余角和补角教案

合集下载

数学教案-余角和补角

数学教案-余角和补角

数学教案-余角和补角一、教学目标1.理解余角和补角的概念。

2.掌握余角和补角的性质。

3.学会应用余角和补角的知识解决实际问题。

二、教学内容1.余角和补角的定义。

2.余角和补角的性质。

3.余角和补角的应用。

三、教学重点与难点1.重点:理解余角和补角的概念及性质。

2.难点:灵活运用余角和补角的知识解决问题。

四、教学过程第一环节:导入新课1.利用多媒体展示一张图片,图片中有两个相交的直线和一个角。

2.引导学生观察这个角,提问:“这个角有什么特点?”第二环节:探究新知1.余角的定义(1)讲解余角的定义,即一个角的余角等于90°减去这个角的度数。

(2)举例说明,如:30°的余角是60°,60°的余角是30°。

(3)让学生尝试找出几个角的余角。

2.补角的定义(1)讲解补角的定义,即一个角的补角等于180°减去这个角的度数。

(2)举例说明,如:45°的补角是135°,135°的补角是45°。

(3)让学生尝试找出几个角的补角。

3.余角和补角的性质(1)讲解余角和补角的性质,如:互为余角的两个角的和等于90°,互为补角的两个角的和等于180°。

(2)让学生通过举例验证这些性质。

第三环节:巩固练习1.让学生独立完成课本上的练习题,巩固余角和补角的概念及性质。

2.对学生的作业进行点评,指出错误和不足之处。

第四环节:拓展提高1.提问:“在日常生活中,你们能找到哪些与余角和补角有关的现象?”2.学生分享自己的发现,教师给予点评和指导。

第五环节:课堂小结2.强调余角和补角在实际生活中的重要性。

五、作业布置1.完成课后习题,巩固所学知识。

2.收集生活中的余角和补角现象,下节课分享。

六、教学反思本节课通过讲解、举例、练习等形式,让学生掌握了余角和补角的概念、性质及运用。

在教学过程中,注意引导学生主动参与,培养学生的观察能力和思维能力。

七年级数学教案余角和补角

七年级数学教案余角和补角

七年级数学教案余角和补角七年级数学教案余角和补角「篇一」教学目标:1.知识与技能:通过摸球游戏,了解并掌握计算一类事件发生可能性的方法,体会概率的意义。

2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。

3.情感与态度:通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣。

教学重点:1.概率的定义及简单的列举法计算。

2.应用概率知识解决问题。

教学难点:灵活应用概率的计算方法解决各种类型的实际问题。

教学过程:一、复习旧知1、下面事件:①在标准大气压下,水加热到100℃时会沸腾。

②掷一枚硬币,出现反面。

③三角形内角和是360°;④蚂蚁搬家,天会下雨。

不可能事件的有,必然事件有,不确定事件有。

2、任何两个偶数之和是偶数是事件;任何两个奇数之和是奇数是事件;3、欢欢和莹莹进行“剪刀、石头、布”游戏,约定“三局两胜”决定谁最终获胜,那么欢欢获胜的可能性。

4、足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?5、一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?求一个随机事件概率的基本方法是通过大量的重复试验,那么能不能不进行大量的重复试验,只通过一次试验中可能出现的结果求出随机事件的概率,这就是我们今天要探究学习的“等可能事件的概率”。

二、情境导入1、任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能性相同吗?正面朝上的概率是多少?2、这个袋子中有5个乒乓球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球,拿出来后再将球放回袋子中。

(1)会出现哪些可能的结果?(2)每种结果出现的可能性相同吗?它们的概率分别是多少?你是怎么得到概率的值?学生分组讨论,教师引导三、探究新知1、请大家观察前面的抛硬币、掷骰子和摸球游戏,它们有什么共同的特点?学生分组讨论,教师引导:(1)一次试验可能出现的结果是有限的;(2)每种结果出现的可能性相同。

数学教案-余角和补角

数学教案-余角和补角

数学教案-余角和补角一、教学目标1.了解并掌握余角和补角的概念;2.能够应用余角和补角的性质解决实际问题;3.发展学生的逻辑思维和分析问题的能力。

二、教学重点1.余角和补角的定义;2.通过余角和补角的性质解决问题。

三、教学内容1. 余角的定义和性质余角是指两个角的角度之和为90度的关系。

对于一个角A,它的余角是指与角A的度数之和为90度的另一个角。

余角的度数等于90减去角A的度数。

2. 补角的定义和性质补角是指两个角的角度之和为180度的关系。

对于一个角A,它的补角是指与角A的度数之和为180度的另一个角。

补角的度数等于180减去角A的度数。

3. 应用余角和补角解决问题通过理解和掌握余角和补角的性质,我们可以应用它们来解决一些实际问题。

例如,如果知道一个角的度数,就可以求出它的余角和补角的度数。

又或者,通过已知两个角互为余角或补角的关系,可以求出它们的度数。

四、教学步骤第一步:引入介绍余角和补角的概念,引导学生思考两个角度数之和为90度和180度的关系。

第二步:讲解余角和补角的定义详细讲解余角和补角的定义,示范通过已知一个角度数求其余角和补角的过程,让学生理解概念。

第三步:探究余角和补角的性质让学生自己观察、探索余角和补角的性质,比如余角的度数等于90减去原角的度数,补角的度数等于180减去原角的度数。

第四步:练习提供一些练习题,让学生通过计算求解角的余角和补角,并检查答案。

第五步:应用解决问题给出一些实际问题,要求学生应用余角和补角的概念和性质来解决,培养学生的应用能力和分析问题的能力。

第六步:总结与评价对本节课的内容进行总结,检查学生对余角和补角的掌握情况,并评价学生的学习效果。

五、教学评估通过课堂上的练习和实际问题的解决,评估学生对余角和补角的理解和应用能力。

六、拓展教学对于学习较快的学生,可以引导他们进一步探究余角和补角的性质以及求解更复杂的问题。

同时,可以引导学生应用余角和补角的概念解决其他几何问题。

余角和补角的教案

余角和补角的教案

余角和补角的教案教案:余角和补角一、教学内容本节课的教学内容来自小学数学教材第七章《几何图形》的第三节,主要讲述余角和补角的概念及计算方法。

教材通过具体的图形和实例,引导学生理解余角和补角的含义,学会如何找出两个角的余角和补角,并能够运用到实际问题中。

二、教学目标1. 学生能够理解余角和补角的概念,掌握它们的计算方法。

2. 学生能够通过观察和操作,找出两个角的余角和补角。

3. 学生能够运用余角和补角的知识解决实际问题。

三、教学难点与重点重点:余角和补角的概念及计算方法。

难点:如何找出两个角的余角和补角,以及如何运用到实际问题中。

四、教具与学具准备教具:黑板、粉笔、直尺、量角器。

学具:练习本、铅笔、橡皮。

五、教学过程1. 情景引入:老师:同学们,你们知道什么是余角和补角吗?今天我们就来学习这个知识点。

2. 知识讲解:老师:我们来看一下余角和补角的定义。

余角是指两个角的和等于90度的两个角,而补角是指两个角的和等于180度的两个角。

3. 例题讲解:老师:现在我们来做一些练习题。

题目一是找出两个角的余角和补角。

题目二是运用余角和补角的知识解决实际问题。

4. 随堂练习:学生们独立完成练习题,老师巡回指导。

老师:通过本节课的学习,我们知道了什么是余角和补角,以及如何计算它们的度数。

希望大家能够运用这个知识解决实际问题,并在日常生活中运用到。

六、板书设计余角:两个角的和等于90度补角:两个角的和等于180度七、作业设计1. 题目一:找出两个角的余角和补角。

答案:角A的余角是60度,补角是150度。

2. 题目二:运用余角和补角的知识解决实际问题。

答案:如果一个角是45度,那么它的余角是45度,补角是135度。

八、课后反思及拓展延伸老师:通过本节课的教学,我发现学生们对余角和补角的概念掌握得比较好,但在解决实际问题时,有些学生还是有些困难。

在今后的教学中,我将继续通过实例和练习题,帮助学生们更好地理解和运用余角和补角的知识。

余角和补角的教案

余角和补角的教案

余角和补角的教案一、教学内容本节课选自《初中数学》七年级下册第四章《角的性质与分类》,具体内容为4.3节“余角和补角”。

通过本章学习,学生已经掌握了角的分类和性质,本节将在此基础上,引导学生深入理解余角和补角的概念,并能运用其解决实际问题。

二、教学目标1. 知识与技能:学生能够理解并掌握余角和补角的概念,能够准确找出余角和补角,并运用其进行计算。

2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维能力和空间想象能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作意识和探究精神。

三、教学难点与重点重点:余角和补角的概念及其运用。

难点:找出角的余角和补角,并能熟练进行计算。

四、教具与学具准备三角板、量角器、直尺、圆规等。

五、教学过程1. 实践情景引入教师展示一组图片(如剪刀、钟表等),引导学生观察并找出其中的角,为新课的学习做好铺垫。

2. 新课导入(1)教师引导学生复习角的性质和分类。

(2)教师提出问题:“如果两个角的和等于90度,那么这两个角有什么关系?”引导学生思考。

(3)教师给出余角的概念,并引导学生找出角的余角。

(4)教师通过例题讲解,让学生掌握找出余角的方法。

3. 例题讲解(1)找出下列角的余角:① 30°② 45°③ 60°(2)如果一个角的余角比这个角小30度,求这个角的度数。

4. 随堂练习(1)找出下列角的余角:① 20°② 35°③ 55°(2)已知一个角的度数,求它的余角。

5. 补角的引入(1)教师提出问题:“如果两个角的和等于180度,那么这两个角有什么关系?”引导学生思考。

(2)教师给出补角的概念,并引导学生找出角的补角。

6. 例题讲解(1)找出下列角的补角:① 90°② 60°③ 120°(2)已知一个角的补角,求这个角的度数。

7. 随堂练习(1)找出下列角的补角:① 30°② 45°③ 75°(2)已知一个角的度数,求它的补角。

4.3.3余角和补角的教案.3.3余角和补角

4.3.3余角和补角的教案.3.3余角和补角

4.3.3余角和补角的教案.3.3余角和补角4.3.3 余角和补角教学目标:1、知识技能:(1)在具体的情景中认识一个角的余角和补角,并会用文字语言、图形语言、符号语言进行描述;(2)掌握余角和补角的性质,并能初步进行简单的推理和计算。

2、过程与方法:进一步提高学生的几何语言表达能力,发展空间观念,学会简单的逻辑推理,并能对问题的结论进行归纳。

3、情感态度与价值观:在具体的情景中,通过观察、交流、推理和归纳,获得必需的数学知识,激发学生的学习兴趣。

学情分析:余角和补角是人教版七年级上册第4章《几何图形初步》第3节“角”中两个比较重要的基本概念,是后续学习图形与几何的预备知识。

通过对探索余角和补角的性质的学习,为今后证明角的相等提供了一种依据和方法。

在这之前学生已经学过角的相关概念、角的比较和度量,对角度之间的和差倍分运算、简单的几何语言有了初步的认识,推理证明过程的书写也有过初步的接触,但由于刚接触几何,对几何概念的理解和几何语言的书写还存在较多问题,对几何知识的运用还有一定的难度,普遍学生感到几何入门较难。

并且我班学生学习基础比较薄弱,识图能力较差,学生之间的基础知识、综合素质差异较大。

因此本节努力从学生最熟悉的情景入手,通过几何图形引入余角和补角的概念,然后通过做一做得到的结论推出余角和补角的性质,采取即时练习和分层练习,争取学生在原有的基础上能运用上述性质来解决问题,从而达到人人都有所收获的教学效果。

同时根据本班学生的特点和实际以及时间安排的关系,把课本例3安排在第二课时的综合练习中解决,重点难点:1、重点:余角和补角的概念和性质。

2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质并应用。

21教学过程:一、谈话导入:在前面我们学过了一些角,有些角两者之间有一定的联系,如在一幅三角板中,每一块都有一个角是90°,且另外两角为30°、60°和45°,45°那么它们两者之间有何关系呢?我们来学习4.3.3 余角和补角。

余角和补角教案

余角和补角教案

余角和补角教案一、教学目标1.了解余角和补角的概念及性质;2.掌握求解余角和补角的方法;3.能够应用余角和补角解决相关问题。

二、教学重点1.掌握余角和补角的定义和性质;2.能够灵活运用余角和补角求解问题。

三、教学内容1. 余角和补角的定义余角和补角是与一个角相加等于90度的两个角。

当两个角的和为90度时,它们互为余角;当两个角的和为180度时,它们互为补角。

2. 余角和补角的性质•余角和补角的和等于90度或180度;•余角和补角互为对立角;•余角和补角具有交换律和结合律。

3. 求解余角和补角的方法求解余角:给定角A,它的余角记作A’,则有A + A’ = 90度。

求解补角:给定角A,它的补角记作A’‘,则有A + A’’ = 180度。

4. 余角和补角的应用余角和补角在几何图形的计算中有广泛的应用,特别是在计算角的大小和角的性质时。

四、教学步骤Step 1:引入知识(5分钟)通过举例介绍余角和补角的概念,引出余角和补角的定义和性质。

Step 2:讲解求解余角和补角的方法(10分钟)详细讲解如何求解余角和补角,并通过示例演示,让学生掌握求解的具体步骤。

Step 3:练习与讨论(15分钟)给学生提供一些练习题,让他们通过求解余角和补角的方法解答,并进行讨论,加深对概念和性质的理解。

Step 4:拓展应用(15分钟)引导学生通过余角和补角的概念和性质,应用于解决几何图形相关问题,并帮助学生理解角的特性和计算方法。

Step 5:归纳总结(5分钟)对余角和补角的定义、性质和求解方法进行归纳总结,让学生更好地理解和记忆。

五、教学资源准备1.教学课件;2.打印的练习题。

六、教学评估方式1.针对练习题进行课堂讨论和答疑;2.布置相关作业,检查学生对余角和补角的理解和应用。

七、教学延伸1.深入学习角的性质和计算方法,探究其他角的概念;2.继续进行相关的几何图形计算和问题求解。

通过本节课的学习,学生能够准确理解和应用余角和补角的概念,掌握求解的具体方法,并能够应用余角和补角解决相关问题。

初中数学:余角补角教案

初中数学:余角补角教案

初中数学:余角补角教案教学目标:1. 理解余角和补角的概念。

2. 学会计算两个角的余角和补角。

3. 能够应用余角和补角解决实际问题。

教学重点:1. 余角和补角的概念。

2. 计算两个角的余角和补角的方法。

教学难点:1. 理解并应用余角和补角解决实际问题。

教学准备:1. 教学课件或黑板。

2. 尺子和量角器。

教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的角的分类,如锐角、直角、钝角等。

2. 提问:如果两个角的和等于90度,这两个角叫做什么角?3. 学生回答后,解释并引入余角的概念。

二、新课讲解(15分钟)1. 讲解余角的定义:如果两个角的和等于90度,这两个角互为余角。

2. 举例说明如何计算两个角的余角:如30度和60度的和是90度,30度和60度互为余角。

3. 讲解补角的定义:如果两个角的和等于180度,这两个角互为补角。

4. 举例说明如何计算两个角的补角:如30度和150度的和是180度,30度和150度互为补角。

三、课堂练习(10分钟)1. 让学生独立完成练习题,计算两个角的余角和补角。

2. 教师选取部分学生的作业进行讲解和评价。

四、应用拓展(10分钟)1. 给学生出示实际问题,如一副三角板,其中一个角的度数是30度,问另一角的度数是多少?2. 引导学生应用余角和补角的知识解决问题。

五、总结(5分钟)1. 回顾本节课所学的内容,让学生回答余角和补角的概念及计算方法。

2. 强调余角和补角在实际问题中的应用。

教学反思:本节课通过讲解余角和补角的概念及计算方法,让学生能够理解并应用这两个概念解决实际问题。

在课堂练习环节,学生独立完成练习题,巩固了所学知识。

在应用拓展环节,学生能够将余角和补角的知识应用到实际问题中,提高了解决问题的能力。

总体来说,本节课达到了预期的教学目标。

六、实例分析:生活中的余角与补角(10分钟)1. 教师展示生活中常见的实例,如墙角、门窗角等,引导学生观察并指出其中的余角和补角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余角和补角
教学目标:
1.理解余角与补角的概念
2.能用规范的数学符号语言描述余角、补角,并进行相关的求角问题的计算
3.理解有关余角、补角的两个命题
重点与难点;余角、补角的概念、性质
教学过程:
一,课堂导入
前面我们学习了角的相关内容(如角的定义,角的分类,角的计算,画角的和差,角的平分线等)。

我们今天要研究的内容是关于两个角之间特殊数量关系的:余角和补角.
二,新课:
1.余角,补角的概念:
①如果两个角的和等于 90°(直角),就说这两个角互为余角。

符号语言:
如果∠1+∠2= 90°,那么∠1和∠2互为余角。

反之也成立:
如果∠1与∠2互为余角,那么∠1+∠2= 90°。

②如果两个角的和等于 180度 ( 平角 ),就说这两个角互为补角。

符号语言:
如果∠1+∠2= 180°,那么∠1和∠2互为补角。

反之也成立:
如果∠1与∠2互为补角,那么∠1+∠2= 180°。

概念关键点:互为余角、互为补角的两个角只与它们的和有关,与它们的位置无关。

两个角在不在一起没关系,主要看它们的和是多少。

2.求出一个角的余角、补角
试一试:(1、图中给出的各角中,哪些互为余角,哪些互为补角)
∠α∠α的余角∠α的补角

32°
45°
62°23′
77°38′45″
x
1.所有的角都有余角吗?
2.所有的角都有补角吗?
3.一个角的余角的表示:()
一个角的补角的表示:()
4.同一个角的补角比它的余角大多少度?
3 利用角的数量关系列方程求解
例1 若一个角的补角等于它的余角的3倍,求这个角的度数。

解设这个角为x度,则它的补角为(180-x)度,它的余角为(90-x)度180-x=3(90-x)
X=45
答:这个角为45°
(练习:若一个角的补角比它的余角的2倍多25度,求这个角)
4 余角、补角的性质
通过观察得到:
同角(等角)的余角相等
同角(等角)的补角相等
三、练习
书105页
四、小结
我们今天学习了……..
五、作业
练习册7.6。

相关文档
最新文档