2018年全国各地数学中考试题 精品

合集下载

2018年全国中考数学真题分类 线段垂直平分线、角平分线、中位线解析版(精品文档)

2018年全国中考数学真题分类  线段垂直平分线、角平分线、中位线解析版(精品文档)

2018年全国中考数学真题分类 线段垂直平分线、角平分线、中位线(一)一、选择题1. (2018四川泸州,7题,3分) 如图2,ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则ABCD 的周长为( )A.20B. 16C. 12D.8第7题图 【答案】B 【解析】ABCD 的对角线AC ,BD 相交于点O ,所以O 为AC 的中点,又因为E 是AB 中点,所以EO是△ABC 的中位线,AE=21AB ,EO=21BC ,因为AE+EO=4,所以AB+BC=2(AE+EO)=8,ABCD 中AD=BC ,AB=CD ,所以周长为2(AB+BC)=16【知识点】平行四边形的性质,三角形中位线2. (2018四川省南充市,第8题,3分)如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12B .1C .32D【答案】B【思路分析】1.由∠ACB =90°,∠A =30°,BC 的长度,可求得AB 的长度,2.利用直角三角形斜边D的中线等于斜边第一半,求得CD 的长度;3.利用中位线定理,即可求得EF 的长.【解题过程】解:在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,,∴AB =4,CD =12AB ,∴CD =12×4=2,∵E ,F 分别为AC ,AD 的中点,∴EF =12CD =12×2=1,故选B.【知识点】30°所对直角边是斜边的一半;直角三角形斜边的中线等于斜边第一半;中位线定理3. (2018四川省达州市,8,3分) △ABC 的周长为19,点D 、E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M .若BC =7,则MN 的长为( ) . A .32 B .2 C .52D .3第8题图 【答案】C ,【解析】∵△ABC 的周长为19,BC =7, ∴AB +AC =12.∵∠ABC 的平分线垂直于AE ,垂足为N ,∴BA =BE ,N 是AE 的中点. ∵∠ACB 的平分线垂直于AD ,垂足为M ,∴AC =DC ,M 是AD 的中点. ∴DE =AB +AC -BC =5. ∵MN 是△ADE 的中位线, ∴MN =12DE =52. 故选C.【知识点】三角形的中位线4. (2018浙江杭州, 10,3分)如图,在△ABC 中,点D 在AB 边上,DE//BC ,与边AC 交于点E ,连接BE ,记△ADE ,△BCE 的面积分别为S 1,S 2,( )A. 若2AD>AB ,则3S 1>2S 2B. 若2AD>AB ,则3S 1<2S 2C. 若2AD<AB ,则3S 1>2S 2D. 若2AD<AB ,则3S 1<2S 2【答案】D【思路分析】首先考虑极点位置,当2AD=AB 即AD=BD 时S 1,S 2的关系,然后再考虑AD>BD 时S 1,S 2的变化情况。

2018年中考数学真题(附答案解析)

2018年中考数学真题(附答案解析)

2018年初中毕业生升学考试数学真题一、选择题 (本大题12个小题,每小题4分,共48分。

)1.2的相反数是( ) A .2-B .12-C .12D .22.下列图形中一定是轴对称图形的是A.B.C.D.3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( ) A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .185.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( ) A. 3cm B. 4cm C. 4.5cmD. 5cm6.下列命题正确的是A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.估计()1230246-⋅的值应在( ) A. 1和2之间 B.2和3之间 C.3和4之间 D.4和5之间8.按如图所示的运算程序,能使输出的结果为12的是( )40°直角三角形四边形平行四边形矩形A.3,3==y xB.2,4-=-=y xC.4,2==y xD.2,4==y x9.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC =,则PA 的长为( ) A .4B .23C .3D .2.510.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角58AED ∠=︒,升旗台底部到教学楼底部的距离7DE =米,升旗台坡面CD 的坡度1:0.75i =,坡长2CD =米,若旗杆底部到坡面CD 的水平距离1BC =米,则旗杆AB 的高度约为( )(参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.6︒≈) A .12.6米 B .13.1米 C .14.7米 D .16.3米11.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .512.若数a 使关于x 的不等式组112352x xx x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的方程2211y a ay y++=--的解为非负数,则符合条件的所有整数a 的和为( ) A .3- B .2- C .1 D .2二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:02(3)π-+-=______________.14.如图,在矩形ABCD 中,3AB =,2AD =,以点A 为圆心,AD 长为半径画弧,交AB 于点E ,图中阴影部分的面积是___________(结果保留π).15. 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为 。

2018年全国中考数学真题汇编全集(共21套)

2018年全国中考数学真题汇编全集(共21套)

2018年中考数学真题汇编:实数与代数式(解答题21题) 解答题1.计算:.【答案】原式=1-2+2=02.(1)计算:(2)化简:.【答案】(1)解:原式=1+2× -(2- )-4=1+ -2+ -4=(2)解:原式= ==3.(1)计算:(2)化简:【答案】(1)=4- +1=5-(2)=m2+4m+4+8-4=m2+124.(1).(2)化简.【答案】(1)原式(2)解:原式5.(1)计算:(2)解分式方程:【答案】(1)原式= ×3 - × +2- + ,= - +2- + ,=2.(2)方程两边同时乘以x-2得:x-1+2(x-2)=-3,去括号得:x-1+2x-4=-3,移项得:x+2x=-3+1+4,合并同类项得:3x=2,系数化为1得:x= .检验:将x= 代入最简公分母不为0,故是原分式方程的根,∴原分式方程的解为:x= .6.(1)计算:2(-1)+|-3|-(-1)0;(2)化简并求值,其中a=1,b=2。

【答案】(1)原式=4 -2+3-1=4(2)原式= =a-b当a=1,b=2时,原式=1-2=-17.(1)计算:(2)解方程:x2-2x-1=0【答案】(1)解:原式= - -1+3=2(2)解:∵a=1,b=-2,c=-1∴∆=b2-4ac=4+4=8,∴x=x=∴x1= ,x2=8.计算:+-4sin45°+.【答案】原式=9.计算:【答案】原式=2-3+8-1=610.计算:【答案】解:原式= = 11.计算:.【答案】解:原式=4+1-6=-112.计算或化简.(1);(2).【答案】(1)解:()-1+| −2|+tan60°=2+(2- )+=2+2- +=4(2)解:(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+1813.计算:【答案】解:=1+2+=1+2+4=7.14.计算:(π-2)°+4cos30°--(-)-2.【答案】解:原式= ,=-3.15.(1)计算:;(2)化简:.【答案】(1)解:原式=(2)解:原式=16.计算:.【答案】解:原式=2-2× + +1,=2- + +1,=3.17.(1)计算:. (2)解方程:.【答案】(1)解:原式=2 -2 -1+3=2;(2)解:a=1,b=-2,c=-1,△=b2-4ac=4+4=8>0,方程有两个不相等的实数根,x= ,则x1=1+ ,x2=1- .18.计算:【答案】解:原式=4-1+2- +2× ,=4-1+2- + ,=5.19.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:________;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1)(2)解:猜想:,证明:左边= = = =1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,20.对于任意实数、,定义关于“ ”的一种运算如下:.例如. (1)求的值;(2)若,且,求的值.【答案】(1)解:(2)解:由题意得∴.21.对于三个数、、,用表示这三个数的中位数,用表示这三个数中最大数,例如:,,.解决问题:(1)填空:________,如果,则的取值范围为________;(2)如果,求的值;(3)如果,求的值.【答案】(1);(2)解:①当2≤x+2时,即x≥0时,2(x+2)=x+4,解之:x=0②当x+2<2<x+4时,即-2<x<0,2×2=x+4解之:x=0(舍去)③当x+4≤2,即x≤-2时,2(x+4)=2解之:x=-3故x=0或x=-3(3)解:①当9=x2,且3x-2≥9时。

2018年全国中考数学真题湖南岳阳中考数学(解析版-精品文档)

2018年全国中考数学真题湖南岳阳中考数学(解析版-精品文档)

2018年湖南省岳阳市初中学业水平考试试卷数学(满分120分,考试时间90分钟)一、选择题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018湖南岳阳,1,3分)2018的倒数是 A.2018 B.20181 C.20181- D.-2018【答案】D.【解析】解:0)2018(-=1.故选D.【知识点】零指数幂2.(2018湖南岳阳,2,3分) 下列运算结果正确的是A .325a a a ⋅=B .325()a a =C .325a a a +=D .22a a -=-【答案】A.【解析】解:A 选项,a 3·a 2=a 3+2=a 5,故正确;B 选项(a 3)2=a 3×2=a 6,故错误;C 选项,a 3和a 2不是同类项,不能合并,故错误;D 选项,a -2=21a ,故错误.故选A.【知识点】同底数幂的乘法,幂的乘方,合并同类项,负整数指数幂3.(2018湖南岳阳,3,3分) 函数3-=x y 中自变量x 的取值范围是()A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C.【解析】解:根据题意可得x -3≥0,解答x ≥3,故选C.【知识点】函数的自变量的取值范围4.(2018湖南岳阳,4,3分) 抛物线23(2)5y x =-+的顶点坐标是( )A .(2,5)-B .(2,5)--C .(2,5)D .(2,5)-【答案】C. 【解析】解:因为23(2)5y x =-+为抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,5).故选C.【知识点】二次函数的性质5.(2018湖南岳阳,5,3分) 已知不等式组2010x x -<⎧⎨+≥⎩,其解集在数轴上表示正确的是( )A .B .C .D .【答案】D.【解析】解:⎩⎨⎧≥+-②01①02x x <, 解不等式①,得x <2,解不等式②,得x ≥-1,不等式组的解集为-1≤x <2,不等式组的解集在数轴上表示为:故选D .【知识点】解一元一次不等式组6.(2018湖南岳阳,6,3分) 在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是( )A .90,96B .92,96C .92,98D .91,92【答案】 B【解析】解:将这组数按从小到大的顺序排列为:86,88,90,92,96,96,98,故该组数中的中位数为92,众数为96.故选B.【知识点】中位数,众数7.(2018湖南岳阳,7,3分) 下列命题是真命题的是( )A .平行四边形的对角线相等B .三角形的重心是三条边的垂直平分线的交点C .五边形的内角和是540D .圆内接四边形的对角相等【答案】C.【解析】解:A 选项,平行四边形的对角线不一定相等,如菱形是平行四边形,但对角线不相等,故错误;B 选项,三角形的重心是三条边的中线的交点,故错误;C 选项,五边形的内角和为(5-2)×180°=540°,故正确;D 选项,圆内接四边形的对角互补,不一定相等,故错误.故选C.【知识点】平行四边形的性质,三角形重心的定义,多边形内角和,圆内接四边形的性质8.(2018湖南岳阳,8,3分) 在同一直角坐标系中,二次函数2y x =与反比例函数1(0)y x x=>的图象如图所示,若两个函数图象上有三个不同....的点1(,)A x m ,2(,)B x m ,3(,)C x m ,其中m 为常数,令123x x x ω=++,则ω的值为( )A .1B .mC .2mD .1m【答案】D.【解析】解:根据题意可得A ,B ,C 三点有两个在二次函数图象上,一个在反比例函数图象上, 不妨设A ,B 两点在二次函数图象上,点C 在反比例函数图象上,∵二次函数2y x =的对称轴是y 轴,∴21x x +=0.∵点C 在反比例函数1(0)y x x=>上, ∴3x =m1, ∴mx x x 1321=++=ω. 故选D.【知识点】二次函数的性质,反比例函数的性质二、填空题:本大题共8小题,每小题4分,共32分.9.(2018湖南岳阳,9,4分) 因式分解:24x -= .【答案】(x -2)(x +2).【解析】解:原式=x 2-22=(x -2)(x +2).故答案为(x -2)(x +2).【知识点】应用公式法进行因式分解10.(2018湖南岳阳,10,4分)2018年岳阳市教育扶贫工作实施方案出台,全市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所.数据120000000用科学记数法表示为 .【答案】1.2×108.【解析】解:120000000=1.2×108.故答案为1.2×108.【知识点】科学记数法11.(2018湖南岳阳,11,4分)关于x 的一元二次方程220x x k ++=有两个不相等的实数根,则k 的取值范围是 .【答案】k <1.【解析】解:∵一元二次方程220x x k ++=有两个不相等的实数根,∴△=22-4k >0,解得k <1.故答案为k <1..【知识点】一元二次方程根的判别式的应用12.(2018湖南岳阳,12,4分)已知221a a +=,则23(2)2a a ++的值为 .【答案】5.【解析】解:∵221a a +=,∴23(2)2a a ++=3+2=5.故答案为5.【知识点】求代数式的值——整体代入法的应用13.(2018湖南岳阳,13,4分) 在-2,1,4,-3,0这5个数字中,任取一个数是负数的概率是 .【答案】52. 【解析】解:∵在-2,1,4,-3,0这5个数字中负数有2个,∴任取一个数是负数的概率P=52. 故答案为52. 【知识点】古典概率的计算14.(2018湖南岳阳,14,4分)如图,直线//a b ,160∠=,240∠=,则3∠= .【答案】80°.【解析】解:如图,∵a ∥b ,∴∠1=∠4.∵∠1=60°,∴∠4=60°.∵∠2=40°,∴∠3=180°-∠4-∠2=180°-60°-40°=80°.故答案为80°.【知识点】平行线的性质,三角形内角和定理 15.(2018湖南岳阳,15,4分)《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是 步.【答案】1760. 【解析】解:如图.设该直角三角形能容纳的正方形边长为x ,则AD=12-x ,FC=5-x根据题意易得△ADE ∽△EFC ,∴FCDE EF AD =, ∴x x x x -=-512,解得:x =1760. 故答案为1760.【知识点】相似三角形的性质16.(2018湖南岳阳,16,4分).如图,以AB 为直径的O 与CE 相切于点C ,CE 交AB 的延长线于点E ,直径18AB =,30A ∠=,弦CD AB ⊥,垂足为点F ,连接AC ,OC ,则下列结论正确的是 .(写出所有正确结论的序号)①BC BD =;②扇形OBC 的面积为274π;③OCF OEC ∆∆;④若点P 为线段OA 上一动点,则AP OP ⋅有最大值20.25.【答案】①③④.【解析】解:∵AB 是⊙O 的直径,且CD ⊥AB ,∴BC BD =,故①正确;∵∠A=30°,∴∠COB=60°,∴扇形OBC=ππ227)2(360602=AB ··,故②错误; ∵CE 是⊙O 的切线,∴∠OCE=90°,∴∠OCD=∠OFC ,∠EOC=∠COF ,∴OCF OEC ∆∆,故③正确;设AP=x ,则OP=9-x ,∴AP ·OP=x (9-x )=-x 2+9x =481)29(2+-x -, ∴当x =29时,AP ·OP 的最大值为481=20.25,故④正确.故答案为①③④.【知识点】垂径定理,扇形面积计算公式,相似三角形的判定,二次函数的性质三、解答题(本大题共8小题,满分64分,解答应写出文字说明、证明过程或演算步骤)17.(2018湖南岳阳,17,6分)计算:20(1)2sin45(2018)2π--+-+-.【思路分析】首先利用乘方运算,特殊角的三角函数值,零指数幂以及绝对值的性质进行化简,然后将化简后的式子进行加减即可.【解题过程】解:原式=1-2×22+1+2=2.【知识点】乘方运算,特殊角的三角函数值,零指数幂,绝对值的性质18.(2018湖南岳阳,18,6分)如图,在平行四边形ABCD中,AE CF=,求证:四边形BFDE是平行四边形.【思路分析】首先根据四边形ABCD是平行四边形,可得AD=BC,∠A=∠C,AB=CD,然后根据AE=CF 可得△ADE≌△CBF,进而得出DE=BF,进而证明出结论.【解题过程】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,AB=CD.∵AE=CF,∴BE=DF.∵在△ADE和△CBF中,⎪⎩⎪⎨⎧=∠=∠=BCADCACFAE,∴△ADE≌△CBF(SAS)∴DE=BF,∴四边形BFDE是平行四边形.【知识点】平行四边形的判定与性质,全等三角形的判定与性质19.(2018湖南岳阳,19,8分)如图,某反比例函数图象的一支经过点(2,3)A和点B(点B在点A的右侧),作BC y⊥轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若ABC∆的面积为6,求直线AB的表达式.【思路分析】(1)首先设反比例函数的解析式为xky=,然后把A的坐标代入反比例函数的解析式即可求出答案;(2)根据三角形的面积求出B的坐标,设直线AB的解析式是y=mx+n,把A、B的坐标代入得到方程组,求出方程组的解即可.【解题过程】解:(1)设反比例函数的解析式为xky=,∵点A在反比例函数的图象上,∴将(2,3)A代入xky=,得k=2×3=6,∴反比例函数的解析式为xy6=.(2)设B(x,x6),则C(0,x6),点A到BC的距离d=3-x6,BC=x,S△ABC=232)63(6-xxx=-,∵S△ABC=6,∴623=6-x,解得x=6,∴B(6,1).设AB的表达式为y=mx+n,则⎩⎨⎧=+=+3216bkbk,解得⎪⎩⎪⎨⎧==421b-k,∴直线AB 的表达式为421+-=x y . 【知识点】待定系数法求一次函数的解析式和反比例函数的解析式,三角形的面积计算公式20.(2018湖南岳阳,20,8分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队.现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)这次参与调查的村民人数为_______人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.【思路分析】(1)根据条形统计图中喜欢腰鼓的人数和扇形统计图中腰鼓所占的比例即可计算出总人数;(2)根据总人数和腰鼓,花鼓戏,划龙舟以及其他的项目的人数可计算出广场舞的人数,进而画出条形图;(3)根据“划龙舟”的人数以及总人数计算出“划龙舟”的人占总数的百分比,进而得出所在扇形的圆心角;(4)首先列出表格,然后根据表格得出所有的情况和恰好选中“花鼓戏、划龙舟”这两个项目的情况,进而得出概率.【解题过程】解:(1)∵从条形图中可以看出喜欢腰鼓的有24人,从扇形图中可以看出喜欢腰鼓占的比例为20%,∴这次参与调查的村民人数为24÷20%=120人.故答案为240人.(2)喜欢广场舞的人数为120-24-15-30-9=42人,补充如图所示.(3)图中“划龙舟”所在的扇形的圆心角的度数为:360°×12030=90°. (4)列表如下:广场舞 腰鼓花鼓戏划龙舟 广场舞无(腰鼓,广场舞) (花鼓戏,广场舞)(划龙舟,广场舞)腰鼓 (广场舞,腰鼓) 无 (花鼓戏,腰鼓) (划龙舟,腰鼓)花鼓戏(广场舞,花鼓戏)(腰鼓,花鼓戏)无(划龙舟,花鼓戏) 划龙舟 (广场舞,划龙舟)(腰鼓,划龙舟) (花鼓戏,划龙舟)无由表格可知,共有12中情况,其中恰好选中“花鼓戏、划龙舟”这两个项目的有2种情况,故概率为:61122=. 【知识点】列表法求概率,求扇形的圆心角21.(2018湖南岳阳,21,8分) 为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米? 【思路分析】首先设原计划平均每天施工x 平方米,根据题意列出分式方程11213300033000=-x.x ,解出分式方程,然后根据“实际工作效率比原计划每天提高了20%”得出答案. 【解题过程】解:设原计划平均每天施工x 平方米,则11213300033000=-x.x ,解得x =500, 经检验,x =500是原分式方程的解,∴实际平均每天施工为500×(1+20%)=600平方米. 答:实际平均每天施工为600平方米. 【知识点】分式方程的应用22.(2018湖南岳阳,22,8分)图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC 宽3.9米,门卫室外墙AB 上的O 点处装有一盏路灯,点O 与地面BC 的距离为3.3米,灯臂OM 长为1.2米(灯罩长度忽略不计),60AOM ∠=.(1)求点M 到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD 保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考3 1.73≈,结果精确到0.01米)【思路分析】(1)首先过点M 作MN ⊥AB 于N ,根据三角函数的定义可得出ON 的长,然后根据线段的加减运算即可得出M 到地面的距离;(2)首先根据题意可得货车的右端应该在图中E 点处,此时BE=0.7m ,过E 点作EF ⊥BC 交OM 于F 点,过O 点作OG ⊥DF ,然后根据含30°角的直角三角形的性质可得出FG 的长,进而得出EF 的长,进而得出答案.【解题过程】解:(1)过点M 作MN ⊥AB 于N , ∵OM=1.2,∠MON=60°, ∴ON=OM ·sin60°=533, ∴M 到地面的距离d =ON+OB=533+3.3=103633+.(2)根据题意可得货车的右端应该在图中E点处,此时BE=0.7m,∴EF=FG+GE=3.3+0.404=3.704>3.5,∴能通过.【知识点】锐角三角函数的定义,含30°角的直角三角形的性质23.(2018湖南岳阳,23,10分)已知在Rt ABC∆中,90BAC∠=,CD为ACB∠的平分线,将ACB∠沿CD所在的直线对折,使点B落在点'B处,连结'AB,'BB,延长CD交'BB于点E,设2(045)ABCαα∠=<<.(1)如图1,若AB AC=,求证:2CD BE=;(2)如图2,若AB AC≠,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(45α+),得到线段FC,连结EF交BC 于点O,设COE∆的面积为1S,COF∆的面积为2S,求12SS(用含α的式子表示).【思路分析】(1)首先根据轴对称的性质可得CE⊥BB′且BE=21BB′,进而得出∠B′=∠ADC,进而得出△ABB′≌△ACD,然后根据全等三角形的性质可得BB′=CD,进而证明出结论;(2)首先根据(1)可得出∠B′=∠ADC,进而得出△ABB′∽△ACD,进而得出ACABCDBB=',然后根据锐角三角函数的定义得出CD 与BE 的数量关系;(3)首先根据题意可得出∠ECF=90°,进而得出△OBE ∽△OCF ,然后根据等高的三角形的面积比等于底的比可得出OFOE S S =21,最后利用锐角三角函数的定义得出答案. 【解题过程】解:(1)根据题意可得CE ⊥BB ′且BE=21BB ′, ∵CE ⊥BB ′, ∴∠EBD+∠BDE=90°. ∵∠BDE=∠ADC , ∴∠ADC+∠EBD=90°. ∵∠BAB ′=90°, ∴∠EBD+∠B ′=90°, ∴∠B ′=∠ADC , 在△ABB ′和△ACD 中⎪⎩⎪⎨⎧∠='∠=∠='∠ADC B ACAB CAD BAB ∴△ABB ′≌△ACD (ASA ), ∴BB ′=CD , ∴CD=2BE.(2)由(1)可知,∠B ′=∠ADC , ∵∠BAB ′=∠CAD=90°, ∴△ABB ′∽△ACD , ∴ACABCD BB ='. ∵AB=BC ·cos ∠ABC==BCcos2α,AC=BC ·sin ∠ABC=BCsin2α,∴ααsin2cos CD BB 2=', ∴CD=BE cos 2sin2αα2. (3)由(1)(2)可知,CE ⊥BB ′,∠B ′BA=∠BCE , ∵∠EBC+∠BCE=90°,即∠B ′BA+∠ABC+∠BCE=90°, ∴∠BCE=45°-α.∵∠BCF=45°+α,∴∠ECF=∠BCE+∠BCF=90°, ∴CF ∥BE , ∴△OBE ∽△OCF , ∴CFBEOF OE =. ∵OF OE S S =21,sin ∠BCE=BC BE ,BC=CF , ∴21S S =sin (45°-α). 【知识点】轴对称的性质,锐角三角函数的定义,相似三角形的判定与性质,全等三角形的判定与性质24.(2018湖南岳阳,24,10分)已知抛物线F :2y x bx c =++的图象经过坐标原点O ,且与x 轴另一交点为3(,0)3-.(1)求抛物线F 的解析式; (2)如图1,直线l :3(0)y x m m =+>与抛物线F 相交于点11(,)A x y 和点22(,)B x y (点A 在第二象限),求21y y -的值(用含m 的式子表示); (3)在(2)中,若43m =,设点'A 是点A 关于原点O 的对称点,如图2. ①判断'AA B ∆的形状,并说明理由;②平面内是否存在点P ,使得以点A 、B 、'A 、P 为顶点的四边形是菱形.若存在,求出点P 的坐标;若不存在,请说明理由. 【思路分析】(1)将原点和点3(代入抛物线2y x bx c =++,解出b 和c 即可;(2)首先联立m x y +=33与x x y 332+=,解出x 1和x 2,然后将x 1和x 2代入m x y +=33解出y 1和y 2,进而得出结果;(3)①首先根据题意得出A ′的坐标,进而得出A ′B 的长度,根据点A 的坐标得出OA 的长,进而得出AA ′,然后根据三角函数的定义得出sin ∠A ′,进而得出∠A ′的度数,进而得出△AA ′B 的形状;②分别以AA ′,A ′B 和AB 为菱形的对角线,根据菱形的性质得出点P 的坐标即可. 【解题过程】解:(1)根据题意,得⎪⎩⎪⎨⎧=+-=033310c b c ,解得⎪⎩⎪⎨⎧==33c b , ∴F 的解析式为x x y 332+=. (2)联立m x y +=33与x x y 332+=,解得m x -=1,m x =2, ∴m m m x y +-=+=333311,m m m x y +=+=333322, ∴m m m m m y y 332333312=+--+=-)(, (3)①当43m =时,3321-=x ,3322=x ,∴321=y ,22=y ∴A (332-,32),B (332,2). ∵点A 与点A ′关于原点对称, ∴A ′(332,32-), ∴A ′B=2-(32-)=38.∵OA=343233222=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-,∴OA ′=34, ∴AA ′=38,∴A ′B=AA ′.∵点A 到BA ′的距离d =332+332=334, ∴sin ∠A ′=2338334='AA d , ∴∠A ′=60°,∴△AA ′B 是等边三角形. ②存在.若以AA ′为菱形的对角线,则点P 与点B 关于原点对称,此时点P 坐标为(-332,-2); 若以A ′B 为菱形的对角线,则点P 为将点A 向右移动2d 个单位长度,此时点P 的坐标为(334,32); 若以AB 为菱形的对角线,则点P 为将点A 向上移动A ′B 个单位长度,此时点P 的坐标为(332-,310).【知识点】待定系数法求二次函数的解析式,一次函数与二次函数的交点问题,中心对称图形的性质,锐角三角函数的定义,等边三角形的判定,在平面直角坐标平面内的点的平移,菱形的性质。

尺规作图(解析版)2018年数学全国中考真题-2

尺规作图(解析版)2018年数学全国中考真题-2

2018年数学全国中考真题尺规作图(试题二)解析版一、选择题1.(2018浙江嘉兴,8,3)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()【答案】C 【解析】根据尺规作图以及菱形的判定方法.二、填空题△中,用直尺和圆规作AB、AC的垂直平分线,分1.(2018年江苏省南京市,14,2分).如图,在ABCBC=,则DE=cm.别交AB、AC于点D、E,连接DE.若10cm【答案】5【解析】∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.【知识点】线段垂直平分线中位线2.(2018吉林省,11, 2分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为__________【答案】(-1,0)【解析】由题意知,OA=4,OB=3,∴AC=AB=5,则OC=1.则点C坐标为(-1,0)【知识点】尺规作图,实数与数轴的一一对应关系3.(2018山西省,14题,3分)如图,直线MN∥PQ.直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2.∠ABP =60°则线段AF 的长为 .【答案】2√3【解析】解:过点A 作AG ⊥PQ 交PQ 与点G由作图可知,AF 平分∠NAB∵ MN ∥PQ ;AF 平分∠NAB ;∠ABP =60°∴ ∠AFG =30°在Rt △ABG 中,∠ABP =60°,AB=2;∴ AG =√3在Rt △AFG 中,∠AFG =30°,AG =√3;∴ AF =2√3【知识点】角平分线、特殊角三角函数4. (2018内蒙古通辽,16,3分)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,连接A D .若AB =BD ,AB =6,∠C =30°,则△ACD 的面积为 .【答案】93【解析】依题意MN 是AC 的垂直平分线,所以∠C =∠DAC =30°,所以∠ADB =∠C +∠DAC =60°,又AB =BD ,所以△ABD 为等边三角形,∠BAD =60°,所以∠BAC =∠DAC +∠BAD =90°,因为AB =6,所以AC =63,所以△ABC 的面积为12×6×63=183.又BD =AD =DC ,所以S △ACD =12S △ABC =93,故应填:93.5. (2018辽宁省抚顺市,题号16,分值3)如图,ABCD 中,AB=7,BC=3,连接AC ,分别以点A 和点C 为圆PP【答案】10【解析】由题可知,直线MN 是线段AC 的垂直平分线,∴AE=EC.∵在ABCD 中DE+EC=CD=AB=7,AD=BC=3,∴△AED 的周长为AD+DE+AE=BC+DE+EC=BC+CD=10.【知识点】用尺规作垂直平分线,垂直平分线的性质.三、解答题1. (2018广东省,题号,分值) 如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.【思路分析】(1)根据尺规作图步骤作垂直平分线,保留痕迹即可;(2)先利用菱形性质求得∠DBA 的度数,再利用垂直平分线性质求得∠ABF 的度数,进而求得∠DBF 的度数.【解题过程】(1)如图直线MN 为所求(2)解:∵四边形ABCD 是菱形∴AD =AB ,AD ∥AB ,∵∠DBC =75°,∴∠ADB =75°,CA∴∠ABD =75°∴∠A =30°∵EF 为AB 的垂直平分线∴∠A =∠FBE =30°,∴∠DBE =45°【知识点】菱形性质;线段垂直平分线性质;尺规作图2. (2018甘肃省兰州市,20,6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长;(2)利用尺规作图,作出(1)中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【思路分析】PC ⊥AC ,要使P 到AB 的距离(PD 的长)等于PC 的长,即求∠A 的角平分线与BC 的交点.【解题过程】(1)作∠A 的平分线AD ,交BC 于P ;(2)过点P 作直线AB 的垂线,垂中为D 。【知识点】尺规作图19题答案图2FE C DA BMN C A B第20题图3. (2018湖北省江汉油田潜江天门仙桃市,18,5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O ,M ,N ,A ,B 均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON 的平分线OP ;(2)在图②中,画一个Rt △ABC ,使点C 在格点上.【思路分析】(1)在只能用直尺画角平分线的情况下,就设法将∠MON 放置在能画出角平分线的图形中,如菱形.(2)原图是由全等的小菱形组成的,∴要想找到直角就要从菱形的对角线方面入手考虑.设法找让三角形中的一个顶点处在两个菱形的对角线交点位置,并且在格点上.【解题过程】解:(1)如图①,将∠MON 放在菱形AOBC 中,连接对角线OC ,并取格点P ,OP 即为所求. 2分 如图②所示,△ABC 或△ABC 1均可.4. (湖北省咸宁市,18,7)已知:AOB ∠.求作:,'''B O A ∠使'''AO B AOB ∠=∠ 作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ;(3)以点'C 为圆心,D C ,长为半径画弧,与第2 步中所画的弧交于点'D ;(4)过点 'D 画射线'OB ,则 '''AO B AOB ∠=∠. 根据以上作图步骤,请你证明AOB B O A ∠=∠'''.(第18题图) 图①图② BAO N M第18题答图 P A 图① ON MB C C 1 C图②B A【思路分析】由画一条射线''A O ,以点'O为圆心OC 长为半径画弧,交于点''A O 于点'C 可得OC =O′C′,由以点'C 为圆心,D C ,长为半径画弧,与第 2 步中所画的弧交于点'D 可得OD =O′D′,CD =C′D′,从而'''.COD C O D ∆≅∆【解题过程】证明:由作图步骤可知,在COD ∆和'''D O C ∆中,''''''OC O C OD O D CD C D ⎧=⎪=⎨⎪=⎩,'''().COD C O D SSS ∴∆≅∆COD D O C ∠=∠∴'''.即AOB B O A ∠=∠'''.【知识点】三角形全等;尺规作图5. (2018广西贵港,20,5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a ,求作:△ABC ,使∠A =∠α,∠C =90°,AB =a .【思路分析】先作∠A 等于已知角∠α,再在角的一边上截取线段AB =a ,再过B 点作角的另一边的垂线,垂足为C ,则△ABC 即为所求.【解答过程】所作图形如下a A6.(2018江苏常州,27,10)(本小题满分10分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD;(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法).②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【解答过程】(1)∵EK垂直平分BC,点F在EK上,∴FC=FB,且∠CFD=∠BFD ∵∠AFE=∠BFD,∴∠AFE=∠CFD(2)如图所示,点Q为所求作的点.(3)Q是GN的中点。

全国2018年中考数学真题汇总(含答案)

全国2018年中考数学真题汇总(含答案)

全国2018年中考数学真题汇总(含答案)图形初步、相交线、平行线(20题)一、选择题1.若一个角为,则它的补角的度数为()A. B. C. D.【答案】C【解析】一个角为,则它的补角的度数为:故答案为:C.【分析】根据补角的定义,若两个角之和为180°,则这两个角互为补角,即可求解。

2.如图,直线a,b被直线c所截,那么∠1的同位角是()A. ∠2B. ∠3C. ∠4D. ∠5【答案】C【解析】解:∵直线a,b被直线c所截,∴∠1的同位角是∠4故答案为:C【分析】两条直线被第三条直线所截,位于两条直线的同一侧,第三条直线的同旁,呈“F”形的角是同位角,即可得出答案。

3.如图,直线AB∥CD,则下列结论正确的是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°【答案】D【解析】:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故答案为:D.【分析】根据二直线平行,同旁内角互补得出∠3+∠5=180°,根据对顶角相等及等量代换得出∠3+∠4=180°,4.如图是正方体的表面展开图,则与“前”字相对的字是()A. 认B. 真C. 复D. 习【答案】B【解析】观察正方形的展开图,可得出与“前”字相对的字是“真”.【分析】观察正方形的展开图,可得出答案。

5.如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④【答案】A【解析】:图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.故答案为:A.【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.6.如图,直线被所截,且,则下列结论中正确的是( )A. B. C. D.【答案】B【解析】:∵a∥b,∴∠3=∠4.故答案为:B.【分析】根据两直线平行,同位角相等,由此即可得出答案.7.如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是()。

2018年全国中考数学真题江苏盐城中考试题(解析版-精品文档)

2018年全国中考数学真题江苏盐城中考试题(解析版-精品文档)

2018年江苏省盐城市初中毕业、升学考试学科(满分150分,考试时间120分钟)一、选择题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018江苏省盐城市,1,3分)-2018的相反数是().A.2018 B.-2018 C.12018 D.-12018【答案】A【解析】-2018的相反数是2018,故选A.【知识点】相反数2.(2018江苏省盐城市,2,3分)下列图形中,既是轴对称图形又是中心对称图形的是().D.C.B.A.【答案】D【解析】在平面内,沿一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,这条直线就叫做对称轴.在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.根据轴对称图形和中心对称图形的定义即可作出判断,故选D.【知识点】轴对称图形;中心对称图形3.(2018江苏省盐城市,3,3分)下列运算正确的是().A.a2+a2=a4 B.a3÷a=a3 C.a2·a3=a2、5 D.(a2)4=a6【答案】C【解析】A.a2+a2=2a 2,该选项错误;B.a3÷a=a 2,该选项错误;C.a2·a3=a5,该选项正确;D.(a2)4=a8,该选项错误;故选C.【知识点】合并同类项;同底数幂的除法;同底数幂的乘法;幂的乘方4.(2018江苏省盐城市,4,3分)盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为().A.1.46×105 B.0.146×106 C.1.46×106 D.146×103【答案】A【解析】将数据146000用科学记数法表示为1.46×105,故选A.【知识点】科学记数法(较大数)5.(2018江苏省盐城市,5,3分)如图是由5个大小相同的小正方体组成的几何体,则它的左视图是().第5题图A.D.C.B.【答案】B【解析】左视图是从左面看到的图形,故选B.【知识点】简单几何体的三视图6.(2018江苏省盐城市,6,3分)一组数据2,4,6,4,8的中位数为().A.2 B.4 C.6 D.8【答案】B【解析】将这组数据按从小到大的顺序排列为2,4,4,6,8,位于最中间位置的是4,所以这组数据的中位数是4.故选B.【知识点】中位数7.(2018江苏省盐城市,7,3分)如图,AB为⊙O的直径,CD为⊙O的弦,∠ADC=35°,则∠CAB的度数为().A.35° B.45° C.55° D.65°BOACD【答案】C【解析】∵AB为⊙O的直径,∴∠ACB=90°,∵∠ABC=∠ADC=35°,∴∠CAB=65°.故选C.【知识点】圆的基本性质8.(2018江苏省盐城市,8,3分)已知一元二次方程x2+kx-3=0有一根为1,则k的值为().A.-2 B.2 C.-4 D.4【答案】B【解析】把x=1代入一元二次方程,得12+k-3=0,解得k=2.故选B.【知识点】一元二次方程的根二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最后结果填在题中横线上.9.(2018江苏省盐城市,9,3分)根据如图所示的车票信息,车票的价格为___________元.【答案】77.5【解析】根据如图所示的车票信息,车票的价格为77.5元.【知识点】识图;生活中的数学10.(2018江苏省盐城市,10,3分)要使分式12x-有意义,则x的取值范围是___________.【答案】x≠2【解析】要使分式12x-有意义,x-2≠0,则x≠2.【知识点】分式有意义的条件11.(2018江苏省盐城市,11,3分)分解因式:x2-2x+1=___________.【答案】(x-1)2【解析】x2-2x+1=(x-1)2.【知识点】分解因式;完全平方公式12.(2018江苏省盐城市,12,3分)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下来时,停在地板中阴影部分的概率为 ___________.【答案】49【解析】∵图中共有9个小方格,每个小方格形状大小完全相同,有阴影的小方格有4个,∴蚂蚁.停在地板中阴影部分的概率为49【知识点】几何概率13.(2018江苏省盐城市,13,3分)将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=___________.12【答案】85°【解析】如图,∵矩形的对边平行,∴∠2=∠3.∵∠4=45°,∠1=40°,∴∠2=∠3=85°.4132【知识点】矩形的性质;三角形的外角14.(2018江苏省盐城市,14,3分)如图,点D 为矩形OABC 的边AB 的中点,反比例函数y =kx(x>0)的图象经过点D ,交BC 边于点E .若△BDE 的面积为1,则k =___________.xy EDB OAC【答案】4【解析】设点D 的坐标为(x ,y ),则点E 的坐标为(2x ,12y ). ∵△BDE 的面积=12·x ·12y =1,∴xy =4=k . 【知识点】反比例函数系数k 的意义15.(2018江苏省盐城市,15,3分)如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径OA =2cm, ∠AOB =120°.则右图的周长为 ___________cm (结果保留π).BAO【答案】83π 【解析】∵半径OA =2cm, ∠AOB =120°∴AB 的长=1202180π⋅⋅=43π,AO 的长+OB 的长=43π,∴右图的周长=43π+43π=83π. 【知识点】弧长公式16.如图,在直角△ABC 中,∠C =90°,AC =6,BC =8,P 、Q 分别为边AC 、AB 上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ=___________.AC BPQ【答案】154或307【解析】在直角△ABC中,∠C=90°,AC=6,BC=8,∴A B=2268=10.当QP⊥AB时,QP∥AC.∴ABAC =QBQP.设QP=AQ=x,则QB=10-x.∴106=10-xx.∴AQ=x=154;当PQ⊥AB时,△APQ是等腰直角三角形.∵△ABC∽△PBQ, ∴ACBC =PQBQ,∴68=10-xx.∴AQ=x=307.【知识点】勾股定理;平行线分线段成比例定理;分类讨论三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤)17.(2018江苏省盐城市,17,6分)计算:π0-(12)-1+38【思路分析】按零指数幂,负整数指数幂,立方根的运算法则先分别求出π0,(12)-1,38的值,然后进行有理数的运算.【解题过程】解:原式=1-2+2=1.【知识点】零指数幂;负整数指数幂;立方根18.(2018江苏省盐城市,18,6分)解不等式:3x-1≥2(x-1),并把它的解集在数轴上表示出来.–1–212【思路分析】类比解方程的步骤解不等式.【解题过程】解:去括号,得3x-1≥2x-2,移项,合并同类项,得x≥-1.把不等式的解集在数轴上表示出来,如下图:–1–2–312【知识点】解不等式;在数轴上表示不等式的解集19.(2018江苏省盐城市,19,8分) 先化简,再求值:(1-11x +)÷21xx -,其中x =2+1 【思路分析】先根据分式运算法则将分式化简,再求值.【解题过程】解:原式=111x x +-+×21x x -=1x x +×11x x x+-()()=x -1. 当x =2+1时,原式=2+1-1=2. 【知识点】分式的化简求值20.(2018江苏省盐城市,20,8分)端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其它均相同), 其中有两个肉馅粽子、一个红枣粽子和一个豆沙粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果; (2)请你计算小悦拿到的两个粽子都是肉馅的概率. 【思路分析】(1)根据题意画出树状图或列表. (2)利用概率公式计算可得.【解题过程】解:(1)画树状图如下,第二次第一次豆沙粽子肉馅粽子2肉馅粽子1豆沙粽子红枣粽子肉馅粽子1豆沙粽子红枣粽子肉馅粽子2肉馅粽子1肉馅粽子2红枣粽子开始豆沙粽子红枣粽子肉馅粽子2肉馅粽子1列表:肉馅粽子1 肉馅粽子2红枣粽子 豆沙粽子肉馅粽子1 (肉馅1,肉馅2)(肉馅1,红枣)(肉馅1,豆沙)肉馅粽子2 (肉馅2,肉馅1)(肉馅2,红枣)(肉馅2,豆沙)红枣粽子(红枣,肉馅1)(红枣,肉馅2)(红枣,豆沙)豆沙粽子(豆沙,肉馅1)(豆沙,肉馅2)(豆沙,红枣)(2)从树状图或列表可以得出共有12种等可能的结果,其中小悦拿到的两个粽子都是肉馅的情况有2种结果.所以P(小悦拿到的两个粽子都是肉馅的)=112=16.【知识点】概率21.(2018江苏省盐城市,21,8分)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.EDABCF(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.【思路分析】(1)根据SAS可证△ABE≌△ADF;(2)四边形AECF是菱形.利用正方形的性质,证△ABE≌△ADF,进而可得AE=CF=EC=AF,∴四边形AECF是菱形.【解题过程】解:(1)∵四边形ABCD是正方形,∴∠ABD=45°,∠CDB=45°,AB=CD.∴∠ABE=∠CDF=135°.∵BE=DF,∴△ABE≌△ADF(SAS);(2)∴四边形AECF是菱形.理由:∵△ABE≌△ADF,∴AE=CF.同理AF=CE,AE=EC.∴四边形AECF是菱形.【知识点】22.(2018江苏省盐城市,22,10分)“安全教育平台”是中国教育学会为方便家长和学生参与安全知识活动,接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形: A .仅学生自己参与 B .家长和学生一起参与 C .仅家长自己参与 D .家长和学生都未参与类别人数806020各类情况扇形统计图各类情况条形统计图A 20%BC DDC B A 40801201602002400请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了___________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.【思路分析】(1)根据图中提供的信息,得A 类人数有80人,占总调查人数的20%,所以在这次抽样调查中,共调查了学生80÷20%=400(名);(2)C 类所对应扇形的圆心角的度数=360°×C 类人数所占的百分比;(3)2000×D 类人数所占的百分比,可得该校2000名学生中“家长和学生都未参与”的人数. 【解题过程】解:(1)400.(2)C 类所对应扇形的圆心角的度数为360°×60400=54°,同理可得其他A 、B 、D 各类所对应扇形的圆心角的度数.400×B 类人数所占的百分比=B 类人数,补全条形统计图如下.类别人数806020240各类情况条形统计图DC B A 40801201602002400(3)2000×20400=100,所以该校2000名学生中“家长和学生都未参与”的人数约100人. 【知识点】条形统计图;扇形统计图;样本估计总体23.(2018江苏省盐城市,23,10分) 一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,该店采取了降价措施.在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件. (1)若降价3元,则平均每天销售数量为___________件; (2)当每件商品降价多少元时,该商店每天销售利润为1200元?【思路分析】(1)由题意得,20+2×3=26,所以若降价3元,则平均每天销售数量为26件; (2)本题中的相等关系:每天每件的盈利×每天的销量=每天销售利润 【解题过程】解:(1)26;(2)设当每件商品降价x 元时,该商店每天销售利润为1200元. 由题意,得(40-x )(20+2x )=1200. 整理,得x 2-30 x +200=0. (x -10)(x -20)=0.x 1=10,x 2=20.又每件盈利不少于25元,∴x =20.不合题意舍去答:当每件商品降价10元时,该商店每天销售利润为1200元. 【知识点】一元二次方程的应用24.(2018江苏省盐城市,24,10分) 学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t (分钟)之间的函数关系如图所示.(1)根据图象信息,当t =___________分钟时甲乙两人相遇,甲的速度为___________米/分钟; (2)求出线段AB 所表示的函数表达式.t (分钟)y(米)AB24006024O【思路分析】(1)由图象得当t =24分钟时甲乙两人相遇,甲的速度为240060=40米/分钟; (2)根据题意,先求得点A 的坐标,然后用待定系数法求出线段AB 所表示的函数表达式. 【解题过程】解:(1)24,40; (2)∵甲、乙两人的速度和为240024=100米/分钟,甲的速度为40米/分钟,∴乙的速度为60米/分钟.乙从图书馆回学校所用的时间为240060=40分钟. 相遇后,乙到达学校时,两人之间的距离y =60×(40-24)=1600(米), ∴点A 的坐标为(40,1600).∵点B 的坐标为(40,1600)∴设线段AB 所表示的函数表达式为y =kx +b . 根据题意,得k b k b ⎧⎨⎩1600=40+,2400=60+,解得40,0.k b =⎧⎨=⎩∴线段AB 所表示的函数表达式为y =40x .【知识点】一次函数的图象的应用;一次函数的表达式25.(2018江苏省盐城市,25,10分)如图,在以线段AB 为直径的⊙O 上取一点C ,连接AC 、BC .将△ABC 沿AB 翻折得到△ABD .(1)试说明点D 在⊙O 上;BE 为⊙O 的切线;(2)在线段AD 的延长线上取一点E ,使AB 2=AC ·AE ,求证:BE 为⊙O 的切线;(3)在(2)的条件下,分别延长线段AE 、CB 相交于点F ,若BC =2,AC =4,求线段EF 的长.FEDOA BC【思路分析】(1)因为AB为直径,点C是⊙O上一点,由圆的对称性得出点D在⊙O上;(2)利用相似三角形的判定得出△DAB∽△BAE,进而证得∠ABE=90°.(3)证△FCA∽△FDB.利用相似三角形的性质构建方程,解之可得线段EF的长.【解题过程】解:(1)∵AB为直径,点C是⊙O上一点,∴∠ACB=90°.将△ABC沿AB翻折得到△ABD,∴∠ADB=90°,点D在⊙O上;(2)∵AB2=AC·AE,∠DAB=∠BAE,∴△DAB∽△BAE.∴∠ABE=∠ADB=90°.∴BE为⊙O的切线;(3)∵BC=2,AC=4,∴BD=2,AD=4,AB=25.∵AB2=AC·AE,∴AE=5,DE=1.在Rt△BDE中,∵BD=2,DE=1,∴BF=2221EF++().∵∠C=∠FDB=90°,∠F=∠F,∴△FCA∽△FDB.∴FDFC =DBCA,即221212EFEF++++()=24,整理,得3EF2-2EF-5=0.解得EF=-1(舍去),EF=53.即线段EF的长为53.【知识点】圆的基本性质;相似三角形的判定与性质26.(2018江苏省盐城市,26,12分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=___________;(2)求证:△EBD∽△DCF.图①FD A BCE 图②FE A BCD【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边ABAC 的两个交点E 、F 都存在,连接EF ,如图②所示.问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE ?若存在,求出BDBC的值;若不存在,请说明理由. 【探索】如图③,在等腰△ABC 中,AB =AC ,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中∠MON =∠B ),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与△ABC 的顶点重合),连接EF .设∠B =α,则△AEF 与△ABC 的周长比为___________(用含α的表达式表示).图③NEO BCAF M【思路分析】【发现】(1)先求出DC 的值,再证△FDC 是等边三角形即可.(2)根据两角对应相等两三角形相似,只需证∠B =∠C ,∠BED =∠FCD 即可. 【思考】利用角平分线的性质得DM =DG =DN .利用全等三角形的性质得BD =CD . 【探索】类比(2)猜想应用EF =EG +FH .设AB =m ,则OB =m cos α,GB =m cos 2α. ∴AEF ABCC C=1-cos α.【解题过程】【发现】(1)∵△ABC 是等边三角形, ∴∠A =∠B =∠C =60°,AB =BC =AC . ∵AB =6,AE =4,∴BE =2.∵BD =2,∴DC =4.∵∠EDF =60°,∴∠FDC =60°.∴△FDC 是等边三角形. ∴CF =4.(2))∵△ABC 是等边三角形, ∴∠B =∠C =60°,∴∠BED +∠BED =120°. ∵∠EDF =60°,∴∠BDE +∠FDC =120°.∴∠BED =∠FCD . ∴△EBD ∽△DCF .【思考】存在.点D 移动到BC 边的中点时,ED 平分∠BEF 且FD 平分∠CFE ,此时BDBC=12. 理由:如图,作DM ⊥EB , DG ⊥EF , DN ⊥FC , ∵ED 平分∠BEF ,FD 平分∠CFE , ∴DM =DG =DN . ∴△DBM ≌△DCN . ∴BD =CD .∴点D 移动到BC 边的中点时,ED 平分∠BEF 且FD 平分∠CFE ,此时BDBC=12. NGM EA BCDF【探索】如图,作DM ⊥EB , DG ⊥EF , DN ⊥FC . 有∠GOH =2∠EOF =2α.由(2)可猜想应用EF =EG +FH .(通过旋转半角证明) 设AB =m ,则OB =m cos α,GB =m cos 2α.∴AEF ABCC C=22()AG AB OB +=AG AB OB+=2cos cos m m m m αα-+=1-cos α. H D G E BCOAF MN【知识点】等边三角形的判定;相似三角形的判定;角平分线的性质;解直角三角形27.(2018江苏省盐城市,27,14分) ,如图①,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +3经过点A (-1,0),B (3,0)两点,且与y 轴交于点C . (1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ .(Ⅰ)若点P 的横坐标为-12,求△DPQ 面积的最大值,并求此时点D 的坐标;(Ⅱ)直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.xy xy xy备用图图②图①OQPOC BAOD【思路分析】(1)把A (-1,0),B (3,0)两点代入y =ax 2+bx +3,用待定系数法求抛物线的表达式;(2)(Ⅰ)根据题意先求得P 、Q 两点的坐标,再用待定系数法求直线PQ 的表达式.过点D 作DF ⊥x 轴于E ,交PQ 于F .直尺的宽度一定,当时DF 最长时,△DPQ 面积的最大.设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-m +32),求得DF 的最大值,然后根据三角形的面积公式,求得△DPQ 面积的最大值. (Ⅱ)同理.设P (c ,-c 2+2c +3),Q (c +4,-c 2-6c -5),则直线PQ 的表达式可求; 设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-(2c +2)m +c 2+4c +3),求得DF 的最大值,△DPQ 面积的最大值可得.【解题过程】解:(1)把A (-1,0),B (3,0)两点代入y =ax 2+bx +3,得 3.0+3 3.a b a b -⎧⎨⎩0=+=9+解得1,2,a b =-⎧⎨=⎩∴抛物线的表达式为y =-x 2+2x +3.(2)(Ⅰ)设直线PQ 的表达式为y =kx +b ,把P (-12,74),Q (72,-94)两点的坐标代入,得71-4297-42k b k b ⎧⎪⎪⎨⎪⎪⎩=+,=+,解得1,5.4k b =-⎧⎪⎨=⎪⎩ ∴直线PQ 的表达式为y =-x +54.设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-m +54), ∴DF =-m 2+2m +3-(-m +54) =-m 2+3m +74=-(m 2-3m )+74. =-(m -32)2+4当m =32时,DF 有最大值,最大值为4. 此时点D 的坐标(32,4).直尺的宽度一定,所以当DF 最长时,△DPQ 面积的最大. △DPQ 的面积=12×4DF =12×4×4=8∴△DPQ 面积的最大值为8;x y E FQ PO D(Ⅱ)设P ( c ,-c 2+2c +3),Q (c +4,-c 2-6c -5),把P 、Q 两点的坐标代入直线PQ 的表达式y =kx +b ,得222365(c 4)c c ck b c c k b ⎧⎪⎨+⎪⎩-++=+,---=+,解得222,4 3.k c b c c =--⎧⎨=++⎩ ∴直线PQ 的表达式为y =-(2c +2)x +c 2+4c +3.设点D 的坐标为(m ,-m 2+2m +3),则点F 的坐标为(m ,-(2c +2)m +c 2+4c +3), ∴DF =-m 2+2m +3-[-(2c +2)m +c 2+4c +3] =-m 2+(2c +4)m -(c 2+4c ) =-[m -(c +2)] 2+4当m =c +2时,DF 最长,最长为4. 此时,△DPQ 的面积=12×4DF =12×4×4 =8.xy HG QPO D【知识点】二次函数的表达式;一次函数的表达式;面积最值;由特殊到一般的思想方法。

2018年全国中考数学真题江苏徐州中考数学(解析版-精品文档)

2018年全国中考数学真题江苏徐州中考数学(解析版-精品文档)

2018年江苏省徐州市初中毕业、升学考试数学学科满分:140分一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(2018江苏徐州,1,3分)4的相反数是A.14 B.14- C.4 D.-4【答案】D2.(2018江苏徐州,2,3分)下列计算正确的是A.2221a a-=B.22()ab ab=C.235a a a+=D.236()a a=3.(2018江苏徐州,3,3分)下列图形中,既是轴对称图形,又是中心对称图形的是A.B.C.D.【答案】A4.(2018江苏徐州,4,3分)右图是由5个相同的正方体搭成的几何体,其左视图是A.B.C.D.【答案】D5.(2018江苏徐州,5,3分)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率A.小于12B.等于12C.大于12D.无法确定【答案】A6.(2018江苏徐州,6,3分)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0 1 2 3人数13352923关于这组数据,下列说法正确的是A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册【答案】B7.(2018江苏徐州,7,3分)如图,在平面直角坐标系中,函数y kx=与2yx=-的图象交于A、B两点,过A作y轴的垂线,交函数4yx=的图象于点C.连接BC,则△ABC的面积为A.2 B.4 C.6 D.8【答案】C8.(2018江苏徐州,8,3分)若函数y kx b=+的图象如图所示,则关于x的不等式20kx b+<的解集为A.3x<B.3x>C.6x<D.6x>【答案】D二、填空题9.(2018江苏徐州,9,3分)五边形的内角和为 .【答案】540°10.(2018江苏徐州,10,3分)我国自主研发的某型号手机处理器采用10nm工艺,已知1nm=0.000 000 001m,则10nm用科学计数法可表示为 .【答案】1×10-8nm11.(2018江苏徐州,11,3分)化简:32-= .【答案】2-312.(2018江苏徐州,12,3分)若2x-在实数范围内有意义,则x的取值范围是 .【答案】x≥213.(2018江苏徐州,13,3分)若2m+n=4,则代数式6-2m-n的值为 .【答案】214.(2018江苏徐州,14,3分)若菱形的两条对角线的长分别为6cm和8cm,则其面积为cm2. 【答案】2415.(2018江苏徐州,15,3分)如图,Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD= .【答案】35°16.(2018江苏徐州,16,3分)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为 .【答案】217.(2018江苏徐州,17,3分)如图,每个图案均有边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多个(用含n的代数式表示).【答案】4n+318.(2018江苏徐州,18,3分)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点.P为AC上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q的运动路径长为 .【答案】419.(2018•徐州,19①,5)计算:(1)2013112018()82--+-+;(2)2222a b a ba b a b-+÷--.【解答过程】原式=-1+1-2+2=019.(2018•徐州,19②,5)计算:(2)2222a b a ba b a b-+÷--.【解答过程】原式=()()22a b a b a ba b a b+--⨯-+=22a b-20.(2018•徐州,20①,5)解方程:2210x x-+=;【解答过程】解:把方程左边因式分解得:(2x+1)(x-1)=0,∴x1=12-,x2=1.20.(2018•徐州,20①,5)解不等式组:4281136x xx x>-⎧⎪-+⎨≤⎪⎩.【解答过程】解不等式4x>2x-8,可得x>-4,解不等式1136x x-+≤,得3x≤,所以不等式组的解集为:43x-<≤.21.(2018•徐州,21,7分)不透明的袋中装有1上红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于;(2)从中同时摸出2个球,摸到红球的概率是多少?(用树状图或列表的方法写出分析过程)【解答过程】(1)13;(2)列表如下:红球白球1 白球2红球白球1 +红球白球2+红球白球1 红球+白球1 白球2+白球1 白球2 红球+白球2 白球1 +白球2一共有6种等可能事件,摸到红球的情况有4种,所以(42 63P==摸到红球).22.(2018•徐州,22,7分)在”书香校园“活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:家庭藏书情况统计表类别家庭藏书情况统计表学生人数A 0≤m≤25 20B 26≤m≤100 aC 101≤m≤200 50D m≥201 66根据以下信息,解答下列问题:(1)该样本容量为,a=;(2)在扇形统计图中,“A”对应的扇形的圆心角为;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.【解答过程】(1)200,64;(2)36(3)662000200⨯=660(名)答:家庭藏书200本以上的人数为660名.23.(2018•徐州,23,8分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?【解答过程】(1)∵四边形CGFE 是正方形, ∴EF =CE ,∠EFC =90°, ∴∠FEH +∠CED =90°, ∵FH ⊥AD∴∠FEH +∠EFH =90°, ∴∠EFH =∠CED , 在△FEH 和△ECD 中,EFH CED FHE EDC EF EC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△FEH ≌△ECD , ∴FH =ED .(2)设AE =x ,由(1)可得:FH =DE =(4-x ), ∴2111(4)2222AEF S AE FH x x x x ∆=⨯=-=-+, ∵ 102-<,∴当x =212()2-⨯-=2时, △AEF 的面积最大.24.(2018•徐州,24,8分)徐州至北京的高铁里程约为700km ,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁与“复兴号”高铁B 前往北京.已知A 车的平均速度比B 车的平均速度慢80km /n ,A 车的行驶时间比B 车的行驶时间多40%,两车的行驶时间分别为多少?【解答过程】设B 车行驶的时间为x 小时间,则A 车行驶的时间为(1+40%)x 小时, 根据题意:70070080(140%)x x+=+,解得:x =2.5,经检验x =2.5是分式方程的解. (1+40%)x =3.5小时.答两车行驶时间分别为3.5小时和2.5小时.25.(2018•徐州,25,8分)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎么的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求AD的长.【解答过程】解:(1)连接OD,则OD=OB,∴∠2=∠3,∵BD平分∠ABC,∴∠2=∠1,∴∠1=∠3,∴OD∥BC,321CDOA∵∠C=90°,∴BC⊥CD,∴OD⊥CD,∴CD是⊙O的切线.(2)∵∠CDB=60°,∠C=90°,∴∠2=∠1=∠3=30°,∴∠AOD=∠2+∠3=30°+30°=60°,∵AB=6,∴OA=3,∴603180ADππ=⨯⨯=.26.(2018•徐州,26,8分)如图,1号数在2号楼的南侧,两楼的高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号数在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号数在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共有30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47).【解答过程】解:(1)过点C,D分别作CE⊥PB,DF⊥PB,垂足分别为E,F.则有AB=CE=DF,EF=CD=42.2号楼1号楼FEDCP由题意可知:∠PCE=32.3°,∠PDF=55.7°,在Rt△PCE中,PE=CE⨯tan32.3°=0.63CE;在Rt△PDF中,PF=CE⨯tan55.7°=1.47CE;∵PF-PE=EF,∴1.47CE-0.63CE=42,∴AB=CE=50(m)答:楼间距为50m.(2)由(1)得:PE=0.63CE=31.5(m),∴AC=BP-PE=90-31.5=58.5(m),58.53÷=19.5,∴点C位于第20层答:点C位于第20层.27.(2018江苏徐州,27,10分)如图,在平面直角坐标系中,二次函数y=-x2+6x-5的图像与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l,(1)求点P、C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标,若不存在,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

_ O _ D _ C _ B _ A 2018年全国各地数学中考试题1. (2018年凉山州)在函数121x y x +=-中,自变量x 的取值范围是 A .1x -≥ B .1x >-且12x ≠ C .1x ≥-且12x ≠ D .1x -≥2. (2018年凉山州)已知函数25(1)my m x -=+是反比例函数,且图象在第二、四象限内,则m 的值是A .2B .2-C .2±D .12-3.(2018年泰州市)下列函数中,y 随x 增大而增大的是( ) A .x y 3-= B . 5+-=x y C . x y 21-= D . )0(212<=x x y 4.(2018年泰州市)下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程1312112-=+--x x x 的解是0=x ;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等地。

其中真命题的个数有( ) A .1个 B .2个 C .3个 D .4个5.(2018年台州)梯形ABCD 中,AD ∥BC ,AB=CD=AD =2,∠B =60°,则下底BC 的长是( ) A .3 B .4 C . 23 D .2+236.(2018年台州)如图,矩形ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N .则DM +CN 的值为(用含a 的代数式表示)( ) A .a B .a 54C .a 22D . a 237.(2018年台州)如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为( )8.(2018年舟山)如图,已知O ⊙的半径为5,锐角△ABC 内接于O ⊙,BD ⊥AC 于点D ,AB =8, 则tan CBD ∠的值等于 ( )A .34 B .54 C .53 D .439.(2018年南通) 如图,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为( ) A .4π cmB .3π cmC .2π cmD .π cmaN M C D AB (第6题) 第8题图 (第9题) A BC DO10.(2018年绵阳)如图,梯形ABCD 的对角线AC 、BD 相交于O ,G 是BD 的中点.若AD = 3,BC = 9,则GO : BG =( ).A .1 : 2B .1 : 3C .2 : 3D .11 : 2011. (2018年昆明)已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( ) A . 2个 B . 3个 C . 4个 D . 5个 12.(2018年义乌)如图,将三角形纸片ABC 沿DE 折叠,使点A 落在BC 边上的点F 处,且DE ∥BC ,下列结论中,一定正确的个数是①BDF ∆是等腰三角形②BC DE 21=③四边形ADFE 是菱形 ④2BDF FEC A ∠+∠=∠ A .1 B .2 C .3 D .4 13.(2018年宿迁市)如图,在矩形ABCD 中, AB =4,BC =6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q .BP =x ,CQ =y ,那么y 与x 之间的函数图象大致是二、填空题:14.(2018年宿迁市)若22=-b a ,则b a 486-+=.15.(2018年泰州市)观察等式:①4219⨯=-,②64125⨯=-,③86149⨯=-…按照这种规律写出第n 个等式: . 16.(2018年武汉)如图,直线y 1=kx +b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx +b >mx -2的解集是______________. 17.(2018年武汉)如图,直线33y x b =-+与y 轴交于点A ,与双曲线k y x =在第一象限交于B 、C 两点,且AB ·AC =4,则k =_________.18.(2018GABDCO 第10题图第11题图x y O 46 3 A x y O 2.256 3 D x y O 3 6 4 C 2.25 x y O 6 3 B M QDCBPNA(第13题)A B C DE FA O Py 2=myBA y CADF第20题 a 第19题ba -baba -b甲乙年厦门)如图4,将矩形纸片ABCD (AD DC >)的一角沿着过点D 的直线折叠,使点A 落在BC 边上,落点为E ,折痕交AB 边交于点F .若1BE =,2EC =,则sin EDC ∠=__________;若::BE EC m n =,则:AF FB =_________(用含有m 、n 的代数式表示)19.(2018年湖州)将图甲中阴影部分的小长方形变换到图乙位置,你能根据两个图形的面积关系得到的数学公式是否20.(2018年湖州)请你在如图所示的12×12的网格图形中任意画一个圆,则所画的圆最多能经过169个格点中的___________个格点.21.(2018年丽水) 已知a ≠0,12S a =,212S S =,322S S =,…,201020092S S =, 则2010S = (用含a 的代数式表示).22.(2018年绍兴)水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度α(α指缠绕中将部分带子拉成图中所示的平面ABCD 时的∠ABC ,其中AB 为管道侧面母线的一部分).若带子宽度为1,水管直径为2,则α的余弦值为 . 三.解答题23. (贵州省黔东南州)如图,以ABC ∆的边BC 为半径作⊙O分别交AB ,AC 于点F .点E ,BC AD ⊥于D ,AD 交于⊙O 于M ,交BE 于H 。

求证:DA DH DM ∙=2。

第22题图A B CE FO HD24.(2018年桂林))如图,⊙O 是△ABC 的外接圆,FH 是⊙O 的切线,切点为F ,FH∥BC ,连结AF 交BC 于E ,∠ABC 的平分线BD 交AF 于D ,连结BF .25.(广西省钦州市)如图,将OA = 6,AB = 4的矩形OABC 放置在平面直角坐标系中,动点M 、N 以每秒1个单位的速度分别从点A 、C 同时出发,其中点M 沿AO 向终点O 运动,点N 沿CB 向终点B 运动,当两个动点运动了t 秒时,过点N 作NP ⊥BC ,交OB 于点P ,连接MP .(1)点B 的坐标为 ;用含t 的式子表示点P 的坐标为 ;(3分)(2)记△OMP 的面积为S ,求S 与t 的函数关系式(0 < t < 6);并求t 为何值时,S 有最大值?(4分)(3)试探究:当S 有最大值时,在y 轴上是否存在点T ,使直线MT 把△ONC 分割成三角形和四边形两部分,且三角形的面积是△ONC 面积的13?若存在,求出点T 的坐标;若不存在,请说明理由.(3分)A BFECD OHO A B CPNM xyOABC xy(备用图)DCly 26.(2018年莱芜市)如图,在平面直角坐标系中,已知抛物线c bx ax y ++=2交x 轴于)0,6(),0,2(B A 两点,交y 轴于点)32,0(C .(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线x y 2=交于点D ,作⊙D 与x 轴相切,⊙D 交y 轴于点E 、F 两点,求劣弧EF 的长;(3)P 为此抛物线在第二象限图像上的一点,PG 垂直于x 轴,垂足为点G ,试确定P 点的位置,使得△PGA 的面积被直线AC 分为1︰2两部分.27.(山东省济南市本)如图所示,抛物线223y x x =-++与x 轴交于A 、B 两点,直线BD 的函数表达式为333y x =-+,抛物线的对称轴l 与直线BD 交于点C 、与x 轴交于点E . ⑴求A 、B 、C 三个点的坐标.⑵点P 为线段AB 上的一个动点(与点A 、点B 不重合),以点A 为圆心、以AP 为半径的圆弧与线段AC 交于点M ,以点B 为圆心、以BP 为半径的圆弧与线段BC 交于点N ,分别连接AN 、BM 、MN .①求证:AN =BM .②在点P 运动的过程中,四边形AMNB 的面积有最大值还是有最小值?并求出该最大值或最小值.(第26题图) x y O A C B DE F28.(广西北海市)如图,在平面直角坐标中,二次函数图象的顶点坐标为C(4,-3),且在x轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)点P在y轴上,且使得△PAC的周长最小,求:①点P的坐标;②△PAC的周长和面积;(3)在x轴上方的抛物线上,是否存在点Q,使得以Q、A、B三点为顶点的三角形与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.yAOBxC。

相关文档
最新文档