥⎝⎦B .47,33⎛⎤ ⎥⎝⎦C .1013,33⎛⎤ ⎥⎝⎦D .14,33⎛⎤ ⎥⎝⎦例3.(多选题)(2022春·吉林长春·高一东北师大附中校考期中)设函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都有()3f x ≤,则实数m 的取值可以是()A .3B .4C .92D .112核心考点二:特珠法【典型例题】例4.(辽宁省鞍山市第一中学2022届高三下学期六模考试数学试题)若e b a >>>b m a =,a n b =,log a p b =,则m ,n ,p 这三个数的大小关系为()A .m n p >>B .n p m >>C .n m p>>D .m p n>>例5.(多选题)(广东省佛山市顺德区2022届高三下学期三模数学试题)已知01b a <<<,则下列不等式成立的是()A .log log a b b a<B .log 1a b >C .ln ln a b b a<D .ln ln a a b b>例6.(多选题)(2022春·重庆沙坪坝·高一重庆一中校考阶段练习)我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数.有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.现已知函数()11f x ax a x =++-,则下列说法正确的是()A .函数()12y f x a =+-为奇函数B .当0a >时,()f x 在()1,+∞上单调递增C .若方程()0f x =有实根,则()[),01,a ∞∞∈-⋃+D .设定义域为R 的函数()g x 关于()1,1中心对称,若12a =,且()f x 与()g x 的图象共有2022个交点,记为()(),1,2,,2022i i i A x y i = ,则()()()112220222022x y x y x y ++++++ 的值为4044核心考点三:检验法【典型例题】例7.(多选题)(2022·高一课时练习)对于定义在R 上的函数()y f x =,若存在非零实数0x ,使得()y f x =在()0,x -∞和()0,x +∞上均有零点,则称0x 为()y f x =的一个“折点”.下列函数中存在“折点”的是()A .()132x f x -=+B .()()1lg 32f x x =+-C .3()3x f x x=-D .21()4x f x x +=+例8.(多选题)(2022·全国·高三专题练习)已知函数()()2cos 10,02f x x πωϕωϕ⎛⎫=+-><< ⎪⎝⎭的图象经过原点,且恰好存在2个[]00,1x ∈,使得()f x 的图象关于直线0x x =对称,则()A .3πϕ=B .ω的取值范围为58,33ππ⎡⎫⎪⎢⎣⎭C .一定不存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称D .()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减例9.(多选题)(2022秋·高二课时练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是()A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根D .设函数()f x =R a ∈,e 为自然对数的底数),若曲线sin y x =上存在点00(,)x y 使00(())f f y y =成立,则a 的取值范围是[]1,e 核心考点四:排除法【典型例题】例10.函数()y f x =的部分图象如图所示,则()A .B .C .D .例11.定义在R 上的函数()f x 满足(2)(2)f x f x -=+,且在(2,)+∞单调递增,(4)0f =,4()g x x =,则函数(2)()y f x g x =+的图象可能是()A .B .C .D .例12.如图1,已知PABC 是直角梯形,//AB PC ,AB BC ⊥,D 在线段PC 上,.AD PC ⊥将PAD 沿AD 折起,使平面PAD ⊥平面ABCD ,连接PB ,PC ,设PB的中点为N ,如图2.对于图2,下列选项错误的是()A .平面PAB ⊥平面PBC B .BC ⊥平面PDC C .PD AC⊥D .2PB AN=核心考点五:构造法【典型例题】例13.已知关于x 的不等式ln ln(1)0x e mx x m ---+在(0,)+∞恒成立,则m 的取值范围是()A .(1,1]e --B .(1,1]-C .(1,1]e -D .(1,]e 例14.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足(1)[()()]0x f x f x -'->,22(2)()xf x f x e--=⋅则下列判断一定正确的是()A .(1)(0)f f <B .2(2)(0)f e f >C .3(3)(0)f e f >D .4(4)(0)f e f <例15.已知log a π=12log sin 35b =︒,ee c ππ=,则()A .c b a >>B .c a b >>C .b c a >>D .a b c>>核心考点六:估算法【典型例题】例16.(2020春·江苏淮安·高三江苏省涟水中学校考阶段练习)古希腊时期,人们认为最美0.618≈称为黄金分割比例),已知一位美女身高160cm ,穿上高跟鞋后肚脐至鞋底的长度约103.8cm ,若她穿上高跟鞋后达到黄金比例身材,则她穿的高跟鞋约是()(结果保留一位小数)A .7.8cmB .7.9cmC .8.0cmD .8.1cm例17.设函数()f x 是定义在R 上的奇函数,在区间[1,0]-上是增函数,且(2)()f x f x +=-,则有()A .B .C .D .核心考点七:坐标法【典型例题】例18.在ABC 中,3AC =,4BC =,90.C P ∠=︒为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-例19.如图,在直角梯形ABCD 中,//,,2,AB CD AD DC AD DC AB E ⊥==为AD的中点,若(,)CA CE DB R λμλμ=+∈,则λμ+的值为()A .65B .85C .2D .83例20.(多选题)如图,在边长为2的正方形ABCD 中,P 为以A 为圆心、AB 为半径的圆弧(BD包含B ,)D 上的任意一点,且AP x AB y AD =+,则下列结论正确的是()A .x y +的最大值为B .x y +的最小值为2C .AP AD ⋅的最大值为4D .PB PD ⋅的最小值为4-核心考点八:图解法【典型例题】例21.已知函数31,(0),()2ln ,(0),x x f x x x --⎧=⎨>⎩若方程()f x ax =有三个不同的解1x ,2x ,3x ,则a 的取值范围为()A .2(0,eB .2(0,eC .2(,1]eD .(0,1)例22.已知A ,B 是圆O :221x y +=上的两个动点,||AB =,32OC OA OB =- ,M 为线段AB 的中点,则OC OM ⋅的值为()A .14B .12C .34D .32例23.过原点O 的直线交双曲线E :22221(0,0)x y a b a b-=>>于A ,C 两点,A 在第一象限,1F 、2F 分别为E 的左、右焦点,连接2AF 交双曲线E 右支于点B ,若2||||OA OF =,222||3||CF BF =,则双曲线E 的离心率为.()A .2145B .2134C.5D .535【新题速递】一、单选题1.已知函数()f x ,()g x 都是定义域为R 的函数,函数(1)g x -为奇函数,(1)()0f x g x +-=,(3)(2)0f x g x ----=,则(2)f =()A .1-B .0C .1D .22.已知a b <,0a ≠,0b ≠,c R ∈,则下列不等关系正确的是()A .22a b<B .11a b>C .a c b c -<-D .ac bc<3.某同学掷骰子5次,分别记录每次骰子出现的点数,根据5次的统计结果,可以判断一定没有出现点数6的是A .中位数是3,众数是2B .平均数是3,中位数是2C .方差是2.4,平均数是2D .平均数是3,众数是24.在平面内,,A B 是两个定点,C 是动点.若1AC BC ⋅=,则点C 的轨迹为()A .圆B .椭圆C .抛物线D .直线5.在ABC 中,3AC =,4BC =,90.C P ∠=︒为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-6.在平行四边形ABCD 中,3A π∠=,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足||||||||BM CN BC CD =,则AM AN ⋅ 的最大值是()A .2B .3C .4D .5二、多选题7.已知0a >,0b >,且41a b +=,则()A .162a b+B .1122log log 4a b +C .4ln 1ab e --- D .24sin 1a b -+8.定义在(0,)+∞上的函数()f x 的导函数为()f x ',且恒成立,则A.B .C.D.9.已知1a >,1b >,且333a b e e a b ++=+,则下列结论正确的是()A .322ab +>B .2218a b+<C .ln()1a b ->D .ln()ln 4a b +<10.已知定义在R 上的单调递增函数()f x 满足:任意x ∈R 有(1)(1)2f x f x -++=,(2)(2)4f x f x ++-=,则()A .当x ∈Z 时,()f x x =B .任意x ∈R ,()()f x f x -=-C .存在非零实数T ,使得任意x ∈R ,()()f x T f x +=D .存在非零实数c ,使得任意x ∈R ,|()|1f x cx - 11.已知函数()f x 及其导函数()f x '的定义域均为R ,对任意的x ,y ∈R ,恒有()()2()()f x y f x y f x f y ++-=⋅,则下列说法正确的有()A .(0)1f =B .()f x '必为奇函数C .()(0)0f x f +D .若1(1)2f =,则202311()2n f n ==∑12.函数2||()x f x x a=+的大致图象可能是()A.B.C.D .13.已知函数()tan(cos )cos(sin )f x x x =+,则()A .()f x 是定义域为R 的偶函数B .()f x 的最大值为2C .()f x 的最小正周期为πD .()f x 在[0,2π上单调递减14.若10a b c >>>>,则有()A .log log c c a b >B .cca b >C .()()a b c b a c +>+D .a b b c<15.十六世纪中叶,英国数学家雷科德在《砺志石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c R ∈,则下列命题正确的是()A .若0a b >>,则22ac bc>B .若0a b <<,则11a b b a+<+C .若0a b c <<<,则b b ca a c+<+D .若0,0a b >>,则22b a a ba b++ 16.下面有四个说法正确的有()A .1a <且12b a b <⇒+<且1ab <B .1a <且110b ab a b <⇒--+<C .D .111x x>⇒参考答案【真题回归】1.(2022·天津·统考高考真题)函数()21x f x x-=的图像为()A .B .C .D .【答案】D【解析】函数()21x f x -=的定义域为{}0x x ≠,且()()()2211x x f x f x xx----==-=--,函数()f x 为奇函数,A 选项错误;又当0x <时,()210x f x x -=≤,C 选项错误;当1x >时,()22111x x f x x xx x--===-函数单调递增,故B 选项错误;故选:D.2.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为()A .23B .24C .26D .27【答案】D【解析】该几何体由直三棱柱AFD BHC -及直三棱柱DGC AEB -组成,作HM CB ⊥于M ,如图,因为3,120CH BH CHB ==∠= ,所以32CM BM HM ===,因为重叠后的底面为正方形,所以AB BC ==在直棱柱AFD BHC -中,AB ⊥平面BHC ,则AB HM ⊥,由AB BC B ⋂=可得HM ⊥平面ADCB ,设重叠后的EG 与FH 交点为,I 则132713813333,=3333=322224I BCDA AFD BHC V V --=⨯=⨯⨯则该几何体的体积为8127222742AFD BHC I BCDA V V V --=-=⨯-=.故选:D.3.(2022·全国·统考高考真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .【答案】A【解析】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.4.(2022·北京·统考高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-【答案】B【解析】令1x =,则432101a a a a a ++++=,令=1x -,则()443210381a a a a a -+-+=-=,故420181412a a a +++==,故选:B.5.(多选题)(2022·全国·统考高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥【答案】BC【解析】因为22222a b a b ab ++⎛⎫≤≤⎪⎝⎭(,a b ÎR ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设cos ,sin 22y x y θθ-==,所以cos ,x y θθθ==,因此2222511cos sin cos 12cos 2333x y θθθθ=θ-θ+=++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当,33x y ==-时满足等式,但是221x y +≥不成立,所以D 错误.故选:BC .6.(多选题)(2022·全国·统考高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD 【解析】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACD V ED S a a a =⋅⋅=⋅⋅⋅= ,()232111223323ABC V FB S a a a =⋅⋅=⋅⋅⋅= ,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥,又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D = ,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ===,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ====,3EF a ==,222EM FM EF +=,则EM FM ⊥,212EFM S EM FM =⋅=,AC =,则33123A EFM C EFM EFM V V V AC S a --=+=⋅= ,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确.故选:CD.7.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C .2D .2【答案】AC【解析】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B ,所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支,OB a =,1OF c =,1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,21NF NF 2a-=532222a a b a ⎛⎫--= ⎪⎝⎭,2b e 2a =∴=,选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OB a =,1OF c =,1FB b =,设12F NF α∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,12NF NF 2a -=352222a b a a +-=,所以23b a =,即32b a =,所以双曲线的离心率2c e a ==选C[方法二]:答案回代法A e 2=选项特值双曲线())22121,F ,F 4x y -=∴,过1F 且与圆相切的一条直线为(y 2x =+,两交点都在左支,N ⎛∴ ⎝,2112NF 5,NF 1,FF ∴===则123cos 5F NF ∠=,C e 2=选项特值双曲线())2212x y 1,F ,F 49-=∴,过1F 且与圆相切的一条直线为(2y x 3=,两交点在左右两支,N 在右支,N ∴,2112NF 5,NF 9,FF ∴===则123cos 5F NF ∠=,[方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,若,M N 分别在左右支,因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支,又OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,在12F NF △中,有()212sin sin sin NF NF cβαβα==+,故()122sin sin sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin a c β=,cos b c β=,故4sin 5α=,代入整理得到23b a =,即32b a =,所以双曲线的离心率c e a ==若,M N 均在左支上,同理有()212sin sin sin NF NF c βαβα==+,其中β为钝角,故cos bcβ=-,故()212sin sin sin NF NF cβαβα-=-+即sin sin cos cos sin sin a c βαβαβα=--,代入3cos 5α=,sin a c β=,4sin 5α=,整理得到:1424a b a =+,故2a b =,故e ==故选:AC.8.(多选题)(2022·全国·统考高考真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确;对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222f x f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC.故选:BC.[方法三]:因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.【方法技巧与总结】1、排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论.2、特殊值法:从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特值法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.3、图解法:对于一些含有几何背景的题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等.4、构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模型,揭示问题的本质,从而找到解题的方法5、估算法:由于选择题提供了唯一正确的选项,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量.6、检验法:将选项分别代人题设中或将题设代人选项中逐一检验,确定正确选项.【核心考点】核心考点一:直接法【典型例题】例1.(2022春·贵州贵阳·高三统考期中)基本再生数0R 与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()e rtI t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 近似满足01R rT =+.有学者基于已有数据估计出0 3.28R =,6T =.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间约为(ln 20.69≈)()A .1.8天B .2.5天C .3.6天D .4.2天【答案】C【解析】把0 3.28R =,6T =代入01R rT =+,可得0.38r =,所以()0.38e tI t =.设在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间为1t ,则有()()14I t t I t +=,即()10.380.38t e 4e t t +=,整理有10.38t e 4=,则10.38ln 4t =,解得1ln 42ln 220.693.60.380.380.38t ⨯==≈≈.故选:C .例2.(2022春·广东深圳·高三深圳中学校考阶段练习)设函数()()πsin sin 03f x x x ωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π上有且仅有3个极值点,则ω的取值范围是().A .710,33⎛⎤⎥⎝⎦B .47,33⎛⎤ ⎥⎝⎦C .1013,33⎛⎤ ⎥⎝⎦D .14,33⎛⎤ ⎥⎝⎦【答案】A【解析】由题知,()ππsin sin sin326f x x x x x x ωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭,因为[]0,πx ∈,所以πππ,π666x ωω⎡⎤+∈+⎢⎥⎣⎦,因为()f x 在[]0,π上有且仅有3个极值点,所以5ππ7ππ262ω<+≤,解得71033ω<≤,所以ω的取值范围是710,33⎛⎤ ⎥⎝⎦,故选:A例3.(多选题)(2022春·吉林长春·高一东北师大附中校考期中)设函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都有()3f x ≤,则实数m 的取值可以是()A .3B .4C .92D .112【答案】ABC【解析】因为函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,所以当(2,4]x ∈时,()2(2)[2(2)]2(2)(4)f x x x x x =---=--,当6(4],x ∈时,()4[(2)2][4(2)]4(4)(6)f x x x x x =----=--,函数部分图象如图所示,由4(4)(6)3x x --=,得2440990x x -+=,解得92x =或112x =,因为对任意(,]x m ∈-∞,都有()3f x ≤,所以由图可知92m ≤,故选:ABC核心考点二:特珠法【典型例题】例4.(辽宁省鞍山市第一中学2022届高三下学期六模考试数学试题)若e b a >>>b m a =,a n b =,log a p b =,则m ,n ,p 这三个数的大小关系为()A .m n p >>B .n p m >>C .n m p >>D .m p n>>【答案】C【解析】因为e b a >>>所以取52,2a b ==,则()5225,6bm a ====,2525 6.2524an b ⎛⎫=== ⎪⎝⎭=,()25log log 1,22a pb ==∈,所以n m p >>.故选:C.例5.(多选题)(广东省佛山市顺德区2022届高三下学期三模数学试题)已知01b a <<<,则下列不等式成立的是()A .log log a b b a <B .log 1a b >C .ln ln a b b a <D .ln ln a a b b>【答案】BC【解析】选项A :()()22lg lg lg lg lg lg lg lg log log lg lg lg lg lg lg a b b a b a b a b a b a a b a b a b-+--=-==由01b a <<<,可得lg lg 0b a <<,则lg lg 0b a >,lg lg 0b a -<,lg lg 0b a +<则()()lg lg lg lg 0lg lg b a b a a b-+>,则log log a b b a >.判断错误;选项B :由01a <<,可得log a y x =为(0,)+∞上减函数,又0b a <<,则log log 1a a b a >=.判断正确;选项C :由01a <<,可知x y a =为R 上减函数,又b a <,则a b a a >由0a >,可知a y x =为(0,)+∞上增函数,又b a <,则a a b a <,则b a a b >又ln y x =为(0,)+∞上增函数,则ln ln b a a b >,则ln ln a b b a <.判断正确;选项D :令211e e a b ==,,则01b a <<<,e ln l 111e n e a a =-=,222ln ln 112e e eb b =-=则22122e0e ln eln e a a b b --+==<-,即ln ln a a b b <.判断错误.故选:BC例6.(多选题)(2022春·重庆沙坪坝·高一重庆一中校考阶段练习)我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数.有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.现已知函数()11f x ax a x =++-,则下列说法正确的是()A .函数()12y f x a =+-为奇函数B .当0a >时,()f x 在()1,+∞上单调递增C .若方程()0f x =有实根,则()[),01,a ∞∞∈-⋃+D .设定义域为R 的函数()g x 关于()1,1中心对称,若12a =,且()f x 与()g x 的图象共有2022个交点,记为()(),1,2,,2022i i i A x y i = ,则()()()112220222022x y x y x y ++++++ 的值为4044【答案】ACD【解析】对于A.()()11121211f x a a x a a ax x x+-=+++-=++-由解析式可知1y ax x=+是奇函数,故A 正确;对于B.特殊值法33152322212f a a a ⎛⎫=++=+ ⎪⎝⎭-,()1223121f a a a =++=+-即3(2)122a f f ⎛⎫-=- ⎪⎝⎭,若02a <<,则()f x 在()1,+∞上不是单调递增,故B 错误.对于C.令()101f x ax a x =++=-,分离参数后211a x=-,()(]21,0)(0,1x ∞-∈-⋃故()[)21,01,1x ∞∞∈-⋃+-,C 正确;对于D.由A 可知,当12a =时,()f x 关于()1,1中心对称,且()g x 关于()1,1中心对称,所以这2022个交点关于()1,1对称,故()()122022122022202220224044x x x y y y +++++++=+= ,D 正确.故选:ACD核心考点三:检验法【典型例题】例7.(多选题)(2022·高一课时练习)对于定义在R 上的函数()y f x =,若存在非零实数0x ,使得()y f x =在()0,x -∞和()0,x +∞上均有零点,则称0x 为()y f x =的一个“折点”.下列函数中存在“折点”的是()A .()132x f x -=+B .()()1lg 32f x x =+-C .3()3x f x x=-D .21()4x f x x +=+【答案】BC【解析】A :因为10()32323x f x -=+≥+=,所以()f x 没有零点,即()f x 没有“折点”;B :当0x ≥时1()lg(3)2f x x =+-单调递增,又1(0)lg 302f =-<,1(7)lg1002f =->,所以()f x 在()0,+∞上有零点.又()()1lg 32f x x =+-是偶函数,所以()f x 在(),0-∞上有零点,所以()f x 存在“折点”.C :令3()03x f x x =-=,得0x =或()f x 在()0,+∞上有零点,在(),0-∞上有零点,即()f x 存在“折点”.D :令21()04x f x x +==+,解得=1x -,所以()f x 只有一个零点,即()f x 没有“折点”.故选:BC例8.(多选题)(2022·全国·高三专题练习)已知函数()()2cos 10,02f x x πωϕωϕ⎛⎫=+-><< ⎪⎝⎭的图象经过原点,且恰好存在2个[]00,1x ∈,使得()f x 的图象关于直线0x x =对称,则()A .3πϕ=B .ω的取值范围为58,33ππ⎡⎫⎪⎢⎣⎭C .一定不存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称D .()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减【答案】ABD【解析】因为()02cos 10,02f πϕϕ=-=<<,得3πϕ=,A 正确.设3u x πω=+,则2cos 1y u =-如图所示,由[]0,1x ∈,得,333x πππωω⎡⎤+∈+⎢⎥⎣⎦,所以233ππωπ≤+<,得5833ππω≤<,B 正确.如图所示,当5323ππωπ≤+<时,存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称.C 错误.因为10,4x ⎡⎤∈⎢⎥⎣⎦,所以1,3343x πππωω⎡⎤+∈+⎢⎥⎣⎦,又5833ππω≤<,所以31443ππωπ≤+<,所以()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减,D 正确.故选:ABD例9.(多选题)(2022秋·高二课时练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是()A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根D .设函数()f x =R a ∈,e 为自然对数的底数),若曲线sin y x =上存在点00(,)x y 使00(())f f y y =成立,则a 的取值范围是[]1,e 【答案】BCD【解析】对于A ,令()sin g x x x =-,x ∈R ,()cos 10g x x '=-≤,当且仅当cos 1x =时取“=”,则()g x 在R 上单调递减,而(0)0g =,即()g x 在R 上只有一个零点,函数()f x 只有一个不动点,A 不正确;对于B ,因二次函数2(1)y ax b x c =+-+至多有两个零点,则函数()f x 至多有两个不动点,B 正确;对于C ,依题意,方程2()0(1)0f x x ax b x c -=⇔+-+=无实数根,即2(1)40b ac ∆=--<,当0a >时,二次函数()y f x x =-的图象开口向上,则()0f x x ->恒成立,即R x ∀∈,恒有()f x x >,而()R f x ∈,因此有[()]()f f x f x x >>恒成立,即方程(())f f x x =无实根,当a<0时,二次函数()y f x x =-的图象开口向下,则()0f x x -<恒成立,即R x ∀∈,恒有()f x x <,而()R f x ∈,因此有[()]()f f x f x x <<恒成立,即方程(())f f x x =无实根,所以函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根,C 正确;对于D ,点00(,)x y 在曲线sin y x =上,则0[1,1]y ∈-,又00(())f f y y =,即有001y ≤≤,当001y ≤≤时,00()f y y =满足00(())f f y y =,显然函数()f x =函数,若00()f y y >,则000(())()f f y f y y >>与00(())f f y y =矛盾,若00()f y y <,则000(())()f f y f y y <<与00(())f f y y =矛盾,因此,当001y ≤≤时,00()f y y =,即当01x ≤≤时,()f x x =,对[0,1]x ∈,2e e x x x a x a x x +-=⇔=-+,令2()e x h x x x =-+,[0,1]x ∈,()e 21220x h x x x '=-+≥-≥,而两个“=”不同时取得,即当[0,1]x ∈时,()0h x '>,于是得()h x 在[0,1]上单调递增,有(0)()(1)h h x h ≤≤,即1()e h x ≤≤,则1e a ≤≤,D 正确.故选:BCD核心考点四:排除法【典型例题】例10.函数()y f x =的部分图象如图所示,则()A .B .C .D .【答案】A【解析】由题意,函数()f x 图象可得函数()f x 为奇函数,对于A ,111()2(1)2(1)f x x x x -=++-+---,符合题意,对于B ,111()2(1)2(1)f x x x x -=-+-+---,符合题意,对于C ,111()2(1)2(1)f x x x x -=+--+---,不符合题意,对于D ,111()2(1)2(1)f x x x x -=--+-+---,不符合题意,故排除C ,D 选项,又当0.1x =时,代入B 中函数解析式,即111(0.1)2(0.11)0.12(0.11)f =-++-55100119=--<,不符合题意;故排除B 选项,故选.A 例11.定义在R 上的函数()f x 满足(2)(2)f x f x -=+,且在(2,)+∞单调递增,(4)0f =,4()g x x =,则函数(2)()y f x g x =+的图象可能是()A .B .C .D .【答案】B【解析】依题意可知函数()f x 的对称轴方程为2x =,在(2,)+∞上单调递增,且(4)0f =,设()(2)h x f x =+,则函数()h x 的对称轴方程为0x =,在(0,)+∞上单调递增,且(2)0h =,()h x ∴是偶函数,且当02x <<时,()0.h x <因此函数4(2)()()y f x g x h x x =+=⋅也是偶函数,其图象关于y 轴对称,故可以排除选项A 和D ;当02x <<时,4()0y h x x =⋅<,由此排除选项.C 例12.如图1,已知PABC 是直角梯形,//AB PC ,AB BC ⊥,D 在线段PC 上,.AD PC ⊥将PAD 沿AD 折起,使平面PAD ⊥平面ABCD ,连接PB ,PC ,设PB的中点为N ,如图2.对于图2,下列选项错误的是()A .平面PAB ⊥平面PBC B .BC ⊥平面PDC C .PD AC⊥D .2PB AN=【答案】A【解析】解:因为AD PC ⊥,所以AD DC ⊥,AD PD ⊥,又DC ,PD ⊂平面PDC ,DC PD D ⋂=,即AD ⊥平面PDC ,折叠前有//AB PC ,AB BC ⊥,AD PC ⊥,所以//AD BC ,所以BC ⊥平面PDC ,故B 正确.由于平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PD ⊂平面PAD ,且AD PD ⊥,所以PD ABCD ⊥平面,又AC ABCD ⊂平面,所以PD AC ⊥,故C 正确.DC PD ⊥ ,DC AD ⊥,PD AD D ⋂=,PD 、AD 在平面PAD 内,DC ∴⊥平面PAD ,//AB DC ,AB ∴⊥平面PAD ,又PA ⊂平面PAD ,故AB PA ⊥,PAB ∴∆为直角三角形,N 为斜边的中点,所以2PB AN =,故D 正确.由排除法可得A 错误.故选.A 核心考点五:构造法【典型例题】例13.已知关于x 的不等式ln ln(1)0xe mx x m ---+在(0,)+∞恒成立,则m 的取值范围是()A .(1,1]e --B .(1,1]-C .(1,1]e -D .(1,]e 【答案】A【解析】解:由ln ln(1)0xe mx x m ---+得ln(1)x e mx m x -+ ,即,令()xf x e x =+,(0,)x ∈+∞,则,故()f x 在(0,)x ∈+∞单调递增,若()(ln(1))f x f m x + ,则在(0,)x ∈+∞恒成立,记()ln(1)g x x m x =-+,则()0g x 在(0,)x ∈+∞上恒成立,即min ()0g x ,因为1()1g x x'=-,则当1x <时,()0,g x '<当1x >时,()0,g x '>故()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,故min ()(1)1ln(1)0g x g m ==-+所以,即01m e <+,解得11m e -<- ,所以m 的取值范围是(1,e --故选:.A 例14.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足(1)[()()]0x f x f x -'->,22(2)()xf x f x e--=⋅则下列判断一定正确的是()A .(1)(0)f f <B .2(2)(0)f e f >C .3(3)(0)f e f >D .4(4)(0)f e f <【答案】C【解析】解:令()()x f x g x e =,则()()().xf x f xg x e''-=()f x 满足:(1)[()()]0x f x f x -'->,∴当1x <时,()()0.()0.f x f x g x '-<∴'<此时函数()g x 单调递减.(1)(0).g g ∴->即10(1)(0)(0).f f f e e-->=。
高考数学选择题的解题策略带答案

高考数学选择题的解题策略要点:①充分利用题干和选择支两方面提供的信息,快速、准确地作出判断,是解选择题的基本策略。
②解选择题的基本思想是:既要看到通常各类常规题的解题思想,原则上都可以指导选择题的解答;更应看到。
根据选择题的特殊性,必定存在着若干异于常规题的特殊解法。
我们需把这两方面有机地结合起来,对具体问题具体分析。
(一)数学选择题的解题方法1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法.运用此种方法解题需要扎实的数学基础.例1、已知()()2sin 1f x x x ax =++,()35,f =则()3f -= ( )(A)-5 (B)-1 (C)1 (D)无法确定例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直.其中正确命题的个数为( )A .0 B .1 C .2 D .3例3.设a>b>c,n ∈N,且c a n c b b a -≥-+-11恒成立,则n 的最大值是( )(A)2 (B)3 (C)4 (D)52、特例法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法.用特例法解选择题时,特例取得愈简单、愈特殊愈好.(1)特殊值例4、若sin α>tan α>cot α(24παπ<<-),则α∈( ) A .(2π-,4π-) B .(4π-,0) C .(0,4π) D .(4π,2π) 分析:因24παπ<<-,取α=-6π代入sin α>tan α>cot α,满足条件式,则排除A 、C 、D ,故选B.例5、一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( )A .-24B .84C .72D .36分析:结论中不含n ,故本题结论的正确性与n 取值无关,可对n 取特殊值,如n=1,此时a 1=48,a 2=S 2-S 1=12,a 3=a 1+2d= -24,所以前3n 项和为36,故选D.(2)特殊函数例6、如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( )A.增函数且最小值为-5B.减函数且最小值是-5C .增函数且最大值为-5 D.减函数且最大值是-5分析:构造特殊函数f(x)=35x ,虽然满足题设条件,并易知f(x)在区间[-7,-3]上是增函数,且最大值为f(-3)=-5,故选C.例7、定义在R 上的奇函数f(x)为减函数,设a+b ≤0,给出下列不等式:①f(a)·f(-a)≤0;②f(b)·f(-b)≥0;③f(a)+f(b)≤f(-a)+f(-b);④f(a)+f(b)≥f(-a)+f(-b).其中正确的不等式序号是( )A .①②④B .①④C .②④D .①③分析:取f(x)= -x ,逐项检查可知①④正确.故选B.(3)特殊数列例8、已知等差数列{}n a 满足121010a a a ++⋅⋅⋅+=,则有( )A 、11010a a +>B 、21020a a +<C 、3990a a +=D 、5151a =分析:取满足题意的特殊数列0n a =,则3990a a +=,故选C.(4)特殊位置例9.在三棱柱的侧棱A 1A 和B 1B 上各一动点P 、Q 满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分则其体积之比为( )A 、3∶1B 、2∶1C 、4∶1D 1例10、向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如右图所示,那么水瓶的形状是 ( )分析:取2H h =,由图象可知,此时注水量V 大于容器容积的12,故选B.(5)特殊点 例11. 如果函数y = sin2x + a cos2x 的图象关于x=8π-对称,则a=( ).A.2B.-2C. 1 D . -13、图解法:就是利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法.这种解法贯穿数形结合思想,每年高考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速.例12、如果实数x,y 满足等式(x -2)2+y 2=3,那么x y 的最大值是( ) A .21 B .33 C .23 D .3 分析:题中x y 可写成00--x y .联想数学模型:过两点的直线的斜率公式k=1212x x y y --,可将问题看成圆(x -2)2+y 2=3上的点与坐标原点O 连线的斜率的最大值,即得D.例13、已知α、β都是第二象限角,且cos α>cos β,则( )A .α<βB .sin α>sin βC .tan α>tan βD .cot α<cot β分析:在第二象限角内通过余弦函数线cos α>cos β找出α、β的终边位置关系,再作出判断,得B.例14、已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |=( )A .7B .10C .13D .4分析:,a +3b =OB ,在OAB ∆中,||1,||3,120,OA AB OAB ==∠=∴由余弦定理得|a +3b |=|OB |=13,故选C.例15、已知{a n }是等差数列,a 1=-9,S 3=S 7,那么使其前n 项和S n 最小的n 是( )A .4B .5C .6D .7分析:等差数列的前n 项和S n =2d n 2+(a 1-2d )n 可表示为过原点的抛物线,又本题中a 1=-9<0, S 3=S 7,可表示如图,由图可知,n=5273=+,是抛物线的对称轴,所以n=5是抛物线的对称轴,所以n=5时S n 最小,故选B.4、验证法:就是将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法.在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度.例16、方程lg 3x x +=的解0x ∈ ( )A.(0,1)B.(1,2) C .(2,3) D.(3,+∞)分析:若(0,1)x ∈,则l g 0x <,则l g 1x x +<;若(1,2)x ∈,则0l g 1x <<,则1l g 3x x <+<;若(2,3)x ∈,则0lg 1x <<,则2lg 4x x <+<;若3,lg 0x x >>,则lg 3x x +>,故选C.5、筛选法(也叫排除法、淘汰法):就是充分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法.使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.例17、若x 为三角形中的最小内角,则函数y=sinx+cosx 的值域是( )A .(1,2]B .(0,23] C .[21,22] D .(21,22] 分析:因x 为三角形中的最小内角,故(0,]3x π∈,由此可得y=sinx+cosx>1,排除B,C,D ,故应选A.6、分析法:就是对有关概念进行全面、正确、深刻的理解或对有关信息提取、分析和加工后而作出判断和选择的方法.(1)特征分析法——根据题目所提供的信息,如数值特征、结构特征、位置特征等,进行快速推理,迅速作出判断的方法,称为特征分析法.例18、已知)2(524cos ,53sin πθπθθ<<+-=+-=m m m m ,则2tan θ等于( ) A 、m m --93 B 、|93|m m -- C 、31 D 、5 分析:由于受条件sin 2θ+cos 2θ=1的制约,故m 为一确定的值,于是sin θ,cos θ的值应与m 的值无关,进而推知tan 2θ的值与m 无关,又2π<θ<π,4π<2θ<2π,∴tan 2θ>1,故选D. 例19. 不等式x x x x 22log log +<+的解集是( ).A. ()1,0B. ()+∞,1C. ()+∞,0D. ()∞+∞-,(2)逻辑分析法——通过对四个选择支之间的逻辑关系的分析,达到否定谬误支,选出正确支的方法,称为逻辑分析法. (1)若(A )真⇒(B )真,则(A )必排出,否则与“有且仅有一个正确结论”相矛盾. (2) 若(A )⇔(B ),则(A )(B )均假。
【智博教育原创专题】高考数学必胜秘诀之高考数学选择题的解题策略

高考数学必胜秘诀之高考数学选择题的解题策略数学选择题在当今高考试卷中,不但题目多,而且占分比例高,选择题由原来的12题改为10题,但其分值仍占到试卷总分的三分之一。
数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。
解答选择题的基本策略是准确、迅速。
准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。
高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。
解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。
【策略1】直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础。
【例1】某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为 ( )81.125A 54.125B 36.125C 27.125D 【解析】某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。
22333364627()()101010125C C ⨯⨯+⨯=,故选A 。
1.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线,a b 不垂直,那么过a 的任一个平面与b 都不垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学选择题解题策略
中图分类号:g633.6 文献标识码:a 文章编号:1671-0568(2013)09-0143-02
高考数学选择题,知识覆盖面宽,概括性强,小巧灵活,有一定深度与综合性,而且分值大,能否迅速、准确地解答出来,成为全卷得分的关键。
在高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大。
解答选择题的基本要求是四个字——准确、迅速。
选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面。
解答选择题的基本策略是:要充分利用题设和选项两方面提供的信息作出判断。
一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接法解;对于明显可以否定的选择应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。
解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
选择题的解答思路不外乎两条:一是直接法,即从题干出发,探求结果,这类选择题通常用来考核考生最起码的基础知识和基本技能,这一般适用于题号在前1 ~ 6的题目;二是间接法,即从
选项出发,或者将题干与选项联合考察而得到结果。
因为选择题有备选项,又无须写出解答过程,因此存在一些特殊的解答方法,可以快速准确地得到结果,这就是间接法。
这类选择题通常用来考核考生的思维品质,包括思维的广阔性和深刻性、独立性和批判性、逻辑性和严谨性、灵活性和敏捷性以及创造性;同直接法相比,间接法所需要的时间可能是直接法的几分之一甚至几十分之一,是节约解题时间的重要手段。
我们要始终记住:虽然解数学选择题分直接法和间接法两大类。
直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答。
因此,我们还要掌握一些特殊的解答选择题的方法。
然而,有相当一部分考生对于用间接手段解题并不放心,认为这样做“不可靠”,以至于在用间接法做过以后又用直接法再做一遍予以验证;甚至有思想不解放的,认为这样做“不道德”,而不明白这其实正是高考命题者的真实意图所在,高考正是利用选择题作为甄别不同层次思维能力的考生的一种重要手段。
解选择题常见的方法包括数形结合、特值代验、逻辑排除、逐一验证、等价转化、巧用定义、直觉判断、趋势判断、估计判断、退化判断、直接解答、现场操作,等等。
考生应该有意识地积累一些经典题型,分门别类,经常玩味,以提高自己在这方面的能力,下面主要就间接法分别说明。
1.直接法。
直接从题设条件出发,运用有关概念、性质、定理、
法则和公式等知识,通过严密地推理和准确地运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择。
涉及概念、性质的辨析或运算较简单的题目常用直接法。
通常采用直接法的题目,一般都是单纯考查知识点、课本概念的题,或者是一些非常基础的数学运算的题目。
直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解。
直接法适用的范围很广,只要运算正确必能得出正确的答案。
提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建在扎实掌握“三基”的基础上,否则一味求快则会快中出错。
2.特例法。
用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断。
常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等。
当正确的选择对象,在题设普遍条件下都成立的情况下,可用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案。
即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略。
近几年高考选择题中可用或结合特例法解答的约占30%左右。
3.筛选法(排除法)。
从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断。
筛选法适应于定性型或不易直接求解的选择题。
当题目中的条件多于一个时,先根据某些条件在选择支中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小的选择支的范围内找出矛盾,这样逐步筛选,直到得出正确的选择。
它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中约占40%。
4.图解法(数形结合)。
据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断,习惯上也叫数形结合法。
严格地说,图解法并非属于选择题解题思路范畴,而是一种数形结合的解题策略。
但它在解有关选择题时非常简便有效。
不过运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则错误的图象反而会导致错误的选择。
5.极限法。
从有限到无限,从近似到精确,从量变到质变。
应用极限思想解决某些问题,可以避开抽象、复杂的运算,降低解题难度,优化解题过程。
用极限法是解选择题的一种有效方法。
它根据题干及选择支的特征,考虑极端情形,有助于缩小选择面,从而迅速找到答案。
6.估值法。
由于选择题提供了唯一正确的选择支,解答又无需过程。
因此可以通过猜测、合情推理、估算而获得。
这样往往可以减少运算量,加强了思维的层次。
估算,省去了很多推导过程和比较复杂的计算,节省了时间,从而显得快捷。
其应用广泛,它是人们发现问题、研究问题、解决问题的一种重要的运算方法。
从考试的角度来看,解选择题只要选对就行,至于用什么“策略”、“手段”都是无关紧要的。
所以人称可以“不择手段”。
但平时做题时要尽量弄清每一个选择支正确的理由与错误的原因,另外,在解答一道选择题时,往往需要同时采用几种方法进行分析、推理,只有这样,才会在高考时充分利用题目自身提供的信息,化常规为特殊,避免小题大作,真正做到准确和快速。
总之,解答选择题既要看到各类常规题的解题思想原则上都可以指导选择题的解答,但更应该充分挖掘题目的“个性”,寻求简便解法,充分利用题目信息和选项的暗示作用,迅速地作出正确的选择。
这样不但可以迅速、准确地获取正确答案,还可以提高解题速度,为后续解题节省时间。