(完整版)2018年安徽中考数学试题与答案

合集下载

2018年安徽省中考数学试卷及解析(完美打印版)

2018年安徽省中考数学试卷及解析(完美打印版)

2018年安徽省中考数学试卷(打印版)一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣8的绝对值是()A.﹣8B.8C.±8D.﹣2.(4分)2017年我省粮食总产量为695.2亿斤.其中695.2亿用科学记数法表示为()A.6.952×106B.6.952×108C.6.952×1010D.695.2×1083.(4分)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b34.(4分)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.5.(4分)下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4)B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2D.x2﹣4x+4=(x+2)(x﹣2)6.(4分)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2aC.b=(1+22.1%)×2a D.b=22.1%×2a7.(4分)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.﹣1B.1C.﹣2或2D.﹣3或18.(4分)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差9.(4分)▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF10.(4分)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)不等式>1的解集是.12.(5分)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE =°.13.(5分)如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是.14.(5分)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:50﹣(﹣2)+×.16.(8分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是个平方单位.18.(8分)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E 恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)20.(10分)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.六、解答题(本大题满分12分)21.(12分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.七、解答题(本题满分12分)22.(12分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?八、解答题(本题满分14分)23.(14分)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.2018年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣8的绝对值是()A.﹣8B.8C.±8D.﹣【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣8<0,∴|﹣8|=8.故选:B.2.(4分)2017年我省粮食总产量为695.2亿斤.其中695.2亿用科学记数法表示为()A.6.952×106B.6.952×108C.6.952×1010D.695.2×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:695.2亿=695 2000 0000=6.952×1010,故选:C.3.(4分)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b3【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵(a2)3=a6,∴选项A不符合题意;∵a4•a2=a6,∴选项B不符合题意;∵a6÷a3=a3,∴选项C不符合题意;∵(ab)3=a3b3,∴选项D符合题意.故选:D.4.(4分)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看上边是一个三角形,下边是一个矩形,故选:A.5.(4分)下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4)B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2D.x2﹣4x+4=(x+2)(x﹣2)【分析】直接利用公式法以及提取公因式法分解因式分别分析得出答案.【解答】解:A、﹣x2+4x=﹣x(x﹣4),故此选项错误;B、x2+xy+x=x(x+y+1),故此选项错误;C、x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项正确;D、x2﹣4x+4=(x﹣2)2,故此选项错误;故选:C.6.(4分)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2aC.b=(1+22.1%)×2a D.b=22.1%×2a【分析】根据2016年的有效发明专利数×(1+年平均增长率)2=2018年的有效发明专利数.【解答】解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.7.(4分)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.﹣1B.1C.﹣2或2D.﹣3或1【分析】将原方程变形为一般式,根据根的判别式△=0即可得出关于a的一元二次方程,解之即可得出结论.【解答】解:原方程可变形为x2+(a+1)x=0.∵该方程有两个相等的实数根,∴△=(a+1)2﹣4×1×0=0,解得:a=﹣1.故选:A.8.(4分)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=(x1+x2+…+x n)就叫做这n个数的算术平均数;s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.【解答】解:A、甲的众数为7,乙的众数为8,故原题说法错误;B、甲的中位数为7,乙的中位数为4,故原题说法错误;C、甲的平均数为6,乙的平均数为5,故原题说法错误;D、甲的方差为4.4,乙的方差为6.4,甲的方差小于乙的方差,故原题说法正确;故选:D.9.(4分)▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF【分析】连接AC与BD相交于O,根据平行四边形的对角线互相平分可得OA=OC,OB=OD,再根据对角线互相平分的四边形是平行四边形,只要证明得到OE=OF即可,然后根据各选项的条件分析判断即可得解.【解答】解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;故选:B.10.(4分)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.【分析】当0≤x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,由此即可判断;【解答】解:当0≤x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=﹣2x+6,∴函数图象是A,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)不等式>1的解集是x>10.【分析】根据解一元一次不等式得基本步骤依次计算可得.【解答】解:去分母,得:x﹣8>2,移项,得:x>2+8,合并同类项,得:x>10,故答案为:x>10.12.(5分)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE =60°.【分析】连接OA,根据菱形的性质得到△AOB是等边三角形,根据切线的性质求出∠AOD,同理计算即可.【解答】解:连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与⊙O相切于点D,∴OD⊥AB,∵点D是AB的中点,∴直线OD是线段AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∵AB与⊙O相切于点D,∴OD⊥AB,∴∠AOD=∠AOB=30°,同理,∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为:60.13.(5分)如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是y=x﹣3.【分析】首先利用图象上点的坐标特征得出A点坐标,进而得出正比例函数解析式,再利用平移的性质得出答案.【解答】解:∵正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),∴2m=6,解得:m=3,故A(2,3),则3=2k,解得:k=,故正比例函数解析式为:y=x,∵AB⊥x轴于点B,平移直线y=kx,使其经过点B,∴B(2,0),∴设平移后的解析式为:y=x+b,则0=3+b,解得:b=﹣3,故直线l对应的函数表达式是:y=x﹣3.故答案为:y=x﹣3.14.(5分)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为或3.【分析】根据勾股定理求出BD,分PD=DA、P′D=P′A两种情况,根据相似三角形的性质计算.【解答】解:∵四边形ABCD为矩形,∴∠BAD=90°,∴BD==10,当PD=DA=8时,BP=BD﹣PD=2,∵△PBE∽△DBC,∴=,即=,解得,PE=,当P′D=P′A时,点P′为BD的中点,∴P′E′=CD=3,故答案为:或3.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:50﹣(﹣2)+×.【分析】首先计算零次幂和乘法,然后再计算加减即可.【解答】解:原式=1+2+4=7.16.(8分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.【分析】设城中有x户人家,根据鹿的总数是100列出方程并解答.【解答】解:设城中有x户人家,依题意得:x+=100解得x=75.答:城中有75户人家.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是20个平方单位.【分析】(1)以点O为位似中心,将线段AB放大为原来的2倍,即可画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,即可画出线段A2B1;(3)连接AA2,即可得到四边形AA1B1A2为正方形,进而得出其面积.【解答】解:(1)如图所示,线段A1B1即为所求;(2)如图所示,线段A2B1即为所求;(3)由图可得,四边形AA1B1A2为正方形,∴四边形AA1B1A2的面积是()2=()2=20.故答案为:20.18.(8分)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】以序号n为前提,依此观察每个分数,可以用发现,每个分母在n的基础上依次加1,每个分子分别是1和n﹣1【解答】解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5故应填:(2)根据题意,第n个分式分母为n和n+1,分子分别为1和n﹣1故应填:证明:=∴等式成立五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置一个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E 恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【分析】根据平行线的性质得出∠FED=45°.解等腰直角△DEF,得出DE=DF=1.8米,EF=DE =米.证明∠AEF=90°.解直角△AEF,求出AE=EF•tan∠AFE≈18.036米.再解直角△ABE,即可求出AB=AE•sin∠AEB≈18米.【解答】解:由题意,可得∠FED=45°.在直角△DEF中,∵∠FDE=90°,∠FED=45°,∴DE=DF=1.8米,EF=DE=米.∵∠AEB=∠FED=45°,∴∠AEF=180°﹣∠AEB﹣∠FED=90°.在直角△AEF中,∵∠AEF=90°,∠AFE=39.3°+45°=84.3°,∴AE=EF•tan∠AFE≈×10.02=18.036(米).在直角△ABE中,∵∠ABE=90°,∠AEB=45°,∴AB=AE•sin∠AEB≈18.036×≈18(米).故旗杆AB的高度约为18米.20.(10分)如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【分析】(1)利用基本作图作AE平分∠BAC;(2)连接OE交BC于F,连接OC,如图,根据圆周角定理得到=,再根据垂径定理得到OE⊥BC,则EF=3,OF=2,然后在Rt△OCF中利用勾股定理计算出CF=,在Rt△CEF中利用勾股定理可计算出CE.【解答】解:(1)如图,AE为所作;(2)连接OE交BC于F,连接OC,如图,∵AE平分∠BAC,∴∠BAE=∠CAE,∴=,∴OE⊥BC,∴EF=3,∴OF=5﹣3=2,在Rt△OCF中,CF==,在Rt△CEF中,CE==.六、解答题(本大题满分12分)21.(12分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有50人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为30%;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【分析】(1)用“59.5~69.5”这组的人数除以它所占的百分比可得到调查的总人数;再计算出“89.5~99.5”这一组人数占总参赛人数的百分比,然后用1分别减去其它三组的百分比得到“69.5~79.5”这一组人数占总参赛人数的百分比;(2)利用“59.5~69.5”和“69.5~79.5”两分数段的百分比为40%可判断他不能获奖;(3)画树状图展示所有12种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.【解答】解:(1)5÷10%=50,所以本次比赛参赛选手共有50人,“89.5~99.5”这一组人数占总参赛人数的百分比为×100%=24%,所以“69.5~79.5”这一组人数占总参赛人数的百分比为1﹣10%﹣36%﹣24%=30%;故答案为50,30%;(2)他不能获奖.理由如下:他的成绩位于“69.5~79.5”之间,而“59.5~69.5”和“69.5~79.5”两分数段的百分比为10%+30%=40%,因为成绩由高到低前60%的参赛选手获奖,他位于后40%,所以他不能获奖;(3)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率==.七、解答题(本题满分12分)22.(12分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【分析】(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,根据“总利润=盆数×每盆的利润”可得函数解析式;(2)将盆景的利润加上花卉的利润可得总利润关于x的函数解析式,配方成顶点式,利用二次函数的性质求解可得.【解答】解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣)2+,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.八、解答题(本题满分14分)23.(14分)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)利用四边形内角和定理求出∠CME即可解决问题;(3)首先证明△ADE是等腰直角三角形,△DEM是等边三角形,设FM=a,则AE=CM=EM=a,EF=2a,推出=,=,由此即可解决问题;【解答】(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠MCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴∠DEM=60°,∠MEF=30°,∴AE=CM=EM =a,EF=2a,∵CN=NM,∴MN =a,∴=,=,∴=,∴EM∥AN.(也可以连接AM利用等腰三角形的三线合一的性质证明)21。

(完整)2018年安徽中考数学试题与答案1,推荐文档

(完整)2018年安徽中考数学试题与答案1,推荐文档

2018年安徽省初中毕业学业考试数学本试卷共8大题,计23小题,满分150分,考试时间120分钟题号一二三四五六七八总分得分一、选择题<本题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项同,其中只有一个正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的<不论是否写在括号内)一律得0分.8pPgeoDkvT1.-2,0,2,-3这四个数中最大的是………………………………………………………【】A.-1B.0C.1D.22.安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是…………【】8pPgeoDkvTA.3804.2×103B.380.42×104C.3.842×106D.3.842×1058pPgeoDkvT3.下图是五个相同的小正方体搭成的几体体,其左视图是…………………………………【】第3题图和2D= , 【 】 4. 设 ,a 在两个相邻整数之间,则这两个整数是………………………………【 】 A.1和2B.2和3C.3和4D.4 和55. 从下五边形的五个顶点中,任取四个顶点连成四边形,对于事件M ,“这个四边形是等腰梯形”.下列推断正确的是……………………………………………… ……【 】8pPgeoDkvT A.事件M 是不可能事件B. 事件M 是必然事件C.事件M 发生的概率为D. 事件M 发生的概率为6如图,D 是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E 、F 、G 、H分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是……………【 】 8pPgeoDkvTA.7B.9C.10D. 117.如图,⊙半径是1,A 、B 、C 是圆周上的三点,∠BAC=36°,则劣弧 的长是…【 】A. B. C. D.8. 一元二次方程的根是………………【】A.-1B. 2C. 1和2D. -19. 如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=,C点P 在四边形ABCD 上,若P 到BD 的距离为 ,则点P 的个数为…………A.1B.2C.3D.4第7题图第6题图:共4小题,每小题5分,满分20分) =_________.二、填空题<本 11.因式分解:第13题图题 10. 如图所示,P 是菱形ABCD 的对角线AC 上一动点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,则△AMN的面积为y ,则y 关于x 的函数图象的大致形状是………………………………………………【 】8pPgeoDkvT12. 根据里氏震级的定义,地震所释放的相对能量E 与地震级数n 的关系为:,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是.8pPgeoDkvT13. 如图,⊙O的两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=1,ED=3,则⊙O 的半径是.8pPgeoDkvT14. 定义运算,下列给出了关于这种运算的几点结论①②③若,则④若,则a=0.其中正确结论序号是.<把在横线上填上你认为所有正确结论的序号)三、<本题共2小题,每小题8分,满分16分15. 先化简,再求值:,其中x=-2【解】第10题图中,一蚂蚁从原点O 出发次移动1个单位.其行走路标:A1<____, ____ ), 第17题图 的坐 A3<____ vT 16. 江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量.8pPgeoDkvT 【解】四、<本题共2小题,每小题8分,满分16分)17. 17.如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;<1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;(2>以图中的O 为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2. 【解】18、在平面直角坐标系 ,按向上、向右、向下、向右的方向依次不断移动,每 线如下图所示.8pPgeoDkvT(1>填写下列各点 , ),A12<,);8pPgeoD k第18题图<2>写出点An 的坐标(n 是正整数>;【解】(3>指出蚂蚁从点A100到A101的移动方向.【解】五、<本题共2小题,每小题10分,满分20分)满分10分,成绩达到6乙两组学生成绩分布的 19.如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m ,高度C 处的飞机,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°,求隧道AB 的长.8pPgeoDkvT 【解】20、一次学科测验,学生得分均为整数, 分以上(包括6分>为合格.成绩达到9分为优秀.这次测验中甲 条形统计图如下8pPgeoDkvT第19题图<1)请补充完成下面的成绩统计分析表:<2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.8pPgeoDkvT 【解】六、<本题满分12分)21. 如图函数的图象与函数 <x >0)的图象交于A 、B 两点,与y 轴交于C点.已知A 点的坐标为(2,1>,C 点坐标为(0,3>.8pPgeoDkvT<1)求函数 的表达式和B 点坐标;【解】面积分别为;第22题图(1>长度最大,最大值为___ 第22题图(,EP h1>0,h2>0,h3>0 <2)观察图象,比较当x >0时, 和 的大小.【解】七、<本题满分12分)22. 在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C 顺时针旋转,旋转角为θ<0°<θ<180°),得到△A/B/C.8pPgeoDkvT(1>如图(1>,当AB∥CB/时,设AB 与CB/相交于D.证明:△A/ CD是等边三角形; 【解】<2)如图(2>,连接A/A 、B/B ,设△ACA/和△BCB/的S△ACA/和S△BCB/. 求证:S△ACA/∶S△BCB/=1∶3 【证】 <3)如图(3>,设AC 中点为E ,A/B/中点为P ,AC=a ,连接EP ,当θ=°时_.8pPgeoDkvT 【解】八、<本题满分14分)2> 第22题图(3>23. 如图,正方形ABCD 的四个顶点分别在四条平行线l1、l2、l3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3< ).8pPgeoDkvT (1>求证h1=h3; 【解】(2> 设正方形ABCD 的面积为S.求证S=<h2+h3)2+h12; 【解】 (3>若 ,当h1变化时,说明正方形ABCD 的面积为S 随h1的变化情况.【解】第23题图2018年安徽省初中毕业学业考试数学参考答案1~5ACACB 6~10DBDBC11. ; 12. 100; 13. 14. ①③.15. 原式=.16. 设粗加工的该种山货质量为x 千克,根据题意,得 x+(3x+2000>=10000.解得 x=2000.答:粗加工的该种山货质量为2000千克.17. 如下图18.⑴A1(0,1>A3(1,0> A12(6,0>⑵An(2n,0> ⑶向上19. 简答:∵OA, OB=OC=1500,∴AB=(m>.答:隧道AB 的长约为635m.20. <1)甲组:中位数 7; 乙组:平均数7, 中位数7<2)<答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组;C 2C 1B 2CA 2B 1BA 1 A·O②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;8pPgeoDkvT③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组.21.(1>由题意,得解得∴又A点在函数上,所以,解得所以解方程组得所以点B的坐标为<1, 2)<2)当0<x<1或x>2时,y1<y2;当1<x<2时,y1>y2;当x=1或x=2时,y1=y2.22.<1)易求得 , , 因此得证.(2>易证得∽,且相似比为,得证.<3)120°,23.<1)过A点作AF⊥l3分别交l2、l3于点E、F,过C点作CH⊥l2分别交l2、l3于点H、G,8pPgeoDkvT证△ABE≌△CDG即可.<2)易证△ABE≌△BCH≌△CDG≌△DAF,且两直角边长分别为h1、h1+h2,四边形E FGH是边长为h2的正方形,8pPgeoDkvT所以.(3>由题意,得所以又解得0<h1<∴当0<h1<时,S随h1的增大而减小;当h1= 时,S取得最小值;当<h1<时,S随h1的增大而增大.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

安徽省2018年中考数学试卷及参考答案

安徽省2018年中考数学试卷及参考答案

(1) ①在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段 ).画出线段 ;
②将线段 绕点 逆时针旋转90°得到线段 .画出线段 ;
(2) 以 18. 观察以下等式: 第1个等式:
为顶点的四边形 ,
的面积是个平方单位.
第2个等式:

第3个等式:

(点A,B的对应点分别为
第4个等式:
10. 如图,直线 都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为 ,对角线AC在直线l上, 且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于
之间分的长度和为y,则y关于x的函数图象大致为( )
A.
B.
C.
D.
20. 如图,⊙O为锐角△ABC的外接圆,半径为5.
(1) 用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法); (2) 若(1)中的点E到弦BC的距离为3,求弦CE的长. 21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形
B.
C.
D.
5. 下列分解因式正确的是( )
A.
B.
C.
D.
6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2
018年我省有效发明专利分别为a万件和b万件,则( )
A.
B.
C.
D.
7. 若关于 的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )
小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1 , W2(单位:元)

【真题】安徽省2018年中考数学试题含答案解析(Word版)

【真题】安徽省2018年中考数学试题含答案解析(Word版)

2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1。

的绝对值是()A。

B. 8 C. D。

【答案】B【详解】数轴上表示数—8的点到原点的距离是8,所以—8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635。

2亿科学记数法表示()A。

B。

C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|〈10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635。

2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|〈10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C。

D。

【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得。

【详解】A. ,故A选项错误;B。

,故B选项错误;C。

,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键。

4。

一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得。

【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A。

18年安徽省中考数学试题及参考答案word版

18年安徽省中考数学试题及参考答案word版

2018年安徽省中考数学试题及参考答案word版2018年安徽省中考数学试题及参考答案一、选择题1.﹣8的绝对值是A.﹣8B.8 C.±8D.? 2.2017年我省粮食总产量为亿斤,其中亿用科学记数法表示为A.×106B.×108 C.×1010D.×108 3.下列运算正确的是A.a218??3?a5B.a4a2?a8 C.a6?a3?a2D.?ab??a3b3 34.一个圆柱和圆锥组成的几何体如图水平放置,其主视图为5.下列分解因式正确的是A.﹣x2+4x=﹣x B.x2+xy+x=x C.x+y2 D.x2﹣4x+4= 6.据省统计局发布,2017年我省有效发明专利数比2016年增长%,假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则A.b=aB.b=2a C.b=×2a D.b=%×2a 7.若关于x的一元二次方程x+ax=0有两个相等的实数根,则a的值为A.-1 B.1C.-2或2D.-3或 1 8.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格的个数整理成甲、乙两组数据,如下表:甲乙 2 2 6 3 7 4 7 8 8 8 关于以上数据,说法正确的是A.甲、乙的众数相同B.甲、乙的中位数相同 1 C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差9.平行四边形ABCD中,E,F是对角线BD上不同的两点。

下列条件中,不能得出四边形AECF一定为平行四边形的是A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF 10.如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1。

正方形ABCD 的边长为2,对角线AC在直线l上,且点C位于点M处。

将正方形ABCD沿l 向右平移,直到点A与点N重合为止。

记点C平移的距离为x,正方形ABCD 的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为二、填空题11.不等式x?8>1的解集是。

2018年安徽省中考数学试卷(WORD精校版带标准答案及解析)

2018年安徽省中考数学试卷(WORD精校版带标准答案及解析)

2018年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的。

1.(2018安徽)-8的绝对值是()A.-8 B.8 C.±8 D.-1 82. (2018安徽)2017年我省粮食总产量为695.2亿斤,其中695.2亿科学记数法表示()A.6.952×106B.6.952×108C.6.952×1010D.695.2×1083. (2018安徽)下列运算正确的是()A.(a2)3=a5B.a2·a4=a8C.a6÷a3=a2D.(ab)3=a3b34. (2018安徽)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.5. (2018安徽)下列分解因式正确的是()A.-x2+4x=-x(x+4) B.x2+xy+x=x(x+y)C.x(x-y)+y(y-x)=(x-y)2D.x2-4x+4=(x+2)(x-2)6. (2018安徽)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2aC.b=(1+22.1%)×2a D.b=22.1%×2a7. (2018安徽)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.-1B.1 C.-2或2 D.-3或18. (2018安徽)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差9. (2018安徽)□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//C E D.∠BAE=∠DCF10. (2018安徽)如图,直线l1、l2都与直线l垂直,垂足分别为M,N,MN=1正方形ABCD的边3,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于l1、l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大共4小题,每小题5分,满分30分)11.(2018安徽)不等式x-82>1的解集是。

2018年安徽省中考数学试卷(带答案解析)

2018年安徽省中考数学试卷(带答案解析)

2018年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣8的绝对值是()A.﹣8 B.8 C.±8 D.﹣1 8【解答】解:∵﹣8<0,∴|﹣8|=8.故选:B.2.(4分)2017年我省粮食总产量为695.2亿斤.其中695.2亿用科学记数法表示为()A.6.952×106B.6.952×108C.6.952×1010D.695.2×108【解答】解:695.2亿=695 2000 0000=6.952×1010,故选:C.3.(4分)下列运算正确的是()A.(a2)3=a5B.a4•a2=a8 C.a6÷a3=a2D.(ab)3=a3b3【解答】解:∵(a2)3=a6,∴选项A不符合题意;∵a4•a2=a6,∴选项B不符合题意;∵a6÷a3=a3,∴选项C不符合题意;∵(ab)3=a3b3,∴选项D符合题意.故选:D.4.(4分)一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A.B.C.D.【解答】解:从正面看上边是一个三角形,下边是一个矩形,故选:A.5.(4分)下列分解因式正确的是()A.﹣x2+4x=﹣x(x+4) B.x2+xy+x=x(x+y)C.x(x﹣y)+y(y﹣x)=(x﹣y)2 D.x2﹣4x+4=(x+2)(x﹣2)【解答】解:A、﹣x2+4x=﹣x(x﹣4),故此选项错误;B、x2+xy+x=x(x+y+1),故此选项错误;C、x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项正确;D、x2﹣4x+4=(x﹣2)2,故此选项错误;故选:C.6.(4分)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a 万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2a C.b=(1+22.1%)×2a D.b=22.1%×2a【解答】解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.7.(4分)若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A.﹣1 B.1 C.﹣2或2 D.﹣3或1【解答】解:原方程可变形为x2+(a+1)x=0.∵该方程有两个相等的实数根,∴△=(a+1)2﹣4×1×0=0,解得:a=﹣1.故选:A.8.(4分)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差【解答】解:A、甲的众数为7,乙的众数为8,故原题说法错误;B、甲的中位数为7,乙的中位数为4,故原题说法错误;C、甲的平均数为6,乙的平均数为5,故原题说法错误;D、甲的方差为4.4,乙的方差为6.4,甲的方差小于乙的方差,故原题说法正确;故选:D.9.(4分)▱ABCD中,E,F是对角线BD上不同的两点.下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF【解答】解:如图,连接AC与BD相交于O,在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;故选:B.10.(4分)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为√2,对角线AC在直线l上,且点C位于点M处.将正方形ABCD 沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD 的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A.B.C.D.【解答】解:当0<x≤1时,y=2√2x,当1<x≤2时,y=2√2,当2<x≤3时,y=﹣2√2x+6√2,∴函数图象是A,故选:A.二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)不等式x−82>1的解集是 x >10 .【解答】解:去分母,得:x ﹣8>2, 移项,得:x >2+8, 合并同类项,得:x >10, 故答案为:x >10.12.(5分)如图,菱形ABOC 的边AB ,AC 分别与⊙O 相切于点D ,E .若点D 是AB 的中点,则∠DOE= 60 °.【解答】解:连接OA , ∵四边形ABOC 是菱形, ∴BA=BO ,∵AB 与⊙O 相切于点D , ∴OD ⊥AB ,∵点D 是AB 的中点,∴直线OD 是线段AB 的垂直平分线, ∴OA=OB ,∴△AOB 是等边三角形, ∵AB 与⊙O 相切于点D , ∴OD ⊥AB ,∴∠AOD=12∠AOB=30°,同理,∠AOE=30°,∴∠DOE=∠AOD +∠AOE=60°,故答案为:60.13.(5分)如图,正比例函数y=kx与反比例函数y=6x的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是y=32x﹣3.【解答】解:∵正比例函数y=kx与反比例函数y=6x的图象有一个交点A(2,m),∴2m=6,解得:m=3,故A(2,3),则3=2k,解得:k=3 2,故正比例函数解析式为:y=32 x,∵AB⊥x轴于点B,平移直线y=kx,使其经过点B,∴B(2,0),∴设平移后的解析式为:y=32x+b,则0=3+b,解得:b=﹣3,故直线l 对应的函数表达式是:y=32x ﹣3.故答案为:y=32x ﹣3.14.(5分)矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为 65或3 . 【解答】解:∵四边形ABCD 为矩形, ∴∠BAD=90°,∴BD=√AB 2+AD 2=10,当PD=DA=8时,BP=BD ﹣PD=2, ∵△PBE ∽△DBC ,∴BP BD =PE CD ,即210=PE 6, 解得,PE=65,当P′D=P′A 时,点P′为BD 的中点,∴P′E′=12CD=3,故答案为:65或3.三、解答题(本大题共2小题,每小题8分,满分16分) 15.(8分)计算:50﹣(﹣2)+√8×√2. 【解答】解:原式=1+2+4=7.16.(8分)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何? 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.【解答】解:设城中有x户人家,依题意得:x+x3=100解得x=75.答:城中有75户人家.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段A1B1(点A,B的对应点分别为A1,B1),画出线段A1B1;(2)将线段A1B1绕点B1逆时针旋转90°得到线段A2B1,画出线段A2B1;(3)以A,A1,B1,A2为顶点的四边形AA1B1A2的面积是20个平方单位.【解答】解:(1)如图所示,线段A1B1即为所求;(2)如图所示,线段A2B1即为所求;(3)由图可得,四边形AA1B1A2为正方形,∴四边形AA 1B 1A 2的面积是(√22+42)2=(√20)2=20. 故答案为:20.18.(8分)观察以下等式:第1个等式:11+02+11×02=1,第2个等式:12+13+12×13=1,第3个等式:13+24+13×24=1,第4个等式:14+35+14×35=1,第5个等式:15+46+15×46=1,……按照以上规律,解决下列问题: (1)写出第6个等式:16+57+16×57=1 ; (2)写出你猜想的第n 个等式: 1n +n−1n+1+1n ×n−1n+1=1 (用含n 的等式表示),并证明.【解答】解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5故应填:16+57+16×57=1(2)根据题意,第n 个分式分母为n 和n +1,分子分别为1和n ﹣1 故应填:1n +n−1n+1+1n ×n−1n+1=1证明:1n +n−1n+1+1n ×n−1n+1=n+1+n(n−1)+(n−1)n(n+1)=n 2+nn(n+1)=1∴等式成立五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)为了测量竖直旗杆AB 的高度,某综合实践小组在地面D 处竖直放置标杆CD ,并在地面上水平放置一个平面镜E ,使得B ,E ,D 在同一水平线上,如图所示.该小组在标杆的F 处通过平面镜E 恰好观测到旗杆顶A (此时∠AEB=∠FED ),在F 处测得旗杆顶A 的仰角为39.3°,平面镜E 的俯角为45°,FD=1.8米,问旗杆AB 的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【解答】解:由题意,可得∠FED=45°. 在直角△DEF 中,∵∠FDE=90°,∠FED=45°, ∴DE=DF=1.8米,EF=√2DE=9√25米. ∵∠AEB=∠FED=45°,∴∠AEF=180°﹣∠AEB ﹣∠FED=90°.在直角△AEF 中,∵∠AEF=90°,∠AFE=39.3°+45°=84.3°,∴AE=EF•tan ∠AFE ≈9√25×10.02=18.036√2(米).在直角△ABE 中,∵∠ABE=90°,∠AEB=45°, ∴AB=AE•sin ∠AEB ≈18.036√2×√22≈18(米).故旗杆AB 的高度约为18米.20.(10分)如图,⊙O 为锐角△ABC 的外接圆,半径为5.(1)用尺规作图作出∠BAC 的平分线,并标出它与劣弧BĈ的交点E (保留作图痕迹,不写作法);(2)若(1)中的点E 到弦BC 的距离为3,求弦CE 的长.【解答】解:(1)如图,AE为所作;(2)连接OE交BC于F,连接OC,如图,∵AE平分∠BAC,∴∠BAE=∠CAE,̂=CÊ,∴BE∴OE⊥BC,∴EF=3,∴OF=5﹣3=2,在Rt△OCF中,CF=√52−22=√21,在Rt△CEF中,CE=√32+(√21)2=√30.六、解答题(本大题满分12分)21.(12分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有50人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为30%;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【解答】解:(1)5÷10%=50,所以本次比赛参赛选手共有50人,“89.5~99.5”这一组人数占总参赛人数的百分比为8+450×100%=24%,所以“69.5~79.5”这一组人数占总参赛人数的百分比为1﹣10%﹣36%﹣24%=30%;故答案为50,30%;(2)他不能获奖.理由如下:他的成绩位于“69.5~79.5”之间,而“59.5~69.5”和“69.5~79.5”两分数段的百分比为10%+30%=40%,因为成绩由高到低前60%的参赛选手获奖,他位于后40%,所以他不能获奖;(3)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率=812=23.七、解答题(本题满分12分)22.(12分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【解答】解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣414)2+732818,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.八、解答题(本题满分14分)23.(14分)如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB 于点E.点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【解答】(1)证明:如图1中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=12DB,EM=12DB,∴CM=EM.(2)解:∵∠AED=90°,∠A=50°,∴∠ADE=40°,∠CDE=140°,∵CM=DM=ME,∴∠MCD=∠MDC,∠MDE=∠MED,∴∠CME=360°﹣2×140°=80°,∴∠EMF=180°﹣∠CME=100°.(3)证明:如图2中,设FM=a.∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∴∠DEM=60°,∠MEF=30°,∴AE=CM=EM=√3a,EF=2a,∵CN=NM ,∴MN=√32a , ∴FM MN =2√33,EF AE =2√33, ∴FM MN =EF AE, ∴EM ∥AN .。

2018年安徽省中考数学试卷含答案

2018年安徽省中考数学试卷含答案

安徽省2018年中考数学试卷一、选择题<共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题,选对得4分,不选、选错或选出的代号超过一个的<不论是否写在括号内)一律得0分。

1.<4分)<2018•安徽)﹣2的倒数是< )A .﹣B.C.2D.﹣2考点:倒数.分析:根据乘积是1的两个数叫做互为倒数解答.解答:解:∵<﹣2)×<﹣)=1,∴﹣2的倒数是﹣.故选A.点评:本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.<4分)<2018•安徽)用科学记数法表示537万正确的是< )A .5.37×104B.5.37×105C.5.37×106D.5.37×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将537万用科学记数法表示为5.37×106.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.<4分)<2018•安徽)如图所示的几何体为圆台,其主<正)视图正确的是< )A .B.C.D.考点:简单几何体的三视图.分析:找到圆台从正面看所得到的图形即可.解答:解:所给图形的主视图是梯形.故选A.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.<4分)<2018•安徽)下列运算正确的是< )A .2x+3y=5xy B.5m2•m3=5m5C.<a﹣b)2=a2﹣b2D.m2•m3=m6考点:单项式乘单项式;合并同类项;同底数幂的乘法;完全平方公式分析:根据同底数幂的乘法运算法则以及完全平方公式分别判断得出答案即可.解答:解:A.2x+3y无法计算,故此选项错误;B.5m2•m3=5m5,故此选项正确;C.<a﹣b)2=a2﹣2ab+b2,故此选项错误;D.m2•m3=m5,故此选项错误.故选:B.点评:本题考查了完全平方公式、同底数幂的乘法等知识,解题的关键是掌握相关运算的法则.5.<4分)<2018•安徽)已知不等式组,其解集在数轴上表示正确的是< )A .B.C.D.考在数轴上表示不等式的解集;解一元一次不等式组.点:分析:求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.解答:解:∵解不等式①得:x>3,解不等式②得:x≥﹣1,∴不等式组的解集为:x>3,在数轴上表示不等式组的解集为:故选D.点评:本题考查了在数轴上表示不等式组的解集,解一元一次不等式<组)的应用,关键是能正确在数轴上表示不等式组的解集.6.<4分)<2018•安徽)如图,AB∥CD,∠A+∠E=75°,则∠C为< )A .60°B.65°C.75°D.80°考点:平行线的性质分析:根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.解答:解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.点评:本题考查了平行线性质和三角形外角性质的应用,关键是得出∠C=∠EOB和求出∠EOB的度数.7.<4分)<2018•安徽)目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是< )b5E2RGbCAPA .438<1+x)2=389B.389<1+x)2=438C.389<1+2x)2=438D.438<1+2x)2=389考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:先用含x的代数式表示去年下半年发放给每个经济困难学生的钱数,再表示出今年上半年发放的钱数,令其等于438即可列出方程.解答:解:设每半年发放的资助金额的平均增长率为x,则去年下半年发放给每个经济困难学生389<1+x)元,今年上半年发放给每个经济困难学生389<1+x)2元,由题意,得:389<1+x)2=438.故选B.点评:本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a<1±x)2=b.8.<4分)<2018•安徽)如图,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时发光的概率为< )p1EanqFDPwA .B.C.D.考点:列表法与树状图法.题:分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,能让两盏灯泡同时发光的是闭合开关K1、K3与K3、K1,∴能让两盏灯泡同时发光的概率为:=.故选B.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.<4分)<2018•安徽)图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是< )DXDiTa9E3dA .当x=3时,EC<EM B.当y=9时,EC>EMC .当x增大时,EC•CF的值增大D.当y增大时,BE•DF的值不变考点:动点问题的函数图象.题:分析:由于等腰直角三角形AEF的斜边EF过C点,则△BEC和△DCF 都是直角三角形;观察反比例函数图象得反比例解读式为y=;当x=3时,y=3,即BC=CD=3,根据等腰直角三角形的性质得CE=3,CF=3,则C点与M点重合;当y=9时,根据反比例函数的解读式得x=1,即BC=1,CD=9,所以EC=,而EM=3;由于EC•CF=x<6﹣x)配方得到﹣2<x﹣3)2+18,根据二次函数的性质得当0<x<3时,EC•CF的值随x 的增大而增大;利用等腰直角三角形的性质BE•DF=BC•CD=xy,然后再根据反比例函数的性质得BE•DF=9,其值为定值.解答:解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF都是直角三角形;观察反比例函数图象得x=3,y=3,则反比例解读式为y=;当x=3时,y=3,即BC=CD=3,所以CE=BC=3,CF=CD=3,C点与M点重合,则EC=EM,所以A选项错误;当y=9时,x=1,即BC=1,CD=9,所以EC=,而EM=3,所以B选项错误;因为EC•CF=x<6﹣x)=﹣2<x﹣3)2+18,所以当0<x<3时,EC•CF的值随x的增大而增大,所以C选项错误;因为BE•DF=BC•CD=xy=9,即BE•DF的值不变,所以D选项正确.故选D.点评:本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解读式和函数性质画出其函数图象,注意自变量的取值范围.10.<4分)<2018•安徽)如图,点P是等边三角形ABC外接圆⊙O 上的点,在以下判断中,不正确的是< )RTCrpUDGiTA .当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥ACC .当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,△BPC是直角三角形考点:三角形的外接圆与外心;等边三角形的性质;垂径定理;圆周角定理分析:根据直角是圆中最长的弦,可知当弦PB最长时,PB为⊙O的直径,由圆周角定理得出∠BAP=90°,再根据等边三角形的性质及圆周角定理得出AP=CP,则△APC是等腰三角形,判断A正确;当△APC是等腰三角形时,分三种情况:①PA=PC;②AP=AC;③CP=CA;确定点P的位置后,根据等边三角形的性质即可得出PO⊥AC,判断B正确;当PO⊥AC时,由垂径定理得出PO是AC的垂直平分线,点P或者在图1中的位置,或者与点B重合.如果点P在图1中的位置,∠ACP=30°;如果点P在B点的位置,∠ACP=60°;判断C错误;当∠ACP=30°时,点P或者在P1的位置,或者在P2的位置.如果点P在P1的位置,易求∠BCP1=90°,△BP1C是直角三角形;如果点P在P2的位置,易求∠CBP2=90°,△BP2C是直角三角形;判断D正确.解答:解:A、如图1,当弦PB最长时,PB为⊙O的直径,则∠BAP=90°.∵△ABC是等边三角形,∴∠BAC=∠ABC=60°,AB=BC=CA,∵点P是等边三角形ABC外接圆⊙O上的点,∴BP⊥AC,∴∠ABP=∠CBP=∠ABC=30°,∴AP=CP,∴△APC是等腰三角形,故本选项正确,不符合题意;B、当△APC是等腰三角形时,分三种情况:①如果PA=PC,那么点P在AC的垂直平分线上,则点P或者在图1中的位置,或者与点B重合<如图2),所以PO⊥AC,正确;②如果AP=AC,那么点P与点B重合,所以PO⊥AC,正确;③如果CP=CA,那么点P与点B重合,所以PO⊥AC,正确;故本选项正确,不符合题意;C、当PO⊥AC时,PO平分AC,则PO是AC的垂直平分线,点P或者在图1中的位置,或者与点B重合.如果点P在图1中的位置,∠ACP=30°;如果点P在B点的位置,∠ACP=60°;故本选项错误,符合题意;D、当∠ACP=30°时,点P或者在P1的位置,或者在P2的位置,如图3.如果点P在P1的位置,∠BCP1=∠BCA+∠ACP1=60°+30°=90°,△BP1C是直角三角形;如果点P在P2的位置,∵∠ACP2=30°,∴∠ABP2=∠ACP2=30°,∴∠CBP2=∠ABC+∠ABP2=60°+30°=90°,△BP2C是直角三角形;故本选项正确,不符合题意.故选C.点评:本题考查了等边三角形的性质,三角形的外接圆与外心,圆周角定理,垂径定理,难度适中,利用数形结合、分类讨论是解题的关键.二、填空题<本大题共4小题,每小题5分,满分20分)11.<5分)<2018•安徽)若在实数范围内有意义,则x的取值范围是x≤.考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解答:解:根据题意得:1﹣3x≥0,解得:x≤.故答案是:x≤.点评:本题考查的知识点为:二次根式的被开方数是非负数.12.<5分)<2018•安徽)分解因式:x2y﹣y= y<x+1)<x﹣1).考点:提公因式法与公式法的综合运用分析:观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.解答:解:x2y﹣y,=y<x2﹣1),=y<x+1)<x﹣1).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.<5分)<2018•安徽)如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,△PEF、△PDC、△PAB的面积分别为S、S1、S2,若S=2,则S1+S2= 8 .5PCzVD7HxA考点:平行四边形的性质;相似三角形的判定与性质分析:过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP都为平行四边形,进而确定出△ADC 与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC 的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC面积=△CPQ面积+△PBQ面积,即为△PDC面积+△PAB面积,即为平行四边形面积的一半,即可求出所求的面积.解答:解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=2,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=8.故答案为:8点评:此题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.14.<5分)<2018•安徽)已知矩形纸片ABCD中,AB=1,BC=2.将该纸片折叠成一个平面图形,折痕EF不经过A点<E,F是该矩形边界上的点),折叠后点A落在点A′处,给出以下判断:jLBHrnAILg①当四边形A′CDF为正方形时,EF=;②当EF=时,四边形A′CDF为正方形;③当EF=时,四边形BA′CD为等腰梯形;④当四边形BA′CD为等腰梯形时,EF=.其中正确的是①③④<把所有正确结论的序号都填在横线上).考点:翻折变换<折叠问题).专题:探究型.分析:①根据正方形的性质和矩形的性质判定“A'F刚好是矩形ABCD 的中位线点E和点B重合,EF即正方形ABA'F的对角线”,所以在直角△AEF中,由勾股定理可以求得EF=;②根据①中的EF=可以推知,当EF沿着BC边平移时,EF的长度不变,但是四边形A′CDF不是正方形;③根据勾股定理求得BD=,所以由已知条件可以推知EF与对角线BD重合.由折叠的性质、矩形的性质易证四边形BA′CD 为等腰梯形;④当四边形BA′CD为等腰梯形时,EF与对角线BD重合,即EF=.解答:解:∵在矩形纸片ABCD中,AB=1,BC=2,∴BC=2AB.①如图①.∵A'CDF为正方形,说明A'F刚好是矩形ABCD的中位线,∴AF=BA'=1,即点E和点B重合,EF即正方形ABA'F的对角线.EF=AB=.故①正确;.②如图①,由①知四边形A′CDF为正方形时,EF=,此时点E与点B重合.EF可以沿着BC边平移,当点E与点B不重合时,四边形A′CDF就不是正方形.故②错误;③如图②,∵BD===,EF=,∴BD=EF,∴EF与对角线BD重合.易证BA'CD是等腰梯形.故③正确;④BA'CD为等腰梯形,只能是BA'=CD,EF与BD重合,所以EF=.故④正确.综上所述,正确的是①③④.故填:①③④.点评:本题考查了折叠的性质.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、<本大题共2小题,每小题8分,满分16分)15.<8分)<2018•安徽)计算:2sin30°+<﹣1)2﹣|2﹣|.考点:实数的运算;特殊角的三角函数值.专题:计算题.分析:原式第一项利用特殊角的三角函数值化简,第二项表示两个﹣1的乘积,最后一项利用绝对值的代数意义化简,即可得到结果.解答:解:原式=2×+1﹣2+=.点评:此题考查了实数的运算,涉及的知识有:零指数、负指数幂,平方根的定义,绝对值的代数意义,熟练掌握运算法则是解本题的关键.16.<8分)<2018•安徽)已知二次函数图象的顶点坐标为<1,﹣1),且经过原点<0,0),求该函数的解读式.xHAQX74J0X考点:待定系数法求二次函数解读式.分析:设二次函数的解读式为y=a<x﹣1)2﹣1<a≠0),然后把原点坐标代入求解即可.解答:解:设二次函数的解读式为y=a<x﹣1)2﹣1<a≠0),∵函数图象经过原点<0,0),∴a<0﹣1)2﹣1=0,解得a=1,∴该函数解读式为y=<x﹣1)2﹣1.点评:本题考查了待定系数法求二次函数解读式,利用顶点式解读式求解更加简便.四、<本大题共2小题,每小题8分,满分16分)17.<8分)<2018•安徽)如图,已知A<﹣3,﹣3),B<﹣2,﹣1),C<﹣1,﹣2)是直角坐标平面上三点.LDAYtRyKfE<1)请画出△ABC关于原点O对称的△A1B1C1;<2)请写出点B关于y轴对称的点B2的坐标,若将点B2向上平移h个单位,使其落在△A1B1C1内部,指出h的取值范围.Zzz6ZB2Ltk考点:作图-旋转变换;作图-平移变换.专题:作图题.分析:<1)根据网格结构找出点A、B、C关于原点的对称点A1、B1、C1的位置,然后顺次连接即可;<2)根据关于y轴对称的点的横坐标互为相反数,纵坐标相同解答;再根据图形确定出点B2到B1与A1C1的中点的距离,即可得解.解答:解:<1)△A1B1C1如图所示;<2)点B2的坐标为<2,﹣1),由图可知,点B2到B1与A1C1的中点的距离分别为2,3.5,所以,h的取值范围为2<h<3.5.点评:本题考查了利用旋转变换作图,关于y轴对称的点的坐标特征,熟练掌握网格结构,准确找出对应点的位置是解题的关键.18.<8分)<2018•安徽)我们把正六边形的顶点及其对称中心称作如图1所示基本图的特征点,显然这样的基本图共有7个特征点,将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图2,图3,…dvzfvkwMI1<1)观察以上图形并完成下表:图形的名称基本图的个数特征点的个数图117图2212图3317图4422………猜想:在图<n)中,特征点的个数为5n+2 <用n表示);<2)如图,将图<n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为<x1,2),则x1=;图<2018)的对称中心的横坐标为4025.rqyn14ZNXI考点:规律型:图形的变化类;规律型:点的坐标.分析:<1)观察图形,结合已知条件,得出将基本图每复制并平移一次,特征点增加5个,由此得出图4中特征点的个数为17+5=22个,进一步猜想出:在图<n)中,特征点的个数为:7+5<n﹣1)=5n+2;<2)过点O1作O1M⊥y轴于点M,根据正六边形、等腰三角形的性质得出∠BO1M=30°,再由余弦函数的定义求出O1M=,即x1=;然后结合图形分别得出图<2)、图<3)、图<4)的对称中心的横坐标,找到规律,进而得出图<2018)的对称中心的横坐标.解答:解:<1)由题意,可知图1中特征点有7个;图2中特征点有12个,12=7+5×1;图3中特征点有17个,17=7+5×2;所以图4中特征点有7+5×3=22个;由以上猜想:在图<n)中,特征点的个数为:7+5<n﹣1)=5n+2;<2)如图,过点O1作O1M⊥y轴于点M,又∵正六边形的中心角=60°,O1C=O1B=O1A=2,∴∠BO1M=30°,∴O1M=O1B•cos∠BO1M=2×=,∴x1=;由题意,可得图<2)的对称中心的横坐标为+2=3,图<3)的对称中心的横坐标为+2×2=5,图<4)的对称中心的横坐标为+3×2=7,…∴图<2018)的对称中心的横坐标为+2018×2=4025.故答案为22,5n+2;,4025.点评:本题借助正六边形考查了规律型:图形的变化类问题,难度适中.关键是通过观察、归纳与总结,得到其中的规律.五、<本大题共2小题,每小题10分,满分20分)19.<10分)<2018•安徽)如图,防洪大堤的横截面是梯形ABCD,其中AD∥BC,α=60°,汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20m,求改造后的坡长AE.<结果保留根号)EmxvxOtOco考点:解直角三角形的应用-坡度坡角问题分析:过点A作AF⊥BC于点F,在Rt△ABF中求出AF,然后在Rt△AEF中求出AE即可.解答:解:过点A作AF⊥BC于点F,在Rt△ABF中,∠ABF=∠α=60°,则AF=ABsin60°=10m,在Rt△AEF中,∠E=∠β=45°,则AE==10m.答:改造后的坡长AE为10m.点评:本题考查了坡度坡角的知识,解答本题的关键是构造直角三角形,利用三角函数值求相关线段的长度,难度一般.20.<10分)<2018•安徽)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍.SixE2yXPq5<1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;<2)若购买的两种球拍数一样,求x.考点:分式方程的应用.分析:<1)若每副乒乓球拍的价格为x元,根据购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍即可得出答案,<2)根据购买的两种球拍数一样,列出方程=,求出方程的解,再检验即可.解答:解:<1)若每副乒乓球拍的价格为x元,则购买这批乒乓球拍和羽毛球拍的总费用为4000+25x;<2)若购买的两种球拍数一样,根据题意得:=,解得:x1=40,x2=﹣40,经检验;x1=40,x2=﹣40都是原方程的解,但x2=﹣40不合题意,舍去,则x=40.点评:此题考查了分式方程的应用,关键是读懂题意,找出题目中的数量关系,根据数量关系列出方程,要注意检验.六、<本题满分12分)21.<12分)<2018•安徽)某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1﹣8这8个整数,现提供统计图的部分信息如图,请解答下列问题:6ewMyirQFL<1)根据统计图,求这50名工人加工出的合格品数的中位数;<2)写出这50名工人加工出的合格品数的众数的可能取值;<3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.kavU42VRUs考点:条形统计图;用样本估计总体;中位数;众数.专题:计算题.分析:<1)将合格品数从小到大排列,找出第25与26个数,求出平均数即可求出中位数;<2)众数可能为4、5、6;<3)50名工人中,合格品低于3件的有2+6=8<人),除以50人求出百分比,再乘以400即可求出所求.解答:解:<1)∵把合格品数从小到大排列,第25,26个数都为4,∴中位数为4;<2)众数可能为4,5,6;<3)这50名工人中,合格品低于3件的人数为2+6=8<人),故该厂将接受再培训的人数约有400×=64<人).点评:此题考查了条形统计图,用样本估计总体,中位数,以及众数,弄清题意是解本题的关键.七、<本题满分12分)22.<12分)<2018•安徽)某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在x天销售的相关信息如表所示.y6v3ALoS89销售量p<件)p=50﹣x销售单价q<元/件)当1≤x≤20时,q=30+x当21≤x≤40时,q=20+<!)请计算第几天该商品的销售单价为35元/件?<2)求该网店第x天获得的利润y关于x的函数关系式;<3)这40天中该网店第几天获得的利润最大?最大的利润是多少?考点:二次函数的应用;一次函数的应用;反比例函数的应用分析:<1)在每个x的取值范围内,令q=35,分别解出x的值即可;<2)利用利润=售价﹣成本,分别求出在1≤x≤20和21≤x≤40时,y与x的函数关系式;<3)当1≤x≤20时,y=﹣x2+15x+500=﹣<x﹣15)2+612.5,求出一个最大值y1,当21≤x≤40时,求出一个最大值y2,然后比较两者的大小.解答:解:<1)当1≤x≤20时,令30+x=35,得x=10,当21≤x≤40时,令20+=35,得x=35,即第10天或者第35天该商品的销售单价为35元/件.<2)当1≤x≤20时,y=<30+x﹣20)<50﹣x)=﹣x2+15x+500,当21≤x≤40时,y=<20+﹣20)<50﹣x)=﹣525,即y=,<3)当1≤x≤20时,y=﹣x2+15x+500=﹣<x﹣15)2+612.5,∵﹣<0,∴当x=15时,y有最大值y1,且y1=612.5,当21≤x≤40时,∵26250>0,∴随x的增大而减小,当x=21时,最大,于是,x=21时,y=﹣525有最大值y2,且y2=﹣525=725,∵y1<y2,∴这40天中第21天时该网站获得利润最大,最大利润为725元.点评:本题主要考查二次函数的应用的知识点,解答本题的关键是熟练掌握二次函数的性质和反比例函数的性质以及最值得求法,此题难度不大.八<本题满分14分)23.<14分)<2018•安徽)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”.其中∠B=∠C.M2ub6vSTnP<1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形<画出一种示意图即可);0YujCfmUCw <2)如图2,在“准等腰梯形”ABCD中∠B=∠C.E为边BC上一点,若AB∥DE,AE∥DC,求证:=;eUts8ZQVRd<3)在由不平行于BC的直线AD截△PBC所得的四边形ABCD中,∠BAD与∠ADC的平分线交于点E.若EB=EC,请问当点E在四边形ABCD内部时<即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.<不必说明理由)sQsAEJkW5T考点:四边形综合题.分析:<1)根据条件∠B=∠C和梯形的定义就可以画出图形;<2)根据平行线的性质就可以得出∠DEC=∠B,∠AEC=∠C,就可以得出△ABE∽△DEC,由相似时间性的性质就可以求出结论;<3)根据角平分线的性质可以得出△EFB≌△EHC,就可以得出∠3=∠4,再有条件就可以得出∠ABC=∠DCB,从而得出结论,当点E不在四边形内部时分两种情况讨论就可以求出结论.<3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,由角平分线的性质就可以得出EF=EH,通过证明三角形全等就可以得出∠3=∠4,由BE=CE就可以得出∠1=∠2,从而可以得出结论,如图4,图5当点E在BC和在四边形ABCD外时同样可以得出四边形ABCD是“准等腰梯形”的结论.解答:解:<1)如图1,过点D作DE∥BC交PB于点E,则四边形ABCD分割成一个等腰梯形BCDE和一个三角形ADE;<2)∵AB∥DE,∴∠B=∠DEC,∵AE∥DC,∴∠AEB=∠C,∵∠B=∠C,∴∠B=∠AEB,∴AB=AE.∵在△ABE和△DEC中,,∴△ABE∽△DEC,∴,∴;<3)作EF⊥AB于F,EG⊥AD于G,EH⊥CD于H,∴∠BFE=∠CHE=90°.∵AE平分∠BAD,DE平分∠ADC,∴EF=EG=EH,在Rt△EFB和Rt△EHC中,∴Rt△EFB≌Rt△EHC<HL),∴∠3=∠4.∵BE=CE,∴∠1=∠2.∴∠1+∠3=∠2+∠4即∠ABC=∠DCB,∵ABCD为AD截某三角形所得,且AD不平行BC,∴ABCD是“准等腰梯形”.当点E不在四边形ABCD的内部时,有两种情况:如图4,当点E在BC边上时,同理可以证明△EFB≌△EHC,∴∠B=∠C,∴ABCD是“准等腰梯形”.如图5,当点E在四边形ABCD的外部时,同理可以证明△EFB≌△EHC,∴∠EBF=∠ECH.∵BE=CE,∴∠3=∠4,∴∠EBF﹣∠3=∠ECH﹣∠4,即∠1=∠2,∴四边形ABCD是“准等腰梯形”.点评:本题考查了平行线的性质的运用,相似三角形的判定及性质的运用,角平分线的性质的运用,全等三角形的判定及性质的运用,解答时多次运用角平分线的性质是关键.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年安徽省初中毕业学业考试
数 学
本试卷共8大题,计23小题,满分150分,考试时间120分钟
题号








总分
得分
一、选择题<本题共10小题,每小题4分,满分40分)
每小题都给出代号为A、B、C、D的四个选项同,其中只有一个正确的,请把正确选项的代号写在题 后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的<不论是否写在括号内)一律得0分.L6OJgyk1v3
A.7 B.9
C.10 D. 11
7. 如图,⊙半径是1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧 的长是…………………………………………………………………………………【 】L6OJgyk1v3
A. B. C. D.
8.一元二次方程 的根是………………【 】
A.-1B. 2C. 1和2D. -1和2
<1)请补充完成下面的成绩统计分析表:
<2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.L6OJgyk1v3
【解】
六、<本题满分12分)
21. 如图函数 的图象与函数 <x>0)的图象交于A、B两点,与y轴交于C点.已知A点的坐标为(2,1>,C点坐标为(0,3>.7N09uxu2uW
【解】
四、<本题共2小题,每小题8分,满分16分)
17. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;
<1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;
(2>以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2.
9.如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD= ,CD= ,点P在四边形ABCD上,若P到BD的距离为 ,则点P的个数为……………………………【 】 L6OJgyk1v3
A.1 B.2 C.3 D.4
10.如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,则△AMN的面积为y,则y关于x的函数图象的大致形状是…………………………………………………………………………………………【 】L6OJgyk1v3
【解】
18、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.L6OJgyk1v3
(1>填写下列各点的坐标:A1<____,_____),A3<____,_____),A12<____,____);L6OJgyk1v3
<2>写出点An的坐标(n是正整数>;
14.定义运算 ,下列给出了关于这种运算的几点结论:
① ②
③若 ,则 ④若 ,则a=0.
其中正确结论序号是_____________.<把在横线上填上你认为所有正确结论的序号)
三、<本题共2小题,每小题8分,满分16分)
15.先化简,再求值:
,其中x=-2
【解】
16.江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克.求粗加工的该种山货质量.L6OJgyk1v3
1.-2,0,2,-3这四个数中最大的是………………………………………………………【 】
A.-1B.0C.1D.2
2. 安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是…………………………………………………………………………………………………【 】L6OJgyk1v3
5.从下五边形的五个顶点中,任取四个顶点连成四边形,对于事件M,“这个四边形是等腰梯形”.下列推断正确的是……………………………………………………………………………【 】L6OJgyk1v3
A.事件M是不可能事件 B. 事件M是必然事件
C.事件M发生的概率为 D. 事件M发生的概率为
6如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是……………【 】 L6OJgyk1v3
<1)求函数 的表达式和B点坐标;
【解】
<2)观察图象,比较当x>0时, 和 的大小.
七、<本题满分12分)
22.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ<0°<θ<180°),得到△A/B/C.7N09uxu2uW
(1>如图(1>,当AB∥CB/时,设AB与CB/相交于D.证明:△A/ CD是等边三角形;
【解】
(3>指出蚂蚁从点A10ຫໍສະໝຸດ 到A101的移动方向.【解】
五、<本题共2小题,每小题10分,满分20分)
19.如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m,高度C处的飞机,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长.L6OJgyk1v3
【解】
20、一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上(包括6分>为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下L6OJgyk1v3
A.3804.2×103B.380.42×104C.3.842×106D.3.842×105L6OJgyk1v3
3. 下图是五个相同的小正方体搭成的几体体,其左视图是…………………………………【 】
4.设 ,a在两个相邻整数之间,则这两个整数是………………………………【 】
A.1和2B.2和3C.3和4D.4 和5
二、填空题<本题共4小题,每小题5分,满分20分)
11.因式分解: =_________.
12.根据里氏震级的定义,地震所释放的相对能量E与地震级数n的关系为: ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 .L6OJgyk1v3
13.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O 的半径是_________.L6OJgyk1v3
相关文档
最新文档