第十课时 4.3.3余角与补角(一) 教学设计
4.3.3余角和补角的教案.3.3余角和补角

4.3.3 余角和补角教学目标:1、知识技能:(1)在具体的情景中认识一个角的余角和补角,并会用文字语言、图形语言、符号语言进行描述;(2)掌握余角和补角的性质,并能初步进行简单的推理和计算。
2、过程与方法:进一步提高学生的几何语言表达能力,发展空间观念,学会简单的逻辑推理,并能对问题的结论进行归纳。
3、情感态度与价值观:在具体的情景中,通过观察、交流、推理和归纳,获得必需的数学知识,激发学生的学习兴趣。
学情分析:余角和补角是人教版七年级上册第4章《几何图形初步》第3节“角”中两个比较重要的基本概念,是后续学习图形与几何的预备知识。
通过对探索余角和补角的性质的学习,为今后证明角的相等提供了一种依据和方法。
在这之前学生已经学过角的相关概念、角的比较和度量,对角度之间的和差倍分运算、简单的几何语言有了初步的认识,推理证明过程的书写也有过初步的接触,但由于刚接触几何,对几何概念的理解和几何语言的书写还存在较多问题,对几何知识的运用还有一定的难度,普遍学生感到几何入门较难。
并且我班学生学习基础比较薄弱,识图能力较差,学生之间的基础知识、综合素质差异较大。
因此本节努力从学生最熟悉的情景入手,通过几何图形引入余角和补角的概念,然后通过做一做得到的结论推出余角和补角的性质,采取即时练习和分层练习,争取学生在原有的基础上能运用上述性质来解决问题,从而达到人人都有所收获的教学效果。
同时根据本班学生的特点和实际以及时间安排的关系,把课本例3安排在第二课时的综合练习中解决,重点难点:1、重点:余角和补角的概念和性质。
2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质并应用。
21教学过程: 一、 谈话导入:在前面我们学过了一些角,有些角两者之间有一定的联系,如在一幅三角板中,每一块都有一个角是90°,且另外两角为30°、60°和45°,45°那么它们两者之间有何关系呢?我们来学习4.3.3 余角和补角。
最新人教版七年级数学上册 4.3.3 余角和补角教案 新人教版(1)

余角与补角一、教学目标1.知识与技能:(1)在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质;(2)能够运用余角和补角的定义及性质解决相关问题;2.过程与方法:进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
3.情感态度与价值观:体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。
二、教学重点与难点重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点;难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点;三、教学方法采用情境式和问题式教学模式,结合多媒体和学案实施教学.四、学法指导通过动口、动手、动脑等活动,主动探索、发现问题、互动合作、归纳概括、解决问题. 五、教学准备教师:多媒体课件、学案、直尺等;学生:预习课题内容;六、教学过程1、创设情境、进入新课:【多媒体展示】问题 1.比萨斜塔位于意大利比萨城的奇迹广场上,是建筑史上的一座重要建筑,目前已知其倾斜角达到12°,你能求出斜塔与底面所成的锐角的度数吗?教师运用多媒体进行展示,引导学生求出锐角的度数。
教师总结出余角的概念:互为余角(互余):如果两个角的和是90°,那么这两个角叫做互为余角,其中一个角是另一个角的余角。
即若∠1+∠2=90°,则∠1是∠2的余角(或∠2是∠1的余角)【多媒体展示】针对问题:1.已知∠A的度数为30度,则∠A的余角为_____度.2.已知某角是其余角的2倍,则此角为________度.学生自主作答,教师订正答案。
【多媒体展示】若比萨斜塔与底面所成的最小锐角度数为78°,请问斜塔与底面所成的最大钝角的度数是多少?想一想!教师运用多媒体进行展示,引导学生求出锐角的度数。
教师总结出补角的概念:互为补角(互补):如果两个角的和是180°,那么这两个角叫做互为补角,其中一个角是另一个角的补角。
人教版七年级数学上册4.3.3余角与补角教学设计

"将课堂知识运用到生活中,你会发现数学其实无处不在。请同学们找一找家里的剪刀、直角三角板等物品,测量并计算它们的角度关系,感受余角与补角的实际应用。"
3.小组合作,共同探讨以下问题:在几何图形中,如何利用余角与补角的性质解决角度问题?
(二)过程与方法
1.培养学生的观察能力,让学生在实际情境中发现余角与补角的存在,理解其概念。
2.培养学生的逻辑思维能力,让学生通过分析、归纳、总结余角与补角的性质,形成系统的知识体系。
3.培养学生的动手操作能力,让学生在实际操作中掌握余角与补角的计算方法,提高解决问题的能力。
4.培养学生的团队协作能力,让学生在小组合作中学会倾听、交流、互助,共同完成学习任务。
(二)讲授新知
1.教师详细讲解余角与补角的定义,并通过图示和实际例子加深学生理解。
“余角指的是两个角的和等于180度的两个角,而补角指的是两个角的和等于90度的两个角。请看这个图示,角A和角B就是一对余角,因为它们的和等于180度;角C和角D就是一对补角,因为它们的和等于90度。”
2.引导学生总结余角与补角的性质,如:同角(等角)的余角相等,同角(等角)的补角相等。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热爱,激发学生的学习积极性。
2.培养学生勇于探究、积极思考的学习态度,让学生在解决问题的过程中体验成功的喜悦。
3.培养学生的空间观念,让学生认识到几何图形在实际生活中的应用,提高学生的应用意识。
4.培养学生遵守数学规则,严谨、踏实的科学态度,为学生今后的学习打下坚实基础。
“同学们,你们发现没有,如果一个图形中有两个角是余角或补角,它们之间有一些什么共同的特点呢?”
4、3、3余角和补角1教案

课题 4.3 角
一、教材分析
地位和作用:是初中最简单的几何图形之一,是学生学习和掌握平面几何最基础的元素之一,学生在观察.操作.想象.交流等活动中认识图形,发展空间观念,也培养了学生学会数学语言的能力,数学语言是数学思维不可缺少的重要工具
教材的重难点:角的概念.角的画法.角的比较.度量及角平分线.余角和补角及其性质
中考考纲要求:理解角的大小比较及角度的计算掌握角平分线及其性质理解余角.补角的概念二、教材的实施建议
除了重视“几何模型→图形→文字→符号”的转化过程,还重视“符号→文字→图形”的转化,即理解符号或文字所表达的图形关系,并将它们用图形直观地表示出来,化“无形”为“有形”
课题1: 4.3.1 角(一课时)
1、通过丰富的实例,进一步认识角
2、理解角的两种描述方法
3、掌握角的表示法
4、了解以度.分.秒为单位的角度制,会进行简单的换算
课题2:4.3.2 角的比较与运算(一课时)
1、探究如何比较角的大小
2、探究借助三角尺画特殊角,了解角的和.差.倍.分的画法
3、掌握角的平分线定义并会运用
课题3:4.3.3 余角和补角(两课时)
1、理解余角和补角的定义并进行有关的计算
2、掌握余角和补角的性质并学会运用
3、了解方位角.钟面上的角及折叠中的角的特点,会进行有关的简单计算
三、练习题实施建议
课本后的练习.《启东作业》上的部分题在教学中渗透着讲
四、需讨论的问题
教辅资料上认为下列这句话判断是错误的
若∠1+∠2+∠3=180°,则∠1与∠2+∠3互补。
人教版数学七年级上册4.3.3《 余角和补角》教学设计

人教版数学七年级上册4.3.3《余角和补角》教学设计一. 教材分析《余角和补角》是人教版数学七年级上册第4章第3节的内容,这部分内容是在学生已经掌握了角的分类、垂线的性质等基础知识的基础上进行学习的。
本节课主要让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。
教材通过生动的图片和实际问题引出余角和补角的概念,让学生在解决实际问题的过程中感受数学与生活的联系。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于角的分类和垂线的性质等基础知识有一定的掌握。
但是,对于抽象的数学概念,学生的理解可能还需要通过具体的实例来辅助。
因此,在教学过程中,教师需要结合学生的实际情况,通过生活实例和直观的图形,引导学生理解余角和补角的概念,并能够运用到实际问题中。
三. 教学目标1.知识与技能目标:让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.情感态度与价值观目标:让学生感受数学与生活的联系,增强学生对数学的兴趣。
四. 教学重难点1.教学重点:余角和补角的概念,判断两个角之间的关系。
2.教学难点:理解余角和补角的概念,能够运用到实际问题中。
五. 教学方法1.情境教学法:通过生活实例和直观的图形,引导学生理解余角和补角的概念。
2.活动教学法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.启发式教学法:引导学生通过自主学习、合作学习,发现和总结余角和补角的概念和性质。
六. 教学准备1.教学素材:准备一些生活实例和图形,用于引导学生理解和运用余角和补角的概念。
2.教学工具:准备黑板、粉笔、多媒体设备等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容。
例如,展示一幅画,画中有两条直线相交,问学生这两条直线之间的角是什么关系。
4.3.3_余角和补角教案

4.3.3_余角和补角教案
教学目标:
1、知识与技能:
⑴、在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。
⑵、了解方位角,能确定具体物体的方位。
2、过程与方法:
进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
3、情感态度与价值观:
体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。
重、难点及关键:
1、重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点。
2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。
3、关键:了解推理的意义和推理过程是掌握性质的关键。
教学过程:
一、引入新课:
让学生观察意大利著名建筑比萨斜塔。
比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。
设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜。
二、新课讲解:
1、探究互为余角的定义:
如果两个角的和是90(直角),那么这两个角叫做互为余角,其中一个角是另一个角的余角。
即:1是2的余角或2是1的余角。
精心整理,仅供学习参考。
4.3.3余角和补角—教案

4.3.3 余角和补角——教案教材分析:1、教材的地位和作用余角和补角是人教版七年级上册“图形知识初步”这一章中非常重要的基本概念。
前面学生学习了角的度量和大小的比较,已经为学习余角和补角打下了一定的基础,通过探索余角和补角性质的学习,为今后证明角的相等提供了一种依据和方法。
2、教材内容教材中本节内容是通过一副三角尺引入余角和补角的概念,然后通过例题得到的结论推出余角和补角的性质,最终使学生能综合运用上述性质来解决问题。
学情分析:本节内容是《4.3角》这一节中的第三节,在前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验。
具备了一定的图形认识能力和借助图形分析和解决问题的能力,同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
我校学生学习基础比较薄弱,识图能力较差,基于以上原因,为更好的使学生理解余角和补角的概念,并为下一节性质作铺垫,特制定此教学内容。
教学目标:1、通过现实情境,掌握余角和补角的概念;2、使学生能用简单的代数思想——方程思想来处理图形的数量关系;3、培养学生的识图能力、发展空间观念和知识运用能力,进一步感受学习数学的意义. 教学重点:认识角的互余、互补关系教学难点:方程思想来处理图形的数量关系课时安排:《4.3.3余角和补角》第一课时教学手段:观察、探究、合作交流、多媒体辅助教学学法指导:通过学生动脑想,勤钻研,主动地学习,增加学生主动参与的机会,增加学生的参与意识,教给学生获取知识的途径,思考问题的方法。
4321教学过程:一、创设情境,引入新课:让学生观察意大利著名建筑比萨斜塔。
比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。
设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜。
二、探究新知:1、探究互为余角的定义:教师活动:操作多媒体演示。
4.3.3余角和补角的教案.3.3余角和补角

4.3.3余角和补角的教案.3.3余角和补角4.3.3 余角和补角教学目标:1、知识技能:(1)在具体的情景中认识一个角的余角和补角,并会用文字语言、图形语言、符号语言进行描述;(2)掌握余角和补角的性质,并能初步进行简单的推理和计算。
2、过程与方法:进一步提高学生的几何语言表达能力,发展空间观念,学会简单的逻辑推理,并能对问题的结论进行归纳。
3、情感态度与价值观:在具体的情景中,通过观察、交流、推理和归纳,获得必需的数学知识,激发学生的学习兴趣。
学情分析:余角和补角是人教版七年级上册第4章《几何图形初步》第3节“角”中两个比较重要的基本概念,是后续学习图形与几何的预备知识。
通过对探索余角和补角的性质的学习,为今后证明角的相等提供了一种依据和方法。
在这之前学生已经学过角的相关概念、角的比较和度量,对角度之间的和差倍分运算、简单的几何语言有了初步的认识,推理证明过程的书写也有过初步的接触,但由于刚接触几何,对几何概念的理解和几何语言的书写还存在较多问题,对几何知识的运用还有一定的难度,普遍学生感到几何入门较难。
并且我班学生学习基础比较薄弱,识图能力较差,学生之间的基础知识、综合素质差异较大。
因此本节努力从学生最熟悉的情景入手,通过几何图形引入余角和补角的概念,然后通过做一做得到的结论推出余角和补角的性质,采取即时练习和分层练习,争取学生在原有的基础上能运用上述性质来解决问题,从而达到人人都有所收获的教学效果。
同时根据本班学生的特点和实际以及时间安排的关系,把课本例3安排在第二课时的综合练习中解决,重点难点:1、重点:余角和补角的概念和性质。
2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质并应用。
21教学过程:一、谈话导入:在前面我们学过了一些角,有些角两者之间有一定的联系,如在一幅三角板中,每一块都有一个角是90°,且另外两角为30°、60°和45°,45°那么它们两者之间有何关系呢?我们来学习4.3.3 余角和补角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目的是培养学生观察与分析能力,从中总结出余角与补角的性质,锻炼学生正确使用几何语言。
例题1设计主要是让学生加深对余角与补角性质的认识与理解.
例2,对余角补角的概念的应用,方程思想
目的检测学生对本节课知识的掌握程度,及时从学生的作答过程中发现问题。
【活动5】
总结
课堂上的差异评价
1)介绍比萨斜塔著名的缘由
2)提出问题:
通常的建筑与地面是保持什么关系?
现在把地面可以抽象成什么平面图形?塔呢?(教师在黑板板图)
让学生阐述余角与补角的概念,并尝试用几何语言表述
图中给出的角,哪些是互为余角(补角)?
让学生快速回答同一个角的余角与补角。
思考:同一个角的补角与余角有什么关系?
(1)学生能否理解题意。
(2)针对自己的结论,能否师用正确的几何语言阐述。
老师在分析的时候重视学生自身的独立思考和独立见解,大胆的让学生发表自己的看法
让学生独立思考,并说出依据;
第4个小问让学生学会数学转化思想,体会找 的补角要转化找 的补角.
针对考点设计的一道计算题作为例题讲解
让学生畅谈
(1)这节课,我学会了…
让学生根据抽象出来的几何图形,用文字叙述余角与补角的定义,并尝试用几何语言表述它们的定义。
通过文字题,让学生先思考和讨论两个角是否相等,然后用几何语言表述自己的结论。
通过图形题以及文字题,巩固学生所学的知识
学生畅谈本节课的收获,老师总结本节课的知识点和方法
教学设计过程
问题与情境
师生行为
设计意图
【活动1】
阅读课本P141-P142的内容
让学生课前预习,主要是通过看书可以提前了解新知识的内容,对不懂的地方做上记号。
这个活动目的是为了让学生在学习目标和学习要求下进行对书本的自学。
【活动2】
观看意大利比萨斜塔图片
PPT对图片中抽象出的两个角进行动态演示
每个知识点配套一个练习
【活动3】
1.
的余角
的补角
°
45°
第四章第10课时4.3.3余角与补角(一)教学设计
教
学
目
标
基础性目标
1.在具体情境中认识余角,补角的概念.
2.理解等角(同角)的余角相等,等角(同角)
的补角相等,并能运用这些性质解决具体问
题。
发展性目标
1.从生活中的问题入手,探究余角、补角的概念、性质及应用.
2.经历观察、推理、交流等活动,发展学生想象能力,培养学生推理能力和有理的表达能力。
融通性目标
1.体验数学知识的发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。
2.关注学生的学习情感和自信心的建立,发展学生的个性、鼓励异端,从中体会最优化的数学思想价值
重
点
余角、补角的概念性质及其应用。
难
点
余角、补角性质的应用。
教学流程安排
活动流程图
活动的内容和目的
活动1
阅读课本P141-P142的内容,预习新知识
活动2
创设情景,引入课题:余角与补角的概念
活动3
余角与补角的性质
活动4
例题讲解,能力提升
活动5
总结,作业布置
让学生课前预习,主要是通过看书可以提前了解新知识的内容,对不懂的地方做上记号。
这个活动目的是为了让学生在学习目标和学习要求下进行对书本的自学。
利用意大利比萨斜塔图片,让学生认真观察,思考问题:从图片中把地面,塔都可以抽象成什么平面图形?
62°23’
2.
若 与 互余,
与 互余, = ,
与 相等吗?
3.
已知 °
的余角是___, 与 的大小关系?
4.
若 与 互补,
与 互补, = ,
与 相等吗?
【活动4】
例题1
与 互余的角是___;
与 互余的角是___;
与 互余的角是__题2
若一个角的补角等于它的余角的4倍,求这个角的度数。
(2)我感受最深的是…
(3)我想我将会…
题目分为选择、填空与解答题学生利用5分钟先独立做答,教师参与评价
从生活中的例子引入新课,提高学生的学习兴趣,发散学生的思维;
动态的演示目的让学生更好地理解余角的定义
目的让学生习惯文字描述与几何语言的转化,正确地使用规范的几何语言。
练习的设计旨在巩固学生对概念的理解