余角和补角教学设计

合集下载

数学教案-余角和补角

数学教案-余角和补角

数学教案-余角和补角一、教学目标1.理解余角和补角的概念。

2.掌握余角和补角的性质。

3.学会应用余角和补角的知识解决实际问题。

二、教学内容1.余角和补角的定义。

2.余角和补角的性质。

3.余角和补角的应用。

三、教学重点与难点1.重点:理解余角和补角的概念及性质。

2.难点:灵活运用余角和补角的知识解决问题。

四、教学过程第一环节:导入新课1.利用多媒体展示一张图片,图片中有两个相交的直线和一个角。

2.引导学生观察这个角,提问:“这个角有什么特点?”第二环节:探究新知1.余角的定义(1)讲解余角的定义,即一个角的余角等于90°减去这个角的度数。

(2)举例说明,如:30°的余角是60°,60°的余角是30°。

(3)让学生尝试找出几个角的余角。

2.补角的定义(1)讲解补角的定义,即一个角的补角等于180°减去这个角的度数。

(2)举例说明,如:45°的补角是135°,135°的补角是45°。

(3)让学生尝试找出几个角的补角。

3.余角和补角的性质(1)讲解余角和补角的性质,如:互为余角的两个角的和等于90°,互为补角的两个角的和等于180°。

(2)让学生通过举例验证这些性质。

第三环节:巩固练习1.让学生独立完成课本上的练习题,巩固余角和补角的概念及性质。

2.对学生的作业进行点评,指出错误和不足之处。

第四环节:拓展提高1.提问:“在日常生活中,你们能找到哪些与余角和补角有关的现象?”2.学生分享自己的发现,教师给予点评和指导。

第五环节:课堂小结2.强调余角和补角在实际生活中的重要性。

五、作业布置1.完成课后习题,巩固所学知识。

2.收集生活中的余角和补角现象,下节课分享。

六、教学反思本节课通过讲解、举例、练习等形式,让学生掌握了余角和补角的概念、性质及运用。

在教学过程中,注意引导学生主动参与,培养学生的观察能力和思维能力。

《余角和补角》教案精品

《余角和补角》教案精品

《余角和补角》教案精品一、教学内容本节课的教学内容来自于人教版初中数学九年级下册第26章《余角和补角》。

本章节主要内容包括余角和补角的定义、性质及其运用。

具体教学内容如下:1. 余角的定义:如果两个角的和等于90度,那么这两个角互为余角。

2. 补角的定义:如果两个角的和等于180度,那么这两个角互为补角。

3. 余角和补角的性质:(1)互为余角的两个角,其中一个角增大或减小,另一个角也会相应地增大或减小。

(2)互为补角的两个角,其中一个角增大或减小,另一个角会相应地减小或增大。

4. 余角和补角在实际问题中的应用。

二、教学目标1. 让学生掌握余角和补角的定义及其性质。

2. 培养学生运用余角和补角解决实际问题的能力。

3. 培养学生积极参与课堂,主动探索数学规律的良好学习习惯。

三、教学难点与重点1. 教学难点:余角和补角的性质的理解与应用。

2. 教学重点:余角和补角的定义及其性质的掌握。

四、教具与学具准备1. 教具:黑板、粉笔、直尺、三角板。

2. 学具:每人一本教材,一本笔记本,一支笔。

五、教学过程1. 实践情景引入:教师展示一幅平面图,图中包含两个角,询问学生这两个角的关系。

引导学生发现这两个角的和等于90度,从而引入余角的概念。

2. 余角的定义与性质:(1)教师讲解余角的定义,并通过示例让学生理解余角的含义。

3. 补角的定义与性质:(1)教师讲解补角的定义,并通过示例让学生理解补角的含义。

4. 余角和补角的应用:教师出示一些实际问题,让学生运用余角和补角的知识解决问题,巩固所学内容。

5. 随堂练习:教师布置一些有关余角和补角的练习题,让学生独立完成,及时巩固所学知识。

六、板书设计1. 余角的定义与性质定义:两个角的和等于90度,互为余角。

性质:互为余角的两个角,其中一个角增大或减小,另一个角也会相应地增大或减小。

2. 补角的定义与性质定义:两个角的和等于180度,互为补角。

性质:互为补角的两个角,其中一个角增大或减小,另一个角会相应地减小或增大。

余角和补角教学设计3篇

余角和补角教学设计3篇

余角和补角教学设计3篇余角和补角教学设计3篇作为一名优秀的教育工作者,常常需要准备教学设计,借助教学设计可以提高教学效率和教学质量。

我们该怎么去写教学设计呢?下面是小编收集整理的余角和补角教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

余角和补角教学设计1教学目标1、知识目标:结合具体图形认识一个角的余角和补角,掌握余角和补角的性质2、能力目标:通过观察、猜想、推理、归纳、交流等活动,发展学生空间观念,提高学生的抽象概括能力,培养学生简单的逻辑推理能力和知识运用能力。

3、情感目标:体会观察、归纳、推理对数学知识获取的重要作用,并通过看一看,想一想,猜一猜,说一说,画一画等活动发挥学生的主动作用。

重点、难点、关键1、重点:认识角的互余、互补关系及其性质。

2、难点:通过简单的推理,归纳出余角、补角的性质。

3、关键:了解推理的意义和推理过程,是掌握性质的关键。

数学准备量角器、三角板、多媒体设备。

教学过程一、设情引入(1)(2)提问:怎样把角铁(1)变成角架(2)?教师展开模型角架(2),学生观察发现:要把角铁(1)变成角架(2),需在角架(1)上截出一个缺口。

如果要把角铁(1)弯成120°的角,你知道截去的缺口是多少度吗?要求截去的缺口是多少度,实质上是求什么呢?通过今天的学习,你将会解决这些问题。

二、探究新知 1、余角和补角的概念猜一猜,量一量,图中哪两个角的和是多少?1(答:∠1+∠2=90°,∠4+∠5=90°)象这样,如果两个角的和等于90°,那么这两个角就称为互为余角,其中一个角就叫做另一个角的余角。

类似地,如下图,∠α+∠β=180°。

象这样,如果两个角的和等于180°,那么这两个就叫做互为补角,其中一个角就叫做另一个角的补角。

想一想:(1)锐角的余角是什么角?锐角的补角是什么角?直角和余角吗?钝角呢?(2)如果∠1+∠2+∠3=90°,那么∠1、∠2、∠3互余,对吗?如果∠3+∠4=180°,那么∠3与∠4互余吗?(3)说说图中哪两个角互为余角?哪两个角互为补角(多媒体出示)2、余角和补角的性质思考:(1)如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3有什么关系?由此你可得到什么结论?(2)如果∠1与∠2互余,∠3与∠4互余,且∠1=∠3,那么∠2与∠4有什么关系?由此你可得到什么结论?学生分组讨论、交流,然后共同归纳出:由(1)可得:同角的余角相等;由(2)可得:等角的余角相等。

《余角和补角》精品教案精品

《余角和补角》精品教案精品

《余角和补角》精品教案精品一、教学内容本节课选自《初中数学》八年级下册第四章《角度与三角》,具体内容包括余角和补角的定义、性质及计算。

重点章节为4.3节和4.4节,详细内容如下:1. 余角的定义及性质;2. 补角的定义及性质;3. 求解余角和补角的计算方法。

二、教学目标1. 让学生掌握余角和补角的定义,了解它们之间的关系;2. 培养学生运用余角和补角的性质解决实际问题的能力;3. 提高学生的逻辑思维能力和空间想象能力。

三、教学难点与重点1. 教学难点:余角和补角的性质及计算方法;2. 教学重点:余角和补角的定义,以及它们在实际问题中的应用。

四、教具与学具准备1. 教具:三角板、量角器、多媒体课件;2. 学具:三角板、量角器、练习本。

五、教学过程1. 导入:通过生活中的实例(如剪刀、三角板等)引出余角和补角的概念,激发学生兴趣;2. 新课导入:讲解余角和补角的定义,以及它们之间的关系;3. 例题讲解:求解具体角的余角和补角,并说明计算方法;4. 随堂练习:让学生运用所学知识解决实际问题,巩固所学;6. 课后作业布置:布置具有代表性的作业,巩固所学知识。

六、板书设计1. 定义:余角:两个角的和等于180°的两个角;补角:两个角的和等于90°的两个角。

2. 性质:余角的性质:同角的余角相等,互余角的和为180°;补角的性质:同角的补角相等,互补角的和为90°。

3. 计算方法:求解余角:180° 已知角度;求解补角:90° 已知角度。

七、作业设计1. 作业题目:(1)求下列角的余角和补角:40°,70°,120°;(2)已知一个角的余角是50°,求这个角的度数;(3)已知一个角的补角是30°,求这个角的度数。

2. 答案:(1)余角分别为:140°,110°,60°;补角分别为:50°,20°,30°;(2)这个角的度数为130°;(3)这个角的度数为60°。

七年级数学上册《余角和补角》教案、教学设计

七年级数学上册《余角和补角》教案、教学设计
1.学生对新知识充满好奇心,但可能对余角和补角的概念理解不够深入,需要通过具体实例和形象比喻帮助学生理解;
2.学生的思维逐渐从具体形象思维向抽象逻辑思维转变,但在运用余角和补角性质解决问题时,可能存在一定的困难,需要教师耐心引导;
3.学生在小组合作中表现出较强的参与意识,但在交流讨论过程中,可能存在表达不清、倾听不足等问题,需要教师适时指导;
2.针对共性问题,教师在课堂上进行讲解,确保学生掌握相关知识。
3.对学生的优秀作业进行表扬,激发学生的学习积极性。
4.鼓励学生积极参与课堂讨论,分享自己的作业成果,提高学生的自信心。
a.余角和补角的定义是什么?
b.余角和补角的性质有哪些?
c.如何运用余角和补角的性质解决实际问题?
2.学生在小组内展开讨论,分享自己的见解和想法,互相学习,共同提高。
3.教师巡回指导,关注每个小组的讨论情况,适时给予提示和指导,确保学生讨论的方向正确。
(四)课堂练习,500字
1.教师根据教学内容,设计具有代表性的练习题,让学生独立完成。
三、教学重难点和教学设想
(一)教学重难点
1.重点:余角和补角的概念、性质及判定方法;运用余角和补角知识解决实际问题。
2.难点:理解余角和补角的互补关系;在实际问题中灵活运用余角和补角知识。
(二)教学设想
1.创设情境,导入新课
通过生活中的实例,如剪刀、钟表等,引导学生观察和发现余角和补角的存在,激发学生的兴趣,为新课的学习打下基础。
4.拓展延伸,提高能力
设计具有挑战性的拓展题目,让学生在解决实际问题的过程中,进一步掌握余角和补角知识,提高学生的应用能力。
5.归纳总结,梳理提升
通过对本节课所学内容的归纳总结,帮助学生梳理知识结构,形成完整的知识体系。

《余角和补角》教案精品

《余角和补角》教案精品

《余角和补角》教案精品一、教学内容本节课我们将学习《余角和补角》的内容。

这部分内容位于教材第四章第二节,详细内容包括:余角的定义与性质,补角的定义与性质,以及如何运用这些概念解决实际问题。

二、教学目标1. 理解并掌握余角和补角的概念。

2. 学会运用余角和补角的性质解决数学问题。

3. 培养学生的逻辑思维能力和空间想象能力。

三、教学难点与重点重点:余角和补角的定义及性质。

难点:如何运用余角和补角的性质解决实际问题。

四、教具与学具准备教具:三角板、直尺、圆规、多媒体课件。

学具:三角板、直尺、圆规、练习本。

五、教学过程1. 实践情景引入利用三角板展示一个角的补角和余角,让学生观察并思考这两个角的关系。

2. 例题讲解(1)讲解余角的定义及性质,通过例题让学生学会求一个角的余角。

(2)讲解补角的定义及性质,通过例题让学生学会求一个角的补角。

3. 随堂练习(1)让学生独立完成求一个角的余角和补角的练习题。

(2)让学生互相讨论,解决实际问题中涉及余角和补角的问题。

4. 小结5. 课堂反馈了解学生对本节课内容的掌握情况,针对问题进行解答。

六、板书设计1. 余角的定义及性质2. 补角的定义及性质3. 例题及解答过程4. 课堂小结七、作业设计1. 作业题目(2)已知一个角的补角是它的2倍,求这个角。

答案:(1)30°的余角为60°,补角为150°;45°的余角为135°,补角为135°;60°的余角为120°,补角为120°;90°的余角为0°,补角为90°。

(2)设这个角为x,则其补角为180°x。

根据题意,有180°x=2x,解得x=60°。

2. 拓展延伸(1)讨论余角和补角在生活中的应用。

(2)探讨如何运用余角和补角的性质简化计算过程。

八、课后反思及拓展延伸本节课通过实践情景引入,让学生直观地理解余角和补角的概念。

4.3.3余角和补角的教案.3.3余角和补角

4.3.3余角和补角的教案.3.3余角和补角

4.3.3余角和补角的教案.3.3余角和补角4.3.3 余角和补角教学目标:1、知识技能:(1)在具体的情景中认识一个角的余角和补角,并会用文字语言、图形语言、符号语言进行描述;(2)掌握余角和补角的性质,并能初步进行简单的推理和计算。

2、过程与方法:进一步提高学生的几何语言表达能力,发展空间观念,学会简单的逻辑推理,并能对问题的结论进行归纳。

3、情感态度与价值观:在具体的情景中,通过观察、交流、推理和归纳,获得必需的数学知识,激发学生的学习兴趣。

学情分析:余角和补角是人教版七年级上册第4章《几何图形初步》第3节“角”中两个比较重要的基本概念,是后续学习图形与几何的预备知识。

通过对探索余角和补角的性质的学习,为今后证明角的相等提供了一种依据和方法。

在这之前学生已经学过角的相关概念、角的比较和度量,对角度之间的和差倍分运算、简单的几何语言有了初步的认识,推理证明过程的书写也有过初步的接触,但由于刚接触几何,对几何概念的理解和几何语言的书写还存在较多问题,对几何知识的运用还有一定的难度,普遍学生感到几何入门较难。

并且我班学生学习基础比较薄弱,识图能力较差,学生之间的基础知识、综合素质差异较大。

因此本节努力从学生最熟悉的情景入手,通过几何图形引入余角和补角的概念,然后通过做一做得到的结论推出余角和补角的性质,采取即时练习和分层练习,争取学生在原有的基础上能运用上述性质来解决问题,从而达到人人都有所收获的教学效果。

同时根据本班学生的特点和实际以及时间安排的关系,把课本例3安排在第二课时的综合练习中解决,重点难点:1、重点:余角和补角的概念和性质。

2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质并应用。

21教学过程:一、谈话导入:在前面我们学过了一些角,有些角两者之间有一定的联系,如在一幅三角板中,每一块都有一个角是90°,且另外两角为30°、60°和45°,45°那么它们两者之间有何关系呢?我们来学习4.3.3 余角和补角。

余角和补角教案

余角和补角教案

余角和补角教案一、教学目标1.了解余角和补角的概念及性质;2.掌握求解余角和补角的方法;3.能够应用余角和补角解决相关问题。

二、教学重点1.掌握余角和补角的定义和性质;2.能够灵活运用余角和补角求解问题。

三、教学内容1. 余角和补角的定义余角和补角是与一个角相加等于90度的两个角。

当两个角的和为90度时,它们互为余角;当两个角的和为180度时,它们互为补角。

2. 余角和补角的性质•余角和补角的和等于90度或180度;•余角和补角互为对立角;•余角和补角具有交换律和结合律。

3. 求解余角和补角的方法求解余角:给定角A,它的余角记作A’,则有A + A’ = 90度。

求解补角:给定角A,它的补角记作A’‘,则有A + A’’ = 180度。

4. 余角和补角的应用余角和补角在几何图形的计算中有广泛的应用,特别是在计算角的大小和角的性质时。

四、教学步骤Step 1:引入知识(5分钟)通过举例介绍余角和补角的概念,引出余角和补角的定义和性质。

Step 2:讲解求解余角和补角的方法(10分钟)详细讲解如何求解余角和补角,并通过示例演示,让学生掌握求解的具体步骤。

Step 3:练习与讨论(15分钟)给学生提供一些练习题,让他们通过求解余角和补角的方法解答,并进行讨论,加深对概念和性质的理解。

Step 4:拓展应用(15分钟)引导学生通过余角和补角的概念和性质,应用于解决几何图形相关问题,并帮助学生理解角的特性和计算方法。

Step 5:归纳总结(5分钟)对余角和补角的定义、性质和求解方法进行归纳总结,让学生更好地理解和记忆。

五、教学资源准备1.教学课件;2.打印的练习题。

六、教学评估方式1.针对练习题进行课堂讨论和答疑;2.布置相关作业,检查学生对余角和补角的理解和应用。

七、教学延伸1.深入学习角的性质和计算方法,探究其他角的概念;2.继续进行相关的几何图形计算和问题求解。

通过本节课的学习,学生能够准确理解和应用余角和补角的概念,掌握求解的具体方法,并能够应用余角和补角解决相关问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余角和补角教学设计
[教学目标]
1、在具体情境中认识余角和补角的概念,并会运用解题;
2、经历观察、操作、探究、推理、交流等活动,发展学生的空间观念,培养学生的推理能力和有条理的表达能力;
3、体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的信心。

[教学重点与难点]
1、教学重点:互为余角、互为补角的概念;
2、教学难点:应用方程的思想解决有关余角和补角的问题。

[教学准备]
多媒体课件、纸板、三角尺
[教学过程]
一、情境引入
1、带领同学们领略意大利的比萨斜塔的壮观景象,并思考:斜塔与地面所成的角度和它与竖直方向所成的角度相加为多少度?(课件演示)
2、(动手操作1)拿出一个直角纸板,将直角剪成两个角,
∠1和∠2,问:∠1和∠2的和为多少度呢?
∠1+∠2=90o,我们把具有这种关系的∠1、∠2称为互余,
其中∠1叫做∠2的余角,∠2叫做∠1的余角。

请同学们根据老师的演示试着说出余角的定义。

(设计意图:通过比萨斜塔的现实情境和剪纸这一实际操作引出余角概念,既调起学生的兴趣,又直观易懂。


二、新知探究
1、余角的定义:如果两个角的和为90o(直角),我们就称这两个角互为余角,简称互余。

2、(动手操作2)
(1)拿出和的两个角的纸板拼成一个直角,问:“这两个角互余吗?”
把其中一个角移开,“这两个角还互余吗?”
注意事项1:两角互余只与度数有关,与位置无关。

继续提问:直角三角板的和的两个角互为余角吗?老师在前面黑板上画一个的角,班长在后面黑板上画一个的角,这两个角互为余角吗?
(2)拿出一个直角纸板,将其剪成三个角,分别标上∠1、∠2、∠3,问:
“∠1、∠2、∠3是互为余角吗?为什么?”
注意事项2:互余是两角间的关系。

(设计意图:余角的两个注意事项,通过举例、现场操作,让学生说出错误观点,然后以纠错的方法得出,让学生的印象更为深刻。


3、补角的定义:如果两个角的和为(平角),我们就称这两个角互为补角,简称互补。

4、游戏一:找朋友
环节一:老师把事先准备的标有度数的角的卡片发给一些同学,并介绍了游戏规则:当老师拿出一张卡片,说要找余角(补角)朋友时,拿到它的余角(补角)的同学请立刻起立,并说:“我是一个____度的角,我是你的余角(补角)朋友!”
环节二:将班级同学分成左右两个大组,参与的同学可以向另外一组的同学提出考验:“_____
度的余(补)角是多少度?”另一组的同学要立刻回答,比一比,看一看哪个小组答得又快又正确!
(设计意图:通过轻松愉快的游戏过程拉近师生之间的距离,并让学生学会熟练地求解一个角的余角和补角。


三、例题精讲
已知:如图,点O为直线AB上一点,∠COB=,求:
(1)图中互余的角是__________与___________.
(2)图中互补的角是_______与_______;_______与________.
(3)图中相等的角是________与_________。

若(绿色圃中小学教育网 原文地址/thread-158380-1-1.html)一个角的补角等于它的余角的4倍,求这个角的度数。

分析:若设这个角是,则它的补角是(),余角是(),再依据题设中的等量关系“补角=4余角”,便可列出方程求解。

解:设这个角是,则根据题意得:
解得:
答:这个角的度数是。

点评:解决这类问题的关键是找出问题中的等量关系,运用方程的观点列方程求解。

【变式】一个角的补角是它的3倍,这个角是多少度?
四、能力拓展
(小组探究)思考:小明在计算角的补角比它的余角大多少时,由于粗心大意,将看成来计算,这对计算结果有影响吗?为什么?
(提示)1、算一算:的补角比余角大______度;
的补角比余角大_______度;
所以,这对计算结果_________影响。

3、思考:如果小明把看成来计算,对计算结果有影响吗?
4、再思考:一般地,的补角比它的余角大_______度,你能证明吗?
【牛刀小试】:
1、已知一个角的余角为,则这个角的补角为___________;
2、已知一个角的补角为,则这个角的余角为__________;
3、已知一个角的余角与它的补角的和为,则这个角的余角是多少度?
(设计意图:本探究及其3道配套练习题主要目的是拓展学生思维,让学生在合作交流中完成由特殊到一般的探究和演绎推理。


五、收获广谈
这节课我学会了……
六、课后作业
(设计意图:本节课的课后作业分为复习巩固、综合运用和拓广探索三组分层练习,目的在于使每个学生都得到最佳巩固发展。


§4.3.3余角和补角课后作业
(要求:全班同学做到第8题,学有余力的同学争取做到第10题。


一、复习巩固:
1、已知,则的余角为_______,的补角为_________;
2、已知∠A=62°23′,则∠A的余角为_______,∠A的补角为________;
3、若∠1=,则∠1的余角为____________,补角为_____________。

4、若一个角的余角为,则它的补角大小为_________;
5、若一个角比它的余角大,则这个角为________度。

二、综合运用:
6、如图,点O在直线上,∠1与∠2互余,,则的度数是()
A、B、C、D、
7、若互为补角的两个角度数比为3:2,则这两个角是()
A、B、C、D、
8、已知一个角的补角与这个角的余角的和等于,求这个角的度数。

三、拓广探索:
9、如图,已知∠COD与∠DOA互余,且∠COD比∠DOA大,OB是∠AOC的平分线,求∠BOD的度数。

10、(1)如图(a)所示,∠AOB、∠COD都是直角,试猜想∠AOD与∠COB在数量上存在相等、互余还是互补关系?你能用说理的方法说明你的猜想的正确性吗?
(2)当∠COD绕着O不停地旋转(比如旋转到图(b)的位置),你原来的猜想还成立吗?。

相关文档
最新文档