世界最全的曼陀罗卡-动力化工-工程科技-专业资料

合集下载

曼陀罗卡片训练

曼陀罗卡片训练

波动速读入门训练(含黄卡、曼陀螺使用方法)入门训练是进行波动速读的基础在波动速读之前要进行入门训练,入门训练包括这样几项:1.视觉训练2.ESP(超感觉能力)训练3.右脑记忆训练这些训练是进行波动速读的基础,因而尤其重要.入门训练要选择尽可能安静的地点.为了不在训练过程中受到干扰,需要做一些准备----拔掉房间里的电话线,告诉家人不要在训练中突然过来说话等等.这些准备非常重要.不要让房间里面过热或者过冷,也不要让阳光直射房间,房间里面昏暗一些较好.训练时请避开吃得很饱和想要睡觉的时候.但是,如果对这些事情过于神经质的话反而会无法放松下来,不能达到适合右脑能力开发的身心状态.保持平静的心情来训练才是关键,所以请在力所能及的范围内调节环境.视觉训练七田式视觉训练包括一点凝视训练、眼睛训练、3d图片训练和残像训练,这四种训练都有助于提高阅读时视觉的深度和广度,通过这四种训练将培养你清晰地再现立体图像的能力。

视觉训练是为帮助你训练出一双有着波动速读能力的眼睛而设计的。

这项训练能帮助你在最短的时间内实现“原封不动地再现所看到事物”。

请借助眼肌训练卡、3d图片、黄卡。

3色卡片、图形卡片和曼陀罗卡片进行训练。

一点凝视训练这个训练能够培养集中力,扩大视野。

准备“一点凝视训练卡片”。

这个训练要凝视一张中央印有3.5厘米直径的黑色圆形的打白色卡片。

长时间凝视,在黑色圆形的位置出现比原来大得多的圆形。

坚持每天练习,直到能看到这样的大的圆形为止.眼睛训练阅读速度与眼部运动密切相关。

波动速读要求必须能够进行右脑阅读,为此,正确的视读方法就变得尤为必要。

下面介绍的眼睛训练能够改善眼球肌肉的机能。

通常,我们眼睛的视野只集中于中心位置,离中心越远,我们所看的对象就越难进入视野。

眼睛训练可改善眼球的机能,使视野变大,扩大可将瞬间看到的物体收入视网膜的范围,可以在速读时提高一眼读取内容信息的能力。

眼睛有6种眼肌:上直肌、下直肌、内直肌、外直肌、上斜肌、下斜肌。

Microsoft+MS-1541_v1.1_SChinese.pdf+笔记本电脑+使用者手册说明书

Microsoft+MS-1541_v1.1_SChinese.pdf+笔记本电脑+使用者手册说明书

目录版权和商标声明 ............................................................................................................1-4修订 ..............................................................................................................................1-4FCC-B 频道干扰声明....................................................................................................1-5FCC 规定......................................................................................................................1-5CE 规定 ........................................................................................................................1-6电池规范 .......................................................................................................................1-6WEEE 声明...................................................................................................................1-6化学物质法规................................................................................................................1-7升级和保修 ..................................................................................................................1-7购买备件 .......................................................................................................................1-7安全指南 .......................................................................................................................1-8产品中有害物质的名称及含量.....................................................................................1-10MSI 特殊功能 .............................................................................................................1-11简介 ...............................................................................................2-1打开包装 .......................................................................................................................2-2产品检视 .......................................................................................................................2-3顶盖开启检视图 .......................................................................................................2-3前端检视图 ..............................................................................................................2-5右端检视图 ..............................................................................................................2-6左端检视图 ..............................................................................................................2-7后端检视图 ..............................................................................................................2-9底部检视图 ............................................................................................................2-10如何使用键盘 .............................................................................................................2-12Windows 键 ...........................................................................................................2-12开启快速 Fn 启动键 ...............................................................................................2-13使用快速 Fn 启动键 ...............................................................................................2-13调整扬声器的音量..................................................................................................2-14调整显示器的亮度..................................................................................................2-15使用多个监视器 .....................................................................................................2-15应用程序:True Color (选择性配置) ......................................................................2-15产品规格 .....................................................................................................................2-16如何使用入门 .................................................................................3-1开始使用笔记本电脑 .....................................................................................................3-2如何舒适地使用笔记本电脑 ..........................................................................................3-3使用者手册如何使用电源供应器 .....................................................................................................3-4电源适配器 ..............................................................................................................3-4电池 .........................................................................................................................3-4如何在 Windows 10 下设置一个电源计划设定 .............................................................3-6选择或自定义电源计划 ............................................................................................3-6创建自己的电源计划 ................................................................................................3-8如何使用触摸板 .........................................................................................................3-10了解一般硬盘和固态硬盘............................................................................................3-11了解 M.2 固态硬盘插槽...............................................................................................3-11如何连接 Internet........................................................................................................3-12无线网络 ................................................................................................................3-12有线网络 ................................................................................................................3-14如何设置蓝牙连接.......................................................................................................3-19开启蓝牙连接.........................................................................................................3-19如何连接外部装置.......................................................................................................3-22视频:如何使用 RAID 功能 ........................................................................................3-23如何在 BIOS 中选择 Boot Mode.................................................................................3-24视频:如何在 MSI 笔记本电脑上恢复 Windows 10 操作系统.....................................3-25视频:如何使用 MSI 一键安装 ..................................................................................3-26版权和商标声明Copyright © 微星科技股份有限公司所有。

KAMAT卡马特泵站配件剖析

KAMAT卡马特泵站配件剖析

KAMAT卡马特泵站配件KAMAT卡马特柱塞密封7010813KAMAT卡马特螺丝4050415KAMAT卡马特六角螺丝4050379KAMAT卡马特支撑环1060108(询--价:1 5 8 0 5 0 6 1 2 1 3)KAMAT卡马特油泵7010117KAMAT卡马特压力弹簧5050043KAMAT卡马特逆电流器7010843KAMAT卡马特填料函7010842KAMAT卡马特密封圈7001513KAMAT卡马特盖子7005731KAMAT卡马特阀盖7000615KAMAT卡马特O型圈1060381KAMAT卡马特柱塞总成1010280KAMAT卡马特O型圈1060079KAMAT卡马特O型圈1060382KAMAT卡马特气阀导管7003756KAMAT卡马特阀座7011438KAMAT卡马特阀盘1530298KAMAT卡马特流量计7013953KAMAT卡马特O型圈1060231KAMAT卡马特雨刮7004280KAMAT卡马特密封圈7005763KAMAT卡马特密封圈7002094KAMAT卡马特柱塞密封7015653KAMAT卡马特柱塞总成7013717KAMAT卡马特填料函7015652KAMAT卡马特压力表1030326KAMAT卡马特油泵7110117KAMAT卡马特通信安全转换器7015343KAMAT卡马特电控箱7018663KAMAT卡马特电控箱7018679KAMAT卡马特6米通信电缆7018701KKAMAT卡马特AMA T卡马特先导式电磁阀7018565KAMAT卡马特乳化液罐进口杯和弹簧7018565KAMAT卡马特曲轴箱壳体7009804KAMAT卡马特密封圈7002094KAMAT卡马特管夹7015617KAMAT卡马特7013872KAMAT卡马特7002910KAMAT卡马特7015910KAMAT卡马特7004461KAMAT卡马特7003104KAMAT卡马特7004490STAHL 安全栅9160/23-11-11s9170/20-14-11sAMETEK在线分析仪表配件3050石英晶体传感器PN:305122901SMTL 浪涌保护器IOP32DSD32T3费希尔阀位变送器4211FULFLO 阀FVJ-5R-HS-XSFVJF-8-150DR-HS-XSHBL 电池KPM105PSKYLOTEC安全带G-0050-IWDNH 扬声器HP-30Riovibro理音测振仪VM-63A赛福乐泵4008-131-A65E+E 温湿度变送器EE16-T6B53 (1450130002586E)Industries Technik压力开关DBL-205D SEALWELD简易填装桶G-EZ-LoaderSALACAPITAL SALA ROLLGLISSR500 PN: 3327150.(150FT)INCLUDING CARABINER(2)ANCHOR SLING AND ROPE BAGAUTRONICA BHH-200BHH-220116-5861-010.2011BW-200罗宾耐尔电子检漏仪检氟型XP-1ASPM 盘根2500型3.75寸VERSA 阀门BIA-3309-316-301ESSI-2-316帕斯菲达计量泵LB64SB-PTCI-XXXVISHAY NOBEL变送器信号放大器BILT 4ARROW 滤芯N-LINE HYDRAULICFILTER\VITON\90-53VGAS TURBINEWALKER H150X1WP沃纳阻尼器DO-400-09-EW-GINDUSTRONIC-0008 6DA 防风雨话站INDUSTRONIC-0009 12DDL 02 用户板INDUSTRONIC-0010 10GR05 对讲电源模块INDUSTRONIC-0011 6 DX 003/25 防爆话站INDUSTRONIC-0012 3GW05 对讲电源板INDUSTRONIC-0013 INDUSTRONIC-0012 台式话站INDUSTRONIC-0014 1MH14202-487-000 鹅颈话筒INDUSTRONIC-0015 20 DT 001 301-446-200 台式话站INDUSTRONIC-0016 Type:1 MI 05,202-511-000 话筒INDUSTRONIC-0017 12 DT 002 备件INDUSTRONIC-0018 304-041-100-25DVR 电源模块INDUSTRONIC-0019 4DA004-25 挂壁式固定对讲INDUSTRY-0001 T-15100WL0 FO-15BH 活塞泵INDUSTRY-0002 T-1550WL02 F0-10 活塞泵INDUSTRY-0003 RG-1110(serialNo;7900641) 柱塞泵INELTA-0001 IMA2-LVDT/2.5B-24V-4...20mA 放大器模块INELTA-0002 IMA2-LVDT3A 比例放大器INELTA-0003 IMA2-LVDT-2.5-B-24V-4-20MA 放大器INELTA-0004 IMA2-LVDT 比例放大器INELTA-0005 S N:28464 放大器INELTA-0006 TVP:IMA2-LVDT/2,5B-24V-4...20m 放大器INELTA-0007 ISM-DMS 放大器INELTA-0008 信号放大器 IMA2-LVDT/5B-24V 放大器INELTA-0009 2MA2-LVDT/5D-24V 型号灯INELTA-0010 EVW-50E/6215 信号灯INELTA-0011 IMA2-LADT/2 5B-24V 4-20mA 配电器INELTA-0012 ISDT20-S-2442 传感器提供进口加拿大SEALWELD润滑脂,SEALWELD密封脂,SEALWELD清洗液,Sealweld 公司建于1969年,是针对陆地和海上长输管道、炼油化工装置、油田井口装置、天然气处理装置上的阀门维修和完整保养对高合成化学物质的迫切需要应运而生的。

1-s2.0-S095965261300615X-main

1-s2.0-S095965261300615X-main

Analysis of cleaner technologies based on waxes and surfactant additives in road constructionMiguel Pérez-Martínez a,Fernando Moreno-Navarro a,Jesús Martín-Marín a,Carolina Ríos-Losada b,M a Carmen Rubio-Gámez a,*a Laboratorio de Ingeniería de la Construcción,University of Granada(LabIC.UGR),E.T.S.Ingenieros de Caminos,Canales y Puertos,Ed.Politécnico,Avda. Severo Ochoa,s/n,C.P.18071Granada,Spainb ServiàCantó,Spaina r t i c l e i n f oArticle history:Received11April2013 Received in revised form4September2013Accepted10September2013 Available online7October2013Keywords:Warm mix asphaltCleaner productionTriaxial testFour point bending testControl emissionsFuel consumption a b s t r a c tThe manufacture of hot mix asphalt for road construction is associated with a high consumption of fossil fuels and a high level of emissions.The use of temperature reduction technologies in the manufacture of warm mix asphalts favors a cleaner production of such materials,and therefore its use has become a major objective in thefield of road engineering.Thus,during the last few years different types of techniques are appearing in order to achieve this objective.This article presents the comparison established in terms of mechanical performance of three processes of temperature reduction technol-ogies in order to select one of them for its manufacture in plant,where control of emissions and fuel consumption have been collected.The results showed that the use of warm mix asphalt technologies with waxes or surfactant additives may not incur in a detrimental effect on the mechanical properties of the pavement.The use of surfactant bitumen in plant is possible to produce warm mix asphalts,reducing the consumption of fuel in the process.Ó2013Elsevier Ltd.All rights reserved.1.IntroductionRoad construction is one of the principal works in thefield of civil engineering,and in turn is a major consumer of fossil fuels for the production of asphalt mixtures.The need to adapt this type of production to cleaner processes leads to a search for reducing manufacturing temperature,trying to make it more sustainable and healthy,reducing at the same time the greenhouse gases emissions rates(Rubio et al.,2012)that are so harmful to the environment.Traditionally the asphalt mixtures used in road construction are manufactured at170 C(HMA)(D’Angelo et al.,2008),and are characterized by developing the mechanical properties that guar-antee an appropriate behavior during its life of service(General Management of Roads,2008).On the contrary,during its produc-tion process,the emissions of gases generated,and the fuel con-sumption required are important(Kristjansdottir,2006).As an alternative to HMA’s,during the last few years new processes have been appearing in order to reduce the manufacture temperature.Within these temperature reduction technologies,three types of mixtures can be distinguished by the temperature range of manufacture,warm mix asphalt WMA(100 C e140 C),half warm mix asphalt HWMA(60 C e100 C)and cold mixtures(0 C e40 C) (EAPA,2010).Discarding cold mixtures due to their lack of use out of surface patches rehabilitation,the reduction is achieved by the application of different processes and technologies,mainly dis-tinguishing between three for the WMA,the foaming process and the use of organic or chemical additives(Zaumanis,2010),and two for the production of HWMA,the use of emulsions and eventually foamed bitumens(Rubio et al.,2013).In the case of HWMA’s,not only has been proved that the reduction of emissions and fuel consumption is a fact(Rubio et al., 2013),but also that the mechanical performance achieved by this type of mixtures is not as satisfactory as it was desired(Punith et al., 2013).On the other hand,WMA’s have shown a better mechanical performance than HWMA and comparable to HMA(Reyes-Ortiz et al.,2009),reducing at the same time the consumption of fuel and greenhouse emissions in the manufacturing process(Hamzah et al.,2010).*Corresponding author.E-mail addresses:fmoreno@ugr.es(F.Moreno-Navarro),crioslo@fcc.es(C.Ríos-Losada),mcrubio@ugr.es(M a C.Rubio-Gámez).Contents lists available at ScienceDirect Journal of Cleaner Productionjournal homep age:www.elsevi/locate/jclepro0959-6526/$e see front matterÓ2013Elsevier Ltd.All rights reserved./10.1016/j.jclepro.2013.09.012Journal of Cleaner Production65(2014)374e379Based on the number of advantages associated to WMA mix-tures(D’Angelo et al.,2008),which result in environmental(lower emissions),economical(cost savings and lower energy consump-tion)and constructional benefits(better workability and larger compaction window,greater hauling distances and less opening time to traffic)this research compare three WMA technologies for reducing the manufacture temperature of conventional hot mix asphalts.Thefirst is one of the most common additives used for this purpose,the organic waxes,which are aliphatic hydrocarbons of long-chain produced by the Fischer e Tropsch process(Wax,2005). Meanwhile as growing alternative,surfactant additives are an en-ergetic reducing agent allowing the manufacture of WMA to a reduced temperature while maintaining their mechanical proper-ties,the addition was considered in two different ways,mixing the bitumen and the surfactant in plant before adding to the mixture (dry process),and a surfactant modified bitumen(wet process) blended in refinery to compare their influence.This paper shows a laboratory level characterization of an asphalt concrete AC16S mixture for the surface course(EN13108-1,2008)under three temperature reduction technologies.Based on the results obtained,one of the mixtures was chosen to adapt a HMA plant for the production of WMA mixtures and measure the emissions and fuel consumption during the manufacturing boratory works on the mixtures was based on Marshall test,water sensitivity test,triaxial test and four point bending test established the parameters to select the most appropriate mixture for being produced at bigger scale.During the manufacturing process in plant measurement of the emis-sions and fuel consumption of a HMA and the WMA were taken. Finally,the main the conclusions obtained from the analysis of results are exposed.2.Materials and methods2.1.Materials2.1.1.AggregatesAn AC16S(EN13108-1)mixture,which is found in roads and highways all over the world,was used to carry out the study.The aggregates were porphyry for the coarse fraction(12/18and6/12),and a combination of porphyry(0/6)and limestone(0/4)for the fine fraction.Moreover,thefiller employed was calcium carbonate. Table1lists the aggregate properties.The aggregates combination by percentage is shown in Table2, where the gradation of the mixture(Fig.1)was kept constant for all the mixtures developed at lower temperature and with different additives.2.1.2.BitumensFour different binders have been used for the attainment of the objectives of the investigation.Thefirst binder used was conven-tional50/70,and besides being used alone,it was the base for the other three bitumens.50/70bitumen,modified with an organic surfactant additive was used as second binder in order to improve its workability at lower temperatures.The bitumen modification was made in labo-ratory and the percentage of additive used was chosen following the manufacturer recommendations(1%over bitumen weight).The third one was modified50/70bitumen with surfactant products to improve the wettability of the binder as an alterna-tive to the conventional for the reduction of temperature.The last binder used was50/70bitumen modified with microcrys-talline waxes produced by the Fischer e Tropsch process as addi-tive.In both cases,the bitumen was modified in refinery.Table3 describes all the mixtures designed and the additives used,as well as the temperature reduction applied on their manufacture process.2.2.MethodologyThe methodology followed is composed of two phases,labora-tory works and the manufacturing industrial process in plant,being thefirst one divided in three steps and focused on the analysis of the working formula for its adaptation to the manufacture process under different temperature reduction technologies.And the sec-ond one based on the adaptation of a hot mix asphalt plant for the production of a warm asphalt mixture.In laboratory,firstly the optimum bitumen content needs to be determined for the conventional mixture of reference without additives.Based on the values of air voids(%),deformation(mm) and stability(kN)of the Marshall test(NLT-159,2000)the optimumTable1Reference values of the aggregates and mineral dust.Test/aggregate type Coarse aggregate Fine aggregate FillerGrain size(EN933-1)/(EN933-10)Sieves(mm)12/18Porphyry6/12Porphyry0/6Porphyry0/4Limestone Carbonate(CaCO3)24.4100100100100e1684100100100e8162100100e4158792e21160681000.51129301000.251121201000.125e e e e970.0630.50.911.81187Sand equivalent(EN933-8)(>50)4554Bulk density(EN-1097-3)(0.5e0.8Mg/m3)0.7Percentage of fractured face(EN933-5)(100%)100100Flakiness index(EN933-3)(25)1625Resistance to fragmentation(EN1097-2)(20)1515Cleaning(organic impurity content)(UNE146130,Annex C)(0.5%)0.50.5Particle density andabsorption(EN1097-6)r a(Mg/m3) 2.73 2.73 2.77 2.71r SSD*(Mg/m3) 2.70 2.71 2.72 2.67r RD(Mg/m3)2.69 2.70 2.70 2.65Water absorption after immersion(%)0.600.400.910.77M.Pérez-Martínez et al./Journal of Cleaner Production65(2014)374e379375content of binder was set,using the same in all the WMA ’s mix-tures.Furthermore,several test were carried out to assess the mechanical behavior of the conventional mix:water sensitivity test (EN 12697-12,2009),cyclic triaxial compression test (EN 12697-25,2006,method B)in order to study the plastic deformations,and the four point bending fatigue cracking test (EN 12697-24,2013,annex D)to assess the long term response of the mixture.In the second stage the Marshall test,with the optimum bitumen content determined,is undertaken for the three mixtures with temperature reduction technology at 140 C to study their Marshall stability (kN),voids content (%)and deformation (mm).The mechanical performance was also evaluated in the WMA mixtures applying the same test procedures and conditions as in the first stage for the Reference Mix.Finally,a comparative analysis of the four mixtures is developed.With this purpose their stability (kN),retained strength against water (%),creep modulus (MPa)and fatigue life parameters are compared.Based on this analysis,the warm mix asphalt technology with the best overall performance will be selected for its adaptation to the plant production and to construct a road section test.In plant works are centered on the adaptation of a HMA plant for the manufacture of a WMA mixture.For this purpose a HMA and WMA mixtures are produced,measuring during the process the emission of pollutants,as well as the consumption of fuel required.In the case of the control of emissions,the methodology was similar to the one followed by Rubio et al.in (2013).In-point source emissions were measured (Fig.2);humidity,wind,and temperature data were also collected to assure the spreading in similar atmospheric conditions for HMA and WMA gases to compare the results.The parameters evaluated were the Combustion Gases (CO,NO x ,O 2,CO 2)measured by a multi-parameter analyzer (TESTO MXL),the Total Organic Carbon (TOC)through a flame ionization detector (FID,M&A PT)and the emission of Particles (collected in a 47mm filter and subsequently calculated in the laboratory by gravimetry).To complete the investigation,the consumption of fuel used is also measured.3.Analysis of results 3.1.Marshall testThe Marshall test results in regards to the optimum bitumen content is shown in Table 4.As can be seen,the values of me-chanical resistance developed by the mixtures in terms of stability and deformation are slightly lower in the case of warm mix as-phalts produced at lower temperature.Furthermore,in the case of surfactants additives (both dry and wet process)a decrease in terms of density is attained by the mixtures as well as an increased in the air voids content.This is due to this type of additives,which produce an improvement in the adhesiveness aggregate/binder and a better wetting of the aggregate,but no change in the viscosity of the bitumen,and therefore it may have certain dif ficulties associ-ated to perform the compaction of the mixture at lower tempera-ture.In the case of wax bitumen,this fact does not occur as waxes modi fied binder viscosity and consequently the values of density and air voids are not affected by reducing the temperature of manufacture and compaction.3.2.Water sensitivity testA new set of 6specimens per mixture using the optimum bitumen content were produced to perform the water sensitivityTable 3Studied mixtures and bitumens used.DenominationBitumenAdditive natureAddition processMixturemanufacture temperature ( C)Reference Mix 50/70Nonee 160Dry Surfactant Mix50/70þ1%additive Surfactant Dry 140Wet Surfactant MixSurfactantmodi fied 50/70Surfactant Wet 140Wet Wax MixWax modi fied 50/70Microcrystalline waxesWet140Fig.1.Aggregate gradation for asphalt mix type AC-16S.Table 2Aggregates combination by percentage.Aggregate fraction PercentagePorphyry 12/1815Porphyry 6/1244Porphyry 0/620Limestone 0/415Calcium carbonate filler6Fig.2.Simpli fied HMA plant distribution and in-point source.Table 4Marshall results and optimum bitumen content.ParameterReference Mix Drysurfactant Mix WetSurfactant Mix Wet Wax Mix Optimum bitumen content (%) 4.8 4.8 4.8 4.8Bulk density (kg/m 3)2423236423772437Marshall stability (kN)10.7079.4788.2049.053Marshall def.(mm) 2.3 2.9 3.5 3.7Vm (%) 4.0 5.1 4.6 3.1VMA (%)15.316.115.614.5M.Pérez-Martínez et al./Journal of Cleaner Production 65(2014)374e 379376test(EN12697-12,2009).Table5resumes the values of strength obtained in the test.Once again the resistance values,in this case indirect tensile strength,shown by warm mix asphalts are slightly lower than those of the Reference Mix,perhaps indicating that may be inter-esting to increase the energy of compaction when using this type of mixtures,but higher than the ones obtained by Oliveira et al.(2013) with and without rubber.However,the retained strength(ITSR) shown by warm mix asphalts is higher,and therefore can be considered that such materials will be less affected by the action of water.This is because,in the case of surfactant additived mixtures to the improvement of adhesiveness that they generate(not only improving the coating of the aggregate,but also acting as its stimulator).Meanwhile,in the Wet Wax Mix may be related to its compaction improvement and its lower void content.3.3.Cyclic triaxial compression testPlastic deformations were evaluated by the cyclic triaxial compression test(EN12697-25,2006,method B),taking at the same time the service stresses and strains into account by means of a confining load.The conditions selected involved the com-bined application at a constant temperature of40 C of a confining load of120kPa and another cyclic sinusoidal out-of-phase axial loading of300kPa at a frequency of3Hz during12,000load cycles.The creep modulus and permanent deformation parame-ters for each mix were calculated.Table6shows the triaxial test results.The values obtained for the creep modulus indicate that the most resistant mix against plastic deformations is the Wet Wax Mix.The Wet Surfactant Mix behaves similar to the Reference Mix, even manufactured at lower temperature and the permanent deformation experienced only varies in0.03%.In the case of the Dry Surfactant Mix,results showed an increase in plastic deformation, probably due to a lack of mix compaction(as it is showed in its void content).3.4.Four point bending testTo perform the test,specimens of408Â50Â50mm with sawn faces were manufactured,and a sinusoidal waveform load was applied.The tests were carried out at20 C,in strain control mode and at a frequency of10Hz.The mixtures were tested in six different strain amplitude levels,250m m/m;200m m/m;175m m/m; 150m m/m;125m m/m and100m m/m Fig.3shows the potential fatigue laws derived from the four-point bending test performed in the4types of mixtures tested.As can be observed,independently of the warm mix technology used,the fatigue behavior of the mixtures evaluated is very similar, which coincides with thefindings of other researchers(Jones et al., 2010).On the other hand,the correlation coefficients of the fatigue laws obtained are high,indicating a uniform mechanical behavior of the warm mix asphalts.This aspect agrees with the results ob-tained by Johnston et al.(2006),which showed that additive did not affect the homogeneity of its long-term mechanical behavior.Moreover,the fatigue behavior of the Dry and Wet Surfactant Mixes is very similar,regardless of the method used to add the additive.Meanwhile,it should be noted that the fatigue behavior of the Wet Wax Mix is slightly different.At higher strain amplitudes fatigue life is smaller,while for lower strain amplitudes it increases in relation to the other mixtures evaluated.This behavior is typical of more rigid materials,aspect which is supported by the results obtained in the triaxial test,where the Wet Wax Mix showed a low rate of permanent deformation(which means that is a more rigid material).Table6Triaxial test results.Parameter ReferenceMix DrySurfactantMixWetSurfactantMixWet WaxMixCreep modulus(MPa)178.57153.45175.95202.70Permanentdeformation(%)1.68 1.96 1.71 1.48Table5Water sensitivity test results.Parameter ReferenceMix Dry SurfactantMixWet SurfactantMixWet Wax MixITSR(kPa)dry group2030.01469.01749.71464.3ITSR(kPa)wet group1741.71281.01575.71357.3ITSR(%)85.587.290.192.7Fig.3.Fatigue behavior of the studied mixtures at strain controlled test(T¼20 C,f¼10Hz).M.Pérez-Martínez et al./Journal of Cleaner Production65(2014)374e3793773.5.Control of emissionsData collection for controlling emissions took place during the process of manufacturing the conventional HMA at 176 C and the mixture Wet Surfactant Mix selected as WMA at 140 C.Table 7resumes the results obtained.Fig.4shows the emissions results obtained from the manufacturing of WMA and HMA mixtures.They have been compared with the HMA and HWMA results from Rubio et al.(2013).In terms of CO 2and NO x WMA slightly reduces the emis-sions,while in TOC and CO the values obtained have been increased,which was not expected.It can be appreciated how HMWA reduce the emissions in comparison with the hot asphalt mix while no reduction is appreciated between the WMA and the hot asphalt mix.3.6.Fuel consumptionTable 8indicates the results from the measure of the fuel needed for the manufacture of HMA and WMA mixtures.According to the values obtained in plant,the consumption of fuel for the manufacture of WMA is 35%lower.Decreasing the flame modulator by 60%would save fuel.The increase of the time of mixing by 5s is to guarantee the good cover of the aggregates;it induces to a decrease in production but the savings on fuel consumption balances it.4.ConclusionsIn this paper,mechanical performance testing on three asphalts mixtures modi fied under different temperature reduction tech-nologies was conducted.The aim of the research was to select one of the processes to adapt a HMA plant into the manufacture of WMA mixes,and measure the emissions and consumption of fuel during the process.The results obtained during the investigation led to the following conclusions:e The use of both,surfactants and waxes,as additives can reduce the manufacture temperature of asphalt mixtures to 140 C,providing materials with similar mechanical behavior than the hot mix asphalt.e In the case of surfactant additived mixtures,its incorporation into the mixture directly through the bitumen modi fied intheFig.4.Gases emissions of HMA,WMA and HWMA (Rubio et al.,2013).Table 7Emissions data collected.ParameterHMA WMA Manufacture temperature 176 C 140 C CO (ppm)616.8635.5NO x (NO 2)(ppm)55.653.2TOC (mgC/Nm 3)33.553.2Oxygen (%)16.516.5CO 2(%)2.5 2.6Speed (m/s)15.414.6Humidity (%)5.85.7Table 8Fuel consumption.ParameterHMA WMA Manufacture temperature 176 C 140 C Flame modulator 95%33%Time of mixing (s)3540Production (tn/h)200180Fuel consume (l/tn)5.83.8M.Pérez-Martínez et al./Journal of Cleaner Production 65(2014)374e 379378refinery plant(wet process),seems to offer further guarantee of success than incorporating it directly on the mixture(dry pro-cess).Although not offering an improvement in the compaction process of the mixture,the improvement of adhesiveness in the mixing offered by this additive allows manufacturing such materials at lower temperatures while maintaining their me-chanical properties.Thus,retained resistance values are pre-served against the action of water,plastic deformation,and fatigue behavior,showing how the use of this type of additived bitumens may offer bituminous mixtures with similar charac-teristics to HMA,assuming an environmentally cleaner alter-native to road construction.e In turn,wax modified bitumens let ensure acceptable compac-tion of the mixes at lower temperatures,offering a good response to the action of water and plastic deformation,as well as good fatigue life.Based on the results obtained in this research,this technology presents itself as an interesting alter-native for the environmental improvement in the production of asphalt mixtures.e Among the temperature reduction technologies studied,thebest results provided,in terms of mechanical performance is the Wet Wax Mix.Nevertheless,the Wet Surfactant Mix has also shown good overall mechanical response.So,when deciding which technology could be used for the next phase of the investigation,surfactant modified bitumen in refinery could be considered if it results economically and more competitive than using waxes.e In relation to the pollutant emissions,data collected do notshow a decrease as expected.On the other hand,other studies where a higher decrease of temperature takes places(as HWMA manufacturing process)provide a more significant reduction of emissions.In this sense,to achieve a better knowledge and significant conclusion more research needs to be develop about emissions during the manufacturing process of asphalt mixes with reduction of temperature(evaluating other asphalt plants and WMA technologies).e Fuel consumption can be decreased by35%respect to the pro-duction of HMA due to the reduction of theflame to dry the aggregates.When reducing this temperature of drying the time of mixing may be increased,but the savings in fuel can be considerable.AcknowledgmentsAuthors would like to acknowledge the Ministerio de Economía y Competitividad for its assistance in the project:INMBERS:Investigación de nuevas mezclas de baja energía para rehabilitación superficial.IPT-420000-2010-12.ReferencesD’Angelo,J.,Harm, E.,Bartoszek,J.,Baumgardner,G.,Corrigan,M.,Cowsert,J., Harman,T.,Jamshidi,M.,Jones,W.,Newcomb, D.,Prowell, B.,Sines,R., Yeaton,B.,2008.Warm-mix Asphalt:European Practice.Report FHWA-PL-08e 007.Office of International Programs,U.S.Department of Transportation, Washington DC,USA.EAPA,European Asphalt Pavement Association,January2010.The Use of Warm Mix Asphalt.EAPA position paper (accessed09.10.12.).EN12697e12,2009.Bituminous Mixtures.Test Methods for Hot Mix Asphalt.Part 12:Determination of Water Sensitivity of Bituminous Specimens.European Committee for Standardization,Bruxelles,Belgium.EN12697e24,2013.Bituminous Mixtures.Test Methods for Hot Mix Asphalt.Part 24:Resistance to Fatigue;Annex D,Four Point Bending Fatigue Cracking Test.European Committee for Standardization,Bruxelles,Belgium.EN12697e25,2006.Bituminous Mixtures.Test Methods for Hot Mix Asphalt.Part 25:Cyclic Compression Test;Method B,Cyclic Triaxial Compression Test.Eu-ropean Committee for Standardization,Bruxelles,Belgium.EN13108e1,2008.Bituminous Mixtures e Material Specifications.Part1:Asphalt Concrete.European Committee for Standardization,Bruxelles,Belgium. General Management of Roads,2008.General Technical Specification for Road and Bridge Works PG-3.Articles542and543(in Spanish),Madrid,Spain. Hamzah,M.O.,Jamshidi, A.,Shahadan,Z.,2010.Evaluation of the potential of SasobitÒto reduce required heat energy and CO2emission in the asphalt in-dustry.J.Clean.Prod.18,1859e1865.Johnston, A.,Yeung,K.,Bird,J.,Forflyow, B.,2006.Initial Canadian experience with warm-mix asphalt in Calgary,Alberta.In:Proc.51st Annual Conference of the CTAA,Charlotte-town,Prince Edward Island,Canada,pp.369e386. Jones,D.,Barros,C.,Harvey,J.T.,Tsai,B.W.,Wu,R.,2010.Preliminary results from California warm-mix asphalt study.In:Transportation Research Board89th Annual Meeting,Washington DC,USA.Kristjansdottir,O.,2006.Warm Mix Asphalt for Cold Weather Paving(PhD thesis).University of Washington,Seattle,WA,USA.NLT-159,2000.Marshall Test.Road Tests of the Road Study Center(in Spanish), Madrid,Spain.Oliveira,J.R.M.,Silva,H.M.R.D.,Abreu,L.P.F.,Fernandes,S.R.M.,e of a warm mix asphalt additive to reduce the production temperatures and to improve the performance of asphalt rubber mixtures.J.Clean.Prod.41,15e22.Punith,V.,Xiao, F.,Wingard, D.,2013.Performance characterization of half warm mix asphalt using foaming technology.J.Mater.Civ.Eng.25,382e 392.Reyes-Ortiz,O.,Pérez,F.,Miró,R.,Amorós,J.,Gil,S.,2009.The Phoenix Project at UPC.Warm mix asphalt mixtures.In:XV Ibero-Latin American Congress of Asphalt.Lisbon23-27November2009,Portugal(in Spanish).Rubio,M.C.,Martínez,G.,Baena,L.,Moreno,F.,2012.Warm mix asphalt:an over-view.J.Clean.Prod.24,76e84.Rubio,M.C.,Moreno,F.,Martínez-Echevarría,M.J.,Martínez,G.,Vázquez,J.M.,2013.Comparative analysis of emissions from the manufacture and use of hot and half-warm mix asphalt.J.Clean.Prod.41,1e6.Wax,Sasol,2005.Roads and Trials with / sasolwaxmedia/Downloads/Bitumen_Modification-p-409/Roads_and_trials.pdf (accessed17.09.12.).Zaumanis,M.,2010.Warm Mix Asphalt Investigation(PhD thesis).Technical Uni-versity of Denmark,Kongens Lyngby,Denmark.M.Pérez-Martínez et al./Journal of Cleaner Production65(2014)374e379379。

API 7K 钻井和修井设备规范-2016 第6版

API 7K 钻井和修井设备规范-2016 第6版

本文档为英文规范翻译稿,仅供相关人员阅读原文时参考,不作为技术依据使用。所有内容以英文原文为准。
API SPEC 7K 钻井和修井设备规范
目录 1 2 3 范围 ........................................................................................................................................... 1 规范参考性文件 ....................................................................................................................... 1 术语、定义及缩写术语 ........................................................................................................... 3 3.1 3.2 4 术语及定义 ................................................................................................................... 3 缩写术语(Acronyms) .............................................................................................. 9
版权所有。未经出版商允许,本著作的任何部分均不得以任何方法,如电子、机械、照相、记录或其他等 再版、储存在检索系统或转送。出版商联系地址:美国石油学会出版业务部,1220L Street, N.W., Washington, D.C. 20005。 版权@2015 美国石油学会

9327国际色标卡

9327国际色标卡

国际色标卡P01淡紫(钛白99.712% 、甲苯胺红0.204%、酞菁蓝0.084%)P02紫(钛白98.619%、酞菁蓝0.731%、大红粉0.650%)PB01深(铁)蓝(酞菁蓝71.61%、铁蓝13.88%、钛白8.20%、甲苯胺红 6.32%)PB02深(酞)蓝(酞菁蓝93.605%、钛白6.395%)PB03 中(铁)蓝(酞菁蓝60.65%、铁蓝19.02%、钛白20.33%)PB04 中(酞)蓝(酞菁蓝81.773%、钛白18.227%)PB05 海蓝(钛白73.17%、酞菁蓝25.00%、铁蓝1.730%、软碳黑0.10%)PB06 淡(酞)蓝(钛白75.345%、群青16.788%、铁蓝7.234%、柠檬黄0.632%)PB07 淡(铁)蓝(钛白93.38%、铁蓝6.33%、软碳黑0.29%)PB08 蓝灰(钛白78.321%、铁蓝15.431%、中铬黄3.799%、碳黑2.449%)PB09 天(酞)蓝(钛白87.949%、群青9.535%、酞菁蓝1.270%、柠檬黄1.246%)PB10 天(铁)蓝(钛白97.888%、铁蓝1.109%、柠檬黄0.662%、铁黄0.341%)PB11 孔雀蓝(钛白51.086%、酞菁蓝45.922%、柠檬黄2.922%)B01 深灰(钛白80.178%、碳黑12.666%、铁黄6.375%、铁蓝0.781%)B02 中灰(钛白87.523%、柠檬黄5.959% 、碳黑 5.348%、铁红 1.170%)B03淡灰(钛白94.123%、铁黄3.165%、碳黑2.639%、铁蓝0.074%)B04 银灰(钛白93.748%、铁黄4.472%、碳黑1.640%、铁蓝0.140%)B05 海灰(钛白97.628%、柠檬黄1.697%、碳黑0.641%、铁蓝0.034%)B06 淡天(酞)蓝(钛白99.676%、铁黄0.232%、铁蓝0.057%、酞菁蓝0.035%)B07 蛋青(钛白98.573%、浅铬黄1.042%、铁蓝0.221%、铁红0.164%)B08 稚蓝(钛白97.561%、柠檬黄2.174%、酞菁蓝0.243%、甲苯胺红0.023%)B09 宝石蓝(钛白83.579%、柠檬黄12.996%、酞菁蓝3.224%、碳黑0.201%)B10 鲜蓝(钛白79.151%、柠檬黄11.810%、酞菁蓝9.039%)B11 淡海(铁)蓝(钛白79.269%、铁黄10.935%、酞菁蓝9.029%、甲苯胺红0.767%)B12 中海(铁)蓝(钛白60.714%、深铬黄19.507%、铁蓝12.151%、酞菁蓝7.628%)B13 深海(铁)蓝(铁蓝34.161%、钛白33.119%、铁黄30.874%、酞菁蓝1.846%)B14 景蓝(柠檬黄51.670%、钛白34.315%、酞菁蓝14.015%)B15 艳蓝(钛白53.236%、柠檬黄35.255%、酞菁蓝7.939%、浅铬黄3.570%)BG01中绿灰(钛白92.306%、浅铬黄5.887%、碳黑 1.671%、铁蓝0.316%)BG02湖绿(钛白82.92%、柠檬黄16.30%、铁蓝0.39%、软碳黑0.39%)BG03 宝绿(钛白66.96%、柠檬黄31.39%、酞菁蓝1.58%、软碳黑0.07%)BG04 鲜绿(柠檬黄55.82%、钛白40.41%、酞菁蓝3.54%、铁蓝0.23%)BG05 淡湖绿(钛白95.527%、柠檬黄3.185%、中铬黄0.785%、铁蓝0.504%)G01苹果绿(钛白79.95%、柠檬黄19.65%、酞菁蓝0.20%、软碳黑0.19%)G02 淡绿(柠檬黄98.121%、酞菁蓝1.879%)G03 艳绿(柠檬黄96.24%、酞菁蓝3.32%、艳佳丽黄0.44%)G04 中绿(酞菁绿57.55%、中铬黄37.59%、钛白6.50%、碳黑0.44%)G05 深绿(酞菁绿76.90%、中铬黄16.15%、钛白6.50%、碳黑0.44%)G06 橄榄绿(铁黄53.49%、酞菁绿33.74%、碳黑9.97%、钛白2.81%)G07 蛋壳绿(钛白97.724%、柠檬黄1.654%、铁红0.565%、酞菁蓝0.056%)G08 淡苹果绿(钛白93.131%、柠檬黄4.452%、铁黄2.199%、酞菁蓝0.219%)G09 深豆绿(钛白49.621%、铁黄32.463%、浅铬黄15.446%、酞菁蓝2.470%)G10 飞机灰(钛白97.361%、铁黄1.810% 、碳黑0.799%、铁蓝0.031%)GY01 豆绿(钛白76.45%、柠檬黄19.39%、中铬黄3.92%、酞菁蓝0.25%)GY02 纺绿(钛白54.85%、中铬黄42.18%、软碳黑2.02%、铁蓝0.95%)GY03 橄榄灰(钛白69.14%、中铬黄25.63%、软碳黑3.99%、柠檬黄1.24%)GY04 草绿(中铬黄87.71%、软碳黑8.69%、铁蓝2.25%、钛白1.35%)GY05 褐绿(中铬黄68.99%、钛白17.40%、软碳黑13.21%、大红粉0.40%)GY06 军车绿(中铬黄57.864%、铁红24.070%、钛白13.028%、铁蓝5.038%)GY07 豆蔻绿(钛白54.848%、柠檬黄42.427%、铁黄2.213%、酞菁蓝0.462%)GY08 果(酞)绿(钛白90.536%、柠檬黄8.545%、铁黄0.833%、酞菁蓝0.085%)GY09 冰灰(钛白98.984%、浅铬黄0.806%、碳黑0.161% 、中铬黄0.049%)GY10 机床灰(钛白78.632%、铁黄16.718%、碳黑 4.458% 、酞菁蓝0.192%)GY11 玉灰(钛白91.065%、铁黄8.364%、碳黑0.390%、酞菁蓝0.180%)Y01 驼灰(钛白72.69%、中铬黄25.32%、软碳黑1.52%、大红粉0.47%)Y02 珍珠(钛白97.43%、中铬黄 2.55% 、软碳黑0.02%)Y03 奶油(钛白86.59%、柠檬黄13.31% 、大红粉0.10%)Y04 象牙(钛白84.89%、中铬黄11.98%、柠檬黄3.12%)Y05 柠黄(浅铬黄83.639%、钛白16.351%、铁蓝0.005%)Y06 淡黄(浅铬黄86.108%、钛白13.888%、铁蓝0.004%)Y07 中黄(中铬黄97.25%、钛白2.75%)Y08 深黄(钛白51.53%、艳佳丽黄48.40%、大红粉0.07%)Y09 铁黄(铁黄77.93%、中铬黄14.87%、钛白7.19%、软碳黑0.01%)Y10 军黄(深铬黄71.218%、铁红18.397%、钛白7.010%、碳黑3.374%)Y11 乳白(钛白98.81%、浅铬黄0.586%、深铬黄0.378%、铁红0.226%)Y12 米黄(钛白95.200%、柠檬黄2.311%、深铬黄 2.002%、铁红0.487%)Y13 浅黄灰(钛白91.849%、深铬黄3.805%、铁黄 3.358%、碳黑0.987%)YR01 淡棕(铁黄71.20%、铁红28.51%、软碳黑0.29%)YR02 赫黄(铁黄62.38%、铁红32.61%、软碳黑4.23%、钛白0.78%)YR03 紫棕(铁红70.88%、软碳黑14.12%、铁黄12.39%、钛白2.61%)YR04 桔黄YR05 棕色(铁红74.87%、铁黄17.14%、软碳黑5.83%、钛白2.16%)YR06 棕黄(中铬黄94.969%、钛白2.555%、甲苯胺红2.202%、碳黑0.274%)YR07 深棕色(中铬黄52.850%、铁红44.536%、碳黑1.520%、钛白 1.093%)R01 铁红(铁红97.27%、中铬黄2.73%)R02朱红(钼铬红87.074%、大红粉12.926%)R03 大红R04 紫红R05 桔红RP01 粉红(钛白99.570%、大红粉0.250%、甲苯胺紫红0.180%)RP02 淡粉红RP03 玫瑰红RP04 淡玫瑰红空白处表示该颜料很微量,或为单纯颜料。

[资料]国际色标卡

[资料]国际色标卡

[资料]国际色标卡国际色标卡P01淡紫(钛白 99.712% 、甲苯胺红0.204%、酞菁蓝 0.084%)P02 紫(钛白98.619%、酞菁蓝0.731%、大红粉0.650%)PB01深(铁)蓝(酞菁蓝 71.61%、铁蓝13.88%、钛白8.20%、甲苯胺红 6.32%) PB02深(酞)蓝(酞菁蓝93.605%、钛白6.395%) PB03 中(铁)蓝(酞菁蓝60.65%、铁蓝19.02%、钛白20.33%)PB04 中(酞)蓝(酞菁蓝81.773%、钛白18.227%)PB05 海蓝(钛白73.17%、酞菁蓝25.00%、铁蓝1.730%、软碳黑0.10%)PB06 淡(酞)蓝(钛白75.345%、群青16.788%、铁蓝7.234%、柠檬黄0.632%) PB07 淡(铁)蓝(钛白93.38%、铁蓝6.33%、软碳黑0.29%)PB08 蓝灰(钛白78.321%、铁蓝15.431%、中铬黄3.799%、碳黑2.449%)PB09 天(酞)蓝(钛白87.949%、群青9.535%、酞菁蓝1.270%、柠檬黄1.246%) PB10 天(铁)蓝(钛白97.888%、铁蓝1.109%、柠檬黄0.662%、铁黄0.341%) PB11 孔雀蓝(钛白51.086%、酞菁蓝45.922%、柠檬黄2.922%)B01 深灰(钛白80.178%、碳黑12.666%、铁黄6.375%、铁蓝0.781%)B02 中灰(钛白87.523%、柠檬黄5.959% 、碳黑 5.348%、铁红 1.170%)B03 淡灰(钛白94.123%、铁黄3.165%、碳黑2.639%、铁蓝0.074%)B04 银灰(钛白93.748%、铁黄4.472%、碳黑1.640%、铁蓝0.140%)B05 海灰(钛白97.628%、柠檬黄1.697%、碳黑0.641%、铁蓝 0.034%)B06 淡天(酞)蓝(钛白99.676%、铁黄0.232%、铁蓝0.057%、酞菁蓝0.035%) B07 蛋青(钛白 98.573%、浅铬黄1.042%、铁蓝0.221%、铁红0.164%)B08 稚蓝(钛白97.561%、柠檬黄2.174%、酞菁蓝0.243%、甲苯胺红0.023%)B09 宝石蓝(钛白83.579%、柠檬黄12.996%、酞菁蓝3.224%、碳黑0.201%) B10 鲜蓝(钛白79.151%、柠檬黄11.810%、酞菁蓝9.039%)B11 淡海(铁)蓝(钛白79.269%、铁黄10.935%、酞菁蓝9.029%、甲苯胺红0.767%)B12 中海(铁)蓝(钛白60.714%、深铬黄19.507%、铁蓝12.151%、酞菁蓝7.628%)B13 深海(铁)蓝(铁蓝34.161%、钛白33.119%、铁黄30.874%、酞菁蓝1.846%) B14 景蓝(柠檬黄51.670%、钛白34.315%、酞菁蓝14.015%)B15 艳蓝(钛白53.236%、柠檬黄35.255%、酞菁蓝7.939%、浅铬黄3.570%) BG01 中绿灰(钛白92.306%、浅铬黄5.887%、碳黑 1.671%、铁蓝0.316%)BG02 湖绿(钛白82.92%、柠檬黄16.30%、铁蓝0.39%、软碳黑0.39%)BG03 宝绿(钛白66.96%、柠檬黄31.39%、酞菁蓝1.58%、软碳黑 0.07%)BG04 鲜绿(柠檬黄55.82%、钛白 40.41%、酞菁蓝3.54%、铁蓝 0.23%)BG05 淡湖绿(钛白95.527%、柠檬黄3.185%、中铬黄0.785%、铁蓝0.504%) G01 苹果绿(钛白79.95%、柠檬黄19.65%、酞菁蓝0.20%、软碳黑0.19%)G02 淡绿(柠檬黄98.121%、酞菁蓝1.879%) G03 艳绿(柠檬黄 96.24%、酞菁蓝3.32%、艳佳丽黄0.44%)G04 中绿(酞菁绿 57.55%、中铬黄37.59%、钛白6.50%、碳黑0.44%)G05 深绿(酞菁绿76.90%、中铬黄16.15%、钛白6.50%、碳黑0.44%)G06 橄榄绿(铁黄53.49%、酞菁绿33.74%、碳黑9.97%、钛白2.81%)G07 蛋壳绿 (钛白97.724%、柠檬黄1.654%、铁红0.565%、酞菁蓝0.056%) G08 淡苹果绿(钛白93.131%、柠檬黄4.452%、铁黄2.199%、酞菁蓝0.219%) G09 深豆绿(钛白49.621%、铁黄32.463%、浅铬黄15.446%、酞菁蓝2.470%) G10 飞机灰(钛白 97.361%、铁黄1.810% 、碳黑 0.799%、铁蓝0.031%)GY01 豆绿(钛白76.45%、柠檬黄19.39%、中铬黄3.92%、酞菁蓝0.25%)GY02 纺绿(钛白54.85%、中铬黄42.18%、软碳黑2.02%、铁蓝 0.95%)GY03 橄榄灰(钛白69.14%、中铬黄25.63%、软碳黑3.99%、柠檬黄1.24%) GY04 草绿(中铬黄87.71%、软碳黑8.69%、铁蓝2.25%、钛白1.35%)GY05 褐绿(中铬黄68.99%、钛白17.40%、软碳黑13.21%、大红粉0.40%) GY06 军车绿(中铬黄57.864%、铁红24.070%、钛白13.028%、铁蓝5.038%) GY07 豆蔻绿(钛白54.848%、柠檬黄42.427%、铁黄2.213%、酞菁蓝0.462%) GY08 果(酞)绿(钛白90.536%、柠檬黄8.545%、铁黄0.833%、酞菁蓝0.085%) GY09 冰灰(钛白 98.984%、浅铬黄0.806%、碳黑0.161% 、中铬黄0.049%) GY10 机床灰(钛白78.632%、铁黄16.718%、碳黑 4.458% 、酞菁蓝0.192%) GY11 玉灰(钛白91.065%、铁黄8.364%、碳黑0.390%、酞菁蓝0.180%)Y01 驼灰(钛白72.69%、中铬黄25.32%、软碳黑1.52%、大红粉0.47%)Y02 珍珠(钛白97.43%、中铬黄 2.55% 、软碳黑0.02%)Y03 奶油(钛白86.59%、柠檬黄13.31% 、大红粉0.10%)Y04 象牙(钛白84.89%、中铬黄11.98%、柠檬黄3.12%)Y05 柠黄(浅铬黄 83.639%、钛白16.351%、铁蓝0.005%)Y06 淡黄(浅铬黄86.108%、钛白13.888%、铁蓝0.004%)Y07 中黄(中铬黄97.25%、钛白2.75%) Y08 深黄(钛白51.53%、艳佳丽黄48.40%、大红粉0.07%)Y09 铁黄(铁黄77.93%、中铬黄14.87%、钛白 7.19%、软碳黑0.01%)Y10 军黄(深铬黄71.218%、铁红18.397%、钛白7.010%、碳黑3.374%)Y11 乳白(钛白98.81%、浅铬黄0.586%、深铬黄0.378%、铁红0.226%)Y12 米黄(钛白95.200%、柠檬黄2.311%、深铬黄 2.002%、铁红0.487%)Y13 浅黄灰(钛白91.849%、深铬黄3.805%、铁黄 3.358%、碳黑0.987%)YR01 淡棕(铁黄71.20%、铁红28.51%、软碳黑0.29%)YR02 赫黄(铁黄62.38%、铁红32.61%、软碳黑4.23%、钛白0.78%)YR03 紫棕(铁红70.88%、软碳黑14.12%、铁黄12.39%、钛白2.61%)YR04 桔黄YR05 棕色(铁红74.87%、铁黄17.14%、软碳黑5.83%、钛白2.16%)YR06 棕黄(中铬黄 94.969%、钛白2.555%、甲苯胺红2.202%、碳黑0.274%) YR07 深棕色(中铬黄52.850%、铁红44.536%、碳黑1.520%、钛白 1.093%) R01 铁红(铁红97.27%、中铬黄2.73%) R02朱红(钼铬红87.074%、大红粉12.926%) R03 大红R04 紫红R05 桔红RP01 粉红(钛白 99.570%、大红粉0.250%、甲苯胺紫红0.180%)RP02 淡粉红RP03 玫瑰红RP04 淡玫瑰红空白处表示该颜料很微量,或为单纯颜料。

3m培训四五六类化学指示卡simon wang

3m培训四五六类化学指示卡simon wang

3M培训四五六类化学指示卡介绍化学指示卡是一种用于检测空气或液体中化学物质含量的工具。

3M公司是一家全球领先的科技公司,专注于创新和开发各种产品,包括化学指示卡。

本文将介绍3M公司生产的四五六类化学指示卡以及其在不同领域的应用。

1. 四类化学指示卡四类化学指示卡主要用于监测空气中的化学物质含量。

其原理是通过指示剂的颜色变化来表明化学物质的存在。

以下是几种常见的四类化学指示卡:•氯气指示卡:用于检测空气中氯气含量。

当氯气浓度达到危险水平时,卡片上的指示剂会由黄色变为绿色,提醒人们快速采取安全措施。

•二氧化硫指示卡:用于检测空气中二氧化硫含量。

当二氧化硫浓度超过安全标准时,卡片上的指示剂会从白色变为紫色,提醒人们需要采取适当的防护措施。

•甲醛指示卡:用于检测空气中甲醛含量。

甲醛是一种有毒气体,常见于家具、装饰材料等。

当甲醛超过安全限量时,卡片上的指示剂会颜色变化,提醒人们需要增强通风换气或采取其他措施。

这些四类化学指示卡广泛应用于工厂、实验室、办公室等环境中,用于确保空气质量安全。

2. 五类化学指示卡除了监测空气中的化学物质含量,五类化学指示卡还可以用于检测液体中的化学物质含量。

以下是几种常见的五类化学指示卡:•酸碱指示卡:用于检测液体的酸碱性。

当液体呈酸性时,指示剂会变为红色;当液体呈碱性时,指示剂会变为蓝色。

这种指示卡常用于实验室中的化学试剂。

•过氧化氢指示卡:用于检测液体中过氧化氢的浓度。

过氧化氢是一种常见的消毒剂和氧化剂,在医疗、食品行业中广泛使用。

这种指示卡可根据液体中过氧化氢含量的不同,显示出不同的颜色。

•硝酸银指示卡:用于检测液体中的硝酸盐含量。

硝酸盐是一种常见的化工原料,也是爆炸品的组成部分。

这种指示卡可根据液体中硝酸盐含量的不同,通过颜色变化来显示。

这些五类化学指示卡可用于食品加工、卫生保健、环境监测等领域,帮助人们快速检测液体的化学性质。

3. 六类化学指示卡六类化学指示卡是3M公司推出的最新产品,可以检测更多种类化学物质的含量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档