中考专题复习——二次根式
中考数学总复习《二次根式》练习题附带答案

中考数学总复习《二次根式》练习题附带答案一、单选题1.√123÷√213×√125值为()A.1B.3C.√33D.√7 2.若√(a−b)2=b﹣a,则()A.a>b B.a<b C.a≥b D.a≤b 3.与√a3b不是同类次根式的是()A.1√abB.√baC.√ab2D.√ba34.下列运算正确的是()A.√3+3=3√3B.4√2−√2=4C.√2+√3=√5D.3√3−√3=2√35.若代数式1x−1+√x有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1 6.a、b在数轴上的位置如图所示,那么化简√(b−a)2的结果是()A.a-b B.a+b C.b-a D.-a-b7.设实数a,b在数轴上对应的位置如图所示,化简√a2+|a+b|的结果是()A.-2a+b B.2a+b C.-b D.b8.若√3−m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>39.下列运算正确的是()A.(x−y)2=x2−y2B.|√3−2|=2−√3C.√8−√3=√5D.﹣(﹣a+1)=a+110.已知2<a<4,则化简√1−2a+a2+√a2−8a+16的结果是() A.2a﹣5B.5﹣2a C.﹣3D.311.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4 12.下列计算正确的是()A.(m−n)2=m2−n2B.(2ab3)2=2a2b6C.√8a3=2a√a D.2xy+3xy=5xy 二、填空题13.计算:√45﹣√25× √50=.14.若√12x是一个整数,则x可取的最小正整数是3.(判断对错)15.计算:√24−√12√3=.16.如果x2﹣3x+1=0,则√x2+1x2−2的值是.17.化简:√75=.18.已知实数a,b,c在数轴上的位置如图所示,化简代数式√a2−|a+c|+√(b−c)2−|−b|三、综合题19.完成下列问题:(1)若n(n≠0)是关于x的方程x2+mx+2n=0的根,求m+n的值;(2)已知x,y为实数,且y= √2x−5+√5−2x﹣3,求2xy的值.20.阅读材料,解答问题:(1)计算下列各式:①√4×9=,√4×√9=;②√16×25=,√16×√25=.通过计算,我们可以发现√a×b=(a>0,b>0)从上面的结果可以得到:√8=√2×√4=2√2,√12=√3×√4=2√3(2)根据上面的运算,完成下列问题①化简:√24②计算:√27+√48③化简:√a2b(a>0,b>0)21.在数学课外学习活动中,小明和他的同学遇到一道题:已知a=12+√3,求2a2−8a+1的值.他是这样解答的:∵a=2+√3=√3(2+√3)(2−√3)=2−√3,∴a−2=−√3∴(a−2)2=3,a2−4a+4=3∴a2−4a=−1∴2a2−8a+1=2(a2−4a)+1=2×(−1)+1=−1.请你根据小明的解析过程,解决如下问题:(1)1√3+√2=;(2)化简 √2+1+√3+√2√4+√3⋯+√256+√255 ; (3)若 a =√10−3,求 a 4−6a 3+a 2−12a +3 的值. 22.已知 x =√3+12 , y =√3−12与 m =xy 和 n =x 2−y 2 . (1)求m ,n 的值;(2)若 √a −√b =m +72, √ab =n 2 求 √a +√b 的值. 23.计算: (1)√135•2 √3 •(﹣ 12 √10 ); (2)√3a 2b •( √b a ÷2 √1b). 24.计算下列各题 (1)计算:( 12 )﹣2﹣6sin30°﹣( √7−√5)0+ √2 +| √2 ﹣ √3 | (2)化简:( x+2x 2−2x ﹣ x−1x 2−4x+4 )÷ x−4x ,然后请自选一个你喜欢的x 值,再求原式的值.参考答案1.【答案】A2.【答案】D3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】√514.【答案】对15.【答案】2√2−216.【答案】√517.【答案】5√318.【答案】019.【答案】(1)将x=n 代入方程x 2+mx+2n=0得n 2+mn+2n=0,则n(n+m+2)=0 因为n≠0,所以n+m+2=0即m+n=-2.(2)因为y=√2x −5+√5−2x -3有意义,则{2x −5≥05−2x ⩾0解得{x ⩾52x ≤52则x=52 所以y=0+0-3=-3即2xy=2×52×(-3)=-15. 20.【答案】(1)6;6;20;20;√a ×√b(2)解:①√24=√4×6=√4×√6=2√6;②√27+√48=√3×9+√3×16=√3×√9+√3×√16=3√3+4√3=7√3 ;③√a 2b =√a 2⋅√b =a √b (a >0,b >0).21.【答案】(1)√3−√2(2)解:原式 =√2−1+√3−√2+√4−√3+⋯+√256−√255=−1+√2−√2+√3−√3+√4−⋯−√255+√256=√256−1=16−1=15 ;(3)解: ∵ a =√10−3 =√10+3 ∴a −3=√10∴(a −3)2=10即 a 2−6a +9=10 .∴a 2−6a =1 .∴a 4−6a 3=a 2∴a 4−6a 3+a 2−12a +3=2a 2−12a +3=2(a 2−6a)+3=2+3=5 .22.【答案】(1)解:由题意得, m =xy =√3+12×√3−12=12 n =(x +y)(x −y)=(√3+12+√3−12)(√3+12−√3−12)=√3 (2)解:由(1)得, √a −√b =4 √ab =3 ∴(√a +√b)2=(√a −√b)2+4√ab =42+4×3=28∵√a +√b >0∴√a +√b =2√723.【答案】(1)解: √135 •2 √3 •(﹣ 12 √10 ) =2×(﹣ 12 ) √135×3×10 =﹣ √16×3=﹣4 √3(2)解: √3a 2b •( √b a ÷2 √1b)= √3a2b × √ba× 12× √b= √3424.【答案】(1)解:原式=4﹣6× 12﹣1+ √2+ √3﹣√2 = √3;(2)解:原式=[x+2x(x−2)﹣x−1(x−2)2]•xx−4= (x+2)(x−2)−x(x−1)x(x−2)2•xx−4=x−4x(x−2)2•xx−4=1 (x−2)2当x=10时,原式= 1 64.。
中考数学总复习《二次根式》专项测试卷含答案

中考数学总复习《二次根式》专项测试卷含答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.若式子√2m-3有意义,则m的取值范围是( )A.m≤23B.m≥-32C.m≥32D.m≤-232.若二次根式√2-x在实数范围内有意义,则实数x的取值范围在数轴上表示正确的是( )3.(已知实数a=√3(√3+√5)(√5-√3),则下列判断正确的是( )A.2<a<3B.3<a<4C.4<a<5D.1<a<34.(2024·青岛一模)下列运算正确的是( )A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24÷√6=45.(2024·盐城中考)矩形相邻两边长分别为√2cm、√5cm,设其面积为S cm2,则S 在哪两个连续整数之间( )A.1和2B.2和3C.3和4D.4和56.(2024·贵州中考)计算√2×√3的结果是.7.(2024·广安中考)3-√9=.8.(2024·济宁二模)计算:√8+|√2-1|-sin 45°+(√2+π)0.9.计算:√27÷√32×2√2-6√2.B 层·能力提升10.(2024·广东中考)完全相同的4个正方形面积之和是100,则正方形的边长是( ) A .2B .5C .10D .2011.(2024·德阳中考)将一组数√2,2,√6,2√2,√10,2√3,…,√2n ,…,按以下方式进行排列:则第八行左起第1个数是( )A .7√2B .8√2C .√58D .4√712.(2024·济宁北湖区三模)若x =√3-1,则代数式x 2+2x +3的值为( ) A .7B .4√3C .3-2√3D .513.(2024·泰安一模)斐波那契数列中的第n 个数可以用√5[(1+√52)n -(1-√52)n]表示(其中n ≥1),这是用无理数表示有理数的一个范例,请计算斐波那契数列中的第2个数的值是 .14.(2024·滨州三模)计算:√3-(√3-2)0-|-√12|+(12)-1+tan 60°.15.(2024·东营三模)先化简,再求值:(xx -1-1)÷x 2+2x+1x 2-1,其中x =√3-2.C层·素养挑战16.阅读下面材料:将边长分别为a,a+√b,a+2√b,a+3√b的正方形面积分别记为S1,S2,S3,S4.则S2-S1=(a+√b)2-a2=[(a+√b)+a]·[(a+√b)-a]=(2a+√b)·√b=b+2a√b.例如:当a=1,b=3时,S2-S1=3+2√3.根据以上材料解答下列问题:(1)当a=1,b=3时,S3-S2=9+2√3,S4-S3=15+2√3;(2)当a=1,b=3时,把边长为a+n√b的正方形面积记作S n+1,其中n是正整数,从(1)中的计算结果,你能猜出S n+1-S n等于多少吗?并证明你的猜想;(3)当a=1,b=3时,令t1=S2-S1,t2=S3-S2,t3=S4-S3,…,t n=S n+1-S n,且T=t1+t2+t3+…+t50,求T 的值.参考答案A层·基础过关1.(2024·绥化中考)若式子√2m-3有意义,则m的取值范围是(C)A.m≤23B.m≥-32C.m≥32D.m≤-232.(若二次根式√2-x在实数范围内有意义,则实数x的取值范围在数轴上表示正确的是(C)3.(已知实数a=√3(√3+√5)(√5-√3),则下列判断正确的是(B)A.2<a<3B.3<a<4C.4<a<5D.1<a<34.(2024·青岛一模)下列运算正确的是(C)A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24÷√6=45.(2024·盐城中考)矩形相邻两边长分别为√2cm、√5cm,设其面积为S cm2,则S 在哪两个连续整数之间(C)A.1和2B.2和3C.3和4D.4和56.(2024·贵州中考)计算√2×√3的结果是√6.7.(2024·广安中考)3-√9=0.8.(2024·济宁二模)计算:√8+|√2-1|-sin 45°+(√2+π)0.【解析】√8+|√2-1|-sin 45°+(√2+π)0=2√2+√2-1-√22+1=5√22.9.计算:√27÷√32×2√2-6√2.【解析】原式=3√3×√3×2√2-6√2=12√2-6√2=6√2.B 层·能力提升10.(2024·广东中考)完全相同的4个正方形面积之和是100,则正方形的边长是(B) A .2B .5C .10D .2011.(2024·德阳中考)将一组数√2,2,√6,2√2,√10,2√3,…,√2n ,…,按以下方式进行排列:则第八行左起第1个数是(C)A .7√2B .8√2C .√58D .4√712.(2024·济宁北湖区三模)若x =√3-1,则代数式x 2+2x +3的值为(D) A .7B .4√3C .3-2√3D .513.(2024·泰安一模)斐波那契数列中的第n 个数可以用√5[(1+√52)n -(1-√52)n]表示(其中n ≥1),这是用无理数表示有理数的一个范例,请计算斐波那契数列中的第2个数的值是 1 .14.(2024·滨州三模)计算:√3-(√3-2)0-|-√12|+(12)-1+tan 60°.【解析】√3-(√3-2)0-|-√12|+(12)-1+tan 60°=√3-1-2√3+2+√3 =115.(2024·东营三模)先化简,再求值:(xx -1-1)÷x 2+2x+1x 2-1,其中x =√3-2. 【解析】(xx -1-1)÷x 2+2x+1x 2-1=(x x -1-x -1x -1)÷(x+1)2(x+1)(x -1)=1x -1·x -1x+1=1x+1当x =√3-2时 原式=√3-2+1=√3-1=√3+12. C 层·素养挑战16.阅读下面材料:将边长分别为a ,a +√b ,a +2√b ,a +3√b 的正方形面积分别记为S 1,S 2,S 3,S 4. 则S 2-S 1=(a +√b )2-a 2 =[(a +√b )+a ]·[(a +√b )-a ] =(2a +√b )·√b =b +2a √b .例如:当a =1,b =3时,S 2-S 1=3+2√3. 根据以上材料解答下列问题:(1)当a =1,b =3时,S 3-S 2=9+2√3,S 4-S 3=15+2√3;【解析】(1)S 3-S 2=(a +2√b )2-(a +√b )2=a 2+4a √b +4b -a 2-2a √b -b =2a √b +3b当a =1,b =3时,S 3-S 2=9+2√3;S 4-S 3=(a +3√b )2-(a +2√b )2=a 2+6a √b +9b -a 2-4a √b -4b =2a √b +5b 当a =1,b =3时,S 4-S 3=15+2√3;(2)当a =1,b =3时,把边长为a +n √b 的正方形面积记作S n +1,其中n 是正整数,从(1)中的计算结果,你能猜出S n +1-S n 等于多少吗?并证明你的猜想; 【解析】(2)S n +1-S n =6n -3+2√3; 证明如下:S n +1-S n =(1+√3n )2-[1+√3(n -1)]2=[2+√3(2n-1)]×√3=3(2n-1)+2√3=6n-3+2√3;(3)当a=1,b=3时,令t1=S2-S1,t2=S3-S2,t3=S4-S3,…,t n=S n+1-S n,且T=t1+t2+t3+…+t50,求T 的值.【解析】(3)当a=1,b=3时,T=t1+t2+t3+…+t50=S2-S1+S3-S2+S4-S3+…+S51-S50=S51-S1=(1+50√3)2-1=7 500+100√3.。
中考数学总复习《二次根式》专项检测卷带答案

中考数学总复习《二次根式》专项检测卷带答案学校:___________班级:___________姓名:___________考号:___________A组基础过关1.计算:(√5)2=.2.计算:√16=.3.若二次根式√x-2有意义,则x的取值范围是.有意义,则x的取值范围是.4.若式子√x+5x5.25的平方根是,√9的算术平方根是,-1的立8方根是.6.若m,n为实数,且(m+4)2+√n-5=0,则(m+n)2的值为.7.下列运算正确的是()A.√2+√3=√5B.2√2×3√2=6√2C.√8÷√2=2D.3√2-√2=38.估计√12×(√2+√3)的值应在()A.8和9之间B.9 和10 之间C.10 和11之间D.11和12之间化简为a+b√7,其中a,b为整数,则a+b的值为9.将4-√7()A.5B.3C.-9D.-1510.计算:(1)√2×√50-(1-√3)0;(2)(√5+3)(√5-3)-(√3-1)2.11.已知x=√3+1,y=√3-1,求下列各式的值.(1)x2+2xy+y2; (2)x2-y2.B组能力提升12.如图,四边形ABCD,DEFG,GHIJ均为正方形,且S正方形ABCD =10,S正方形GHIJ=1,则正方形DEFG的边长可以是.(写出一个答案即可)13.设6-√10的整数部分为a,小数部分为b,则(2a+√10)b的值是()A.6B.2√10C.12D.9√1014.观察下列等式,解答下面的问题.①√1+13=2√13;②√2+14=3√14;③√3+15=4√15;….(1)请直接写出第⑤个等式是;(不用化简)(2)根据上述规律猜想:若n为正整数,请用含n的式子表示第n个等式,并给予证明.15.图1,图2,图3均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A,B均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作△ABC,点C在格点上.(1)在图1中,△ABC的面积为92;(2)在图2中,△ABC的面积为5;(3)在图3中,△ABC是面积为32的钝角三角形.C组中考创新思维16.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦——秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=a+b+c,那么三角形的面积为S=2√p(p-a)(p-b)(p-c).如图,在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为()A.6√6B.6√3C.18D.192参考答案A组基础过关1.计算:(√5)2=5.2.计算:√16=4.3.若二次根式√x-2有意义,则x的取值范围是x≥2.有意义,则x的取值范围是x≥-5且x≠0.4.若式子√x+5x的立方5.25的平方根是±5,√9的算术平方根是√3,-18根是-1.26.若m,n为实数,且(m+4)2+√n-5=0,则(m+n)2的值为1.7.下列运算正确的是(C)A.√2+√3=√5B.2√2×3√2=6√2C.√8÷√2=2D.3√2-√2=38.估计√12×(√2+√3)的值应在(C)A.8和9之间B.9 和10 之间C.10 和11之间D.11和12之间化简为a+b√7,其中a,b为整数,则a+b的值为(A) 9.将4-√7A.5B.3C.-9D.-1510.计算:(1)√2×√50-(1-√3)0;解:(1)原式=10-1=9.(2)(√5+3)(√5-3)-(√3-1)2.(2)原式=5-9-(3+1-2√3)=-8+2√3.11.已知x=√3+1,y=√3-1,求下列各式的值.(1)x2+2xy+y2; (2)x2-y2.解:(1)原式=(x+y)2=(√3+1+√3-1)2=(2√3)2=12.(2)原式=(x+y)(x-y)=2√3×2=4√3.B组能力提升12.如图,四边形ABCD,DEFG,GHIJ均为正方形,且S正方形ABCD =10,S正方形GHIJ=1,则正方形DEFG的边长可以是(大于1小于√10的数都可以)2.(写出一个答案即可)13.设6-√10的整数部分为a,小数部分为b,则(2a+√10)b的值是(A)A.6B.2√10C.12D.9√1014.观察下列等式,解答下面的问题.①√1+13=2√13;②√2+14=3√14;③√3+15=4√15;….(1)请直接写出第⑤个等式是 √5+17=6√17;(不用化简)(2)根据上述规律猜想:若n 为正整数,请用含n 的式子表示第n 个等式,并给予证明. 解:(2)√n +1n+2=(n +1)√1n+2.证明:√n +1n+2=√n 2+2n+1n+2=√(n+1)2n+2=(n +1)√1n+2.15.图1,图2,图3均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.点A ,B 均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作△ABC ,点C 在格点上.(1)在图1中,△ABC 的面积为92;(2)在图2中,△ABC 的面积为5;(3)在图3中,△ABC 是面积为32的钝角三角形.解:(答案不唯一)(1)如图1,△ABC 即为所求. (2)如图2,△ABC 即为所求. (3)如图3,△ABC 即为所求. C 组 中考创新思维16.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦——秦九韶公式:如果一个三角形,那么三角形的面积为S=的三边长分别是a,b,c,记p=a+b+c2√p(p-a)(p-b)(p-c).如图,在△ABC中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为(A)A.6√6B.6√3C.18D.192。
中考复习——二次根式的有关概念(解析版)

中考复习——二次根式的有关概念 一、选择题
1、式子2x在实数范围内有意义,则x的取值范围是( ). A. x≥0 B. x≥-2 C. x≤2 D. x≥2 答案:D
解答:由式子2x在实数范围内有意义, ∴x-2≥0, ∴x≥2. 选D. 2、下列各式是最简二次根式的是( ).
A. 13 B. 12 C. 2 a D. 53 答案:A 解答:A选项:13是最简二次根式,选项正确; B选项:12=23,不是最简二次根式,选项错误; C选项:2a
=|a|,不是最简二次根式,选项错误;
D选项:53=153,不是最简二次根式,选项错误.
选A. 3、函数y=21xx中自变量x的取值范围是( ).
A. x≥-2且x≠1 B. x≥-2 C. x≠1 D. -2≤x<1 答案:A 解答:根据二次根式有意义,分式有意义得:x+2≥0且x-1≠0, 解得:x≥-2且x≠1. 选A.
4、二次根式2x中字母x的取值范围是( ). A. x>2 B. x≠2 C. x≥2 D. x≤2 答案:C 解答:由题意可知:x-2≥0,则x≥2. 选C.
5、式子1x在实数范围内有意义,则x的取值范围是( ). A. x≥0 B. x≥-1 C. x≥1 D. x≤1 答案:C
解答:要使1x有意义, ∴x-1≥0, x≥1, 选C.
6、化简12的结果是( ). A. 43 B. 23 C. 32 D. 26 答案:B 解答:12=23. 选B. 7、要使二次根式3x有意义,则x的值可以是( ). A. 0 B. 1 C. 2 D. 4 答案:D
解答:要使3x有意义, 则x-3≥0, ∴x≥3, ∴x可以是4. 选D.
8、下列二次根式中,与3是同类二次根式的是( ). A. 6 B. 9 C. 12 D. 18 答案:C 解答:A选项:6与3的被开方数不相同,故不是同类二次根式; B选项:9=3,与3不是同类二次根式; C选项:12=23,与3被开方数相同,故是同类二次根式; D选项:18=32,与3被开方数不同,故不是同类二次根式. 选C. 9、函数y=21x中的自变量x的取值范围是( ). A. x≠12 B. x≥1 C. x>12 D. x≥12 答案:D 解答:函数y=21x中:2x-1≥0, 解得:x≥12. 选D. 误. 选B. 10、函数y=13x+2x的自变量x的取值范围是( ). A. x≥2,且x≠3 B. x≥2 C. x≠3 D. x>2,且x≠3 答案:A 解答:依题意可得x-3≠0,x-2≥0, 解得x≥2,且x≠3. 选A.
2024中考数学复习核心知识点精讲及训练—二次根式(含解析)

2024中考数学复习核心知识点精讲及训练—二次根式(含解析)1.了解二次根式的概念及其有意义的条件.2.了解最简二次根式的概念,并会把二次根式化成最简二次根式.3.掌握二次根式(根号下仅限于数)加、减、乘、除、乘方运算法则,会用它们进行有管的简单四则运算.【题型1:二次根式有意义的条件】【典例1】(2023•济宁)若代数式有意义,则实数x的取值范围是()A.x≠2B.x≥0C.x≥2D.x≥0且x≠2【答案】D【解答】解:由题意得x≥0且x﹣2≠0,解得x≥0且x≠2,故选:D.1.(2023•金华)要使有意义,则x的值可以是()A.0B.﹣1C.﹣2D.2【答案】D【解答】解:由题意得:x﹣2≥0,解得:x≥2,则x的值可以是2,故选:D.2.(2023•通辽)二次根式在实数范围内有意义,则实数x的取值范围在数轴上表示为()A.B.C.D.【答案】C【解答】解:二次根式在实数范围内有意义,则1﹣x≥0,解得:x≤1,则实数x的取值范围在数轴上表示为:.故选:C.3.(2023•湘西州)若二次根式在实数范围内有意义,则x的取值范围是x≥5.【答案】x≥5.【解答】解:由二次根式在实数范围内有意义可得:2x﹣10≥0,解得:x≥5;故答案为:x≥5.【题型2:二次根式的性质】【典例2】(2023•泰州)计算等于()A.±2B.2C.4D.【答案】B【解答】解:=2.故选:B.1.(2021•苏州)计算()2的结果是()A.B.3C.2D.9【答案】B【解答】解:()2=3.故选:B.2.(2023•青岛)下列计算正确的是()A.B.C.D.【答案】C【解答】解:与无法合并,则A不符合题意;2﹣=,则B不符合题意;×==,则C符合题意;÷3==,则D不符合题意;故选:C.3.(2021•娄底)2、5、m是某三角形三边的长,则+等于()A.2m﹣10B.10﹣2m C.10D.4【答案】D【解答】解:∵2、5、m是某三角形三边的长,∴5﹣2<m<5+2,故3<m<7,∴+=m﹣3+7﹣m=4.故选:D.4.(2022•遂宁)实数a、b在数轴上的位置如图所示,化简|a+1|﹣+=2.【答案】2.【解答】解:由数轴可得,﹣1<a<0,1<b<2,∴a+1>0,b﹣1>0,a﹣b<0,∴|a+1|﹣+=a+1﹣(b﹣1)+(b﹣a)=a+1﹣b+1+b﹣a=2,故答案为:2.【题型3:二次根式的运算】【典例3】(2023•金昌)计算:÷×2﹣6.【答案】6.【解答】解:原式=3××2﹣6=12﹣6=6.1.(2023•聊城)计算:(﹣3)÷=3.【答案】3.【解答】解:原式=(4﹣3×)÷=(4﹣)÷=3÷=3.故答案为:3.2.(2023•山西)计算:的结果为﹣1.【答案】﹣1.【解答】解:原式=()2﹣()2=2﹣3=﹣1.故答案为:﹣1.3.(2023•兰州)计算:.【答案】.【解答】解:原式=3﹣2=.4.(2023•陕西)计算:.【答案】2﹣2.【解答】解:原式=﹣3++1=2﹣3+1=2﹣2.1.(2023秋•福鼎市期中)下列各数不能与合并的是()A.B.C.D.【答案】B【解答】解:A、∵==,∴能与合并,故A不符合题意;B、∵=2,∴不能与合并,故B符合题意;C、∵=3,∴能与合并,故C不符合题意;D、∵=4,∴能与合并,故D不符合题意;故选:B.2.(2023秋•云岩区校级期中)下列式子中,属于最简二次根式的是()A.B.C.D.【答案】D【解答】解:A、==,被开方数含分母,不是最简二次根式,不符合题意;B、==4,被开方数中含能开得尽方的因数,不是最简二次根式,不符合题意;C、=,被开方数含分母,不是最简二次根式,不符合题意;D、是最简二次根式,符合题意;故选:D.3.(2022秋•泉州期末)若二次根式有意义,则x的取值范围是()A.x<3B.x≠3C.x≤3D.x≥3【答案】C【解答】解:∵二次根式有意义,∴3﹣x≥0,解得:x≤3.故选:C.4.(2023秋•龙泉驿区期中)下列运算中,正确的是()A.B.C.D.【答案】D【解答】解:A、±=±3,故A不符合题意;B、与﹣不能合并,故B不符合题意;C、2﹣=,故C不符合题意;D、÷=,故D符合题意;故选:D.5.(2023秋•锦江区校级期中)若a>b>0,则的结果是()A.a B.2b﹣a C.a﹣2b D.﹣a 【答案】A【解答】解:∵a>b>0,∴+=|b|+|b﹣a|=b+a﹣b=a,故选:A.6.(2023春•河东区期中)把x根号外的因数移到根号内,结果是()A.B.C.﹣D.﹣【答案】C【解答】解:由x可知x<0,所以x=﹣=﹣,故选:C.7.(2023春•铁岭县期末)计算:的结果是()A.2B.0C.﹣2D.﹣【答案】B【解答】解:=﹣=2﹣2=0,故选:B.8.(2023春•抚顺月考)二次根式的计算结果是()A.B.C.±D.【答案】B【解答】解:==×=3,故选:B.9.(2023春•西丰县期中)已知a=+2,b=﹣2,则a﹣b的值是()A.2B.4C.2+4D.2﹣4【答案】B【解答】解:∵a=+2,b=﹣2,∴a﹣b=+2﹣(﹣2)=+2﹣+2=4,故选:B.10.(2023春•工业园区期末)下列各组二次根式中,是同类二次根式的是()A.与B.与C.与D.与【答案】D【解答】解:A、∵=2,∴与不是同类二次根式,故A不符合题意;B、∵=2,∴与不是同类二次根式,故B不符合题意;C、与不是同类二次根式,故C不符合题意;D、∵=2,∴与是同类二次根式,故D符合题意;故选:D.11.(2023春•武昌区校级期中)若是整数,则满足条件的最小正整数n的值为6.【答案】见试题解答内容【解答】解:=2,∵是整数,∴满足条件的最小正整数n=6.故答案为:6.12.(2023春•固镇县月考)计算=﹣.【答案】﹣.【解答】解:=2﹣3=﹣,故答案为:﹣.13.(2023春•高安市期中)化简计算:=2.【答案】2.【解答】解:=()2﹣12=3﹣1=2,故答案为:2.14.(2023秋•高新区校级期中)计算:(1)×;(2).【答案】(1)﹣11;(2)5﹣4.【解答】解:(1)×=﹣4×3=﹣12=﹣11;(2)=4﹣5+4﹣4+2=5﹣4.15.(2023秋•秦都区校级期中)计算:﹣×.【答案】4﹣+2.【解答】解:﹣×=3﹣+2=﹣+2=4﹣+2.1.(2022秋•鼓楼区校级期末)实数a在数轴上的位置如图所示,则化简结果为()A.7B.﹣7C.2a﹣15D.无法确定【答案】A【解答】解:∵由图可知:4<a<10,∴a﹣4>0,a﹣11<0,∴原式=+=a﹣4+11﹣a=7.故选:A.2.(2023春•新郑市校级期末)若=在实数范围内成立,则x的取值范围是()A.x≥1B.x≥4C.1≤x≤4D.x>4【答案】D【解答】解:∵=在实数范围内成立,∴x﹣1≥0,x﹣4>0,∴x>4.故选:D.3.(2023秋•西安校级月考)若x,y都是实数,且,则xy的值是()A.0B.4C.2D.不能确定【答案】B【解答】解:根据题意得,x﹣1≥0且1﹣x≥0,解得x≥1且x≤1,∴x=1,∴y=4,∴xy=1×4=4.故选:B.4.(2023•商水县一模)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记,则其面积,这个公式也被称为海伦一秦九韶公式.若p=5,c=2,则此三角形面积的最大值为()A .B .C .D .5【答案】C【解答】解:∵p =,p =5,c =2,∴5=,∴a +b =8,∴a =8﹣b ,∴S =======当b =4时,S 有最大值为.故选:C .5.(2023秋•闵行区期中)计算:=.【答案】.【解答】解:,=====,故答案为:.6.(2023春•科左中旗校级期末)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==,第3个等式:a3==2﹣,第4个等式:a4==﹣2,…按上述规律,计算a1+a2+a3+…+a n=﹣1.【答案】见试题解答内容【解答】解:第1个等式:a1==﹣1,第2个等式:a2==,第3个等式:a3==2﹣,第4个等式:a4==﹣2,…a1+a2+a3+…+a n=﹣1+﹣+…+﹣=﹣1故答案为:﹣1.7.(2023春•中江县月考)已知的值是7.【答案】7.【解答】解:∵m=+1,n==﹣1,∴m+n=2,mn=1,∴m2+mn+n2=(m+n)2﹣mn=(2)2﹣1=7.故答案为:7.8.(2023春•禹州市期中)如图,在数学课上,老师用5个完全相同的小长方形在无重叠的情况下拼成了一个大长方形,已知小长方形的长为,宽为,则这个大长方形的周长为22.【答案】22.【解答】解:∵大长方形的宽=3+2=5,大长方形的长=3×2=6,∴大长方形的周长=(5+6)×2=22,故答案为:22.9.(2023春•宿豫区期末)计算的结果为3.【答案】3.【解答】解:原式=+=+=2+=3.故答案为:3.10.(2023秋•双流区校级期中)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2;(2)a2﹣3ab+b2.【答案】(1)12;(2)1.【解答】解:(1)∵a=3+,b=3﹣,∴a+b=3++3﹣=6,a﹣b=3+﹣3+=2,ab=(3)(3)=7,则a2﹣b2=(a+b)(a﹣b)=6×=12;(2)由(1)知a﹣b=2,ab=(3)(3)=7,∴a2﹣3ab+b2=(a﹣b)2﹣ab,==8﹣7=1.11.(2023春•双柏县期中)阅读下面问题:==﹣1;==﹣;==﹣2.(1)求的值;(2)计算:+++…++.【答案】见试题解答内容【解答】解:(1)原式==﹣;(2)原式=﹣1+﹣+…+﹣+﹣=10﹣1=9.12.(2023秋•二七区校级月考)阅读材料:我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样()2+()2=m,•=.那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即,.∴,模型应用1:利用上述解决问题的方法化简下列各式:(1);(2).模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(直接写出结果,结果化成最简).【答案】(1)1+;(2)2﹣;(3)2﹣2.【解答】解:(1)m=6,n=5.∵1+5=6,1×5=5,∴()2+()2=6,×=,∴==1+.(2)∵=.∴m=13,n=40,∵5+8=13,5×8=40,∴()2+()2=13,×=,∴===2.(3)BC==.∵=,∴m=16,n=48,∵4+12=16,4×12=48,∴()2+()2=16,×=,∴BC====2﹣2.1.(2022•桂林)化简的结果是()A.2B.3C.2D.2【答案】A【解答】解:=2,故选:A.2.(2022•内蒙古)实数a在数轴上的对应位置如图所示,则+1+|a﹣1|的化简结果是()A.1B.2C.2a D.1﹣2a【答案】B【解答】解:根据数轴得:0<a<1,∴a>0,a﹣1<0,∴原式=|a|+1+1﹣a=a+1+1﹣a=2.故选:B.3.(2022•河北)下列正确的是()A.=2+3B.=2×3C.=32D.=0.7【答案】B【解答】解:A、原式=,故该选项不符合题意;B、原式=×=2×3,故该选项符合题意;C、原式==92,故该选项不符合题意;D、0.72=0.49,故该选项不符合题意;故选:B.4.(2022•湖北)下列各式计算正确的是()A.B.C.D.【答案】D【解答】解:A、与不属于同类二次根式,不能运算,故A不符合题意;B、,故B不符合题意;C、,故C不符合题意;D、,故D符合题意;故选:D.5.(2022•青岛)计算(﹣)×的结果是()A.B.1C.D.3【答案】B【解答】解:(﹣)×=﹣=﹣=3﹣2=1,故选:B.6.(2022•安顺)估计(+)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】B【解答】解:原式=2+,∵3<<4,∴5<2+<6,故选:B.7.(2023•绵阳)若式子在实数范围内有意义,则x的最小值为.【答案】.【解答】解:由题意可得2x﹣1≥0,解得:x≥,则x的最小值为,故答案为:.8.(2023•丹东)若代数式在实数范围内有意义,则实数x的取值范围是x≥﹣2,且x≠1.【答案】x≥﹣2,且x≠1.【解答】解:由题可知,x+2≥0,即x≥﹣2,又知分母不能等于0,即x﹣1≠0,则x≠1.故答案为:x≥﹣2,且x≠1.9.(2022•武汉)计算的结果是2.【答案】2.【解答】解:法一、=|﹣2|=2;法二、==2.故答案为:2.10.(2023•内蒙古)实数m在数轴上对应点的位置如图所示,化简:=2﹣m.【答案】2﹣m.【解答】解:由数轴可知:1<m<2,∴m﹣2<0,∴=|m﹣2|=2﹣m.故答案为:2﹣m.11.(2022•荆州)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是2.【答案】2.【解答】解:∵1<<2,∴1<3﹣<2,∵若3﹣的整数部分为a,小数部分为b,∴a=1,b=3﹣﹣1=2﹣,∴(2+a)•b=(2+)(2﹣)=2,故答案为:2.12.(2022•泰安)计算:•﹣3=2.【答案】2.【解答】解:原式=﹣3×=4﹣2=2,故答案为:2.13.(2022•济宁)已知a=2+,b=2﹣,求代数式a2b+ab2的值.【答案】﹣4.【解答】解:∵a=2+,b=2﹣,∴a2b+ab2=ab(a+b)=(2+)(2﹣)(2++2﹣)=(4﹣5)×4=﹣1×4=﹣4.。
中考复习:专题二次根式(精)

卓越教育专题:二次根式考点一:二次根式 1:二次根式的定义 1.(2010•自贡)已知 n 是一个正整数, A.3 2.(2003•常州)式子 B.5 135n 是整数,则n 的最小值是( C.15 、) D.25 x2 2 x 5 ) B.2 个 1 x2 、 C.3个 18 、 x2 2 x 2 D.4 个中,有意义的式子个数为( A.1 个 3.(2002•无锡)函数 y= 3 中,自变量 x 的取值范围是( x 3 )),函数 y= x 5 中,自变量 x 的取值范围是( 2:二次根式有意义的条件 4.(2012•潍坊)如果代数式 4x 3 有意义,则 x 的取值范围是() A.x≠3 B.x<3 C.x>3 D.x≥3 5.(2010•绵阳)要使 3 x 1 有意义,则 x 应满足( 2x 1 1 2 C.) A. 1 2 ≤x≤3 B.x≤3 且x≠ 1 2 <x<3 D. 1 2 <x≤3 3:二次根式的性质与化简6.(2012•张家界)实数 a、b 在数轴上的位置如图所示,且|a|>|b|,则化简 a2 -|a+b|的结果为() A.2a+b B.-2a+b C.b 2 D.2a-b 1 7.(2012•鸡西)下列各式:①x +x =x ;②a •a =a 2 3 5 3 2 6 1 ;③ 2 =-2;④ =3;⑤(π-1)0=1,其 3 D.①④中正确的是( A.④⑤) B.③④) C.②③.若 a>b,c<8.(2004•岳阳)下列各项正确的是( A. (3 2 3 B0,则 ac>bc 1 卓越教育 C. x2 1 是最简二次根式 D.分解因式:ab3-a3b=ab(b2-a2)考点二:二次根式的乘除 4:最简二次根式 9.(2011•巴中)下列各式:① 2 ,② 1 1 ,③ 8 ,④ (x>0中,最简二次根式有( x 3 C.3 个 D.4 个)A.1 个 B.2 个 10.(2011•朝阳)计算: 12 4 ( 5 0 2 3 1 8 (2010 30 ( 1 2 11.(2010•温州)(1)计算:(2)(2)先化简,再求值:(a+b)(a-b)+a(2b-a),其中 a=1.5,b=-2. 5:二次根式的乘除法12.(2012•永州)下列说法正确的是( A.) ab a b B.a3•a-2=a(a≠0)C.不等式 2-x>1 的解集为 x>1 D.当 x>0 时,反比例函数 y= k x 的函数值 y 随自变量 x 取值的增大而减小) 13.(2010•绵阳)下列各式计算正确的是( A.m •m =m 2 3 6 B. 1 1 4 16 16 3 3 3 3 3 C. 23 33 =2+3=5 1 1 (1 a2 1 (a<) a 1 1 a 1 a D. a 1 14.(2003•海南)先化简,后求值:(x+1)2-x(x+2y)-2x,其中 x= 3 +1,y= 3 -1. 6:分母有理化15.(2005•广州)已知 a= A.a=b 2 +1,b= 2 -1,则 a 与 b 的关系是( C.a=-b ) D.ab=-1 B.ab=1 2 卓越教育 16.(2010•鄂尔多斯)(1)计算 2 2 1 03 27 )1 2)( (; 3 (2)先化简,再求值: a 2 b2 2ab b2a(),其中a 2 1,b 1 a 2 ab a 考点三:二次根式的加减 7:同类二次根式 17.(2004•西宁)如果最简根式有意义的 x 的取值范围是( A.x≤10 ) C.x<10 D.x>10 3a 8 与 17 2a 是同类二次根式,那么使 4a 2x B.x≥10 8:二次根式的加减法 18.(2012•德阳)有下列计算:①(m2)3=m6,② 4a 2 4a 1 2a 1,③m6÷m2=m3,④其中正确的运算有(). 27 50 6 15 ,⑤ 19.(2012•包头)计算: 2 12 2 3 3 48 14 3 1 8 ( 3 10 2 1 1 0 3) )1 (1 2 2 (( 2 9:二次根式的混合运算( 20.(2012•遵义)计算: 1) 21.(2012•宜宾)计算:.(2012•上海) 1 1 1 2 2 ( 3 1 ( 101 1 1 2 3 ( 20 1 3 2232 ( 1 2 2 2 1 3 ( 23.(2012•绵阳)(1)计算: 2) | 8 2 | ( 0 2 ) 8 ((2)化简: 1 1 1 x2 ) 2x () x x 10:二次根式的化简求值 24.(2008•烟台)已知 a A.3 5 2, b 5 2 ,则 a2 b2 7 的值为( B.4 C.5 ) D.6 25.(2007•天津)已知 a=2,则代数式 2 a a a a a 的值等于() A.-3 B.3- 4 2 C. 4 2 -3 D. 4 2 3 卓越教育 b2 a 2 2ab b2 1 1 其中 a () , a 2+ 3 , a 2 ab a a b 26.(2012•襄阳)先化简,再求值: b 2 3 1 1 1 x x 2 2x 1 27.(2012•巴中)先化简,再求值:其中( )• , x= 2 2 2 x x 1 (x 1 (x 1 x 2 1 x 2 2x 1 1 28.(2011•巴中)先化简再求值:其中 1, x=-2. x 1 x2 x x 11:二次根式的应用 29.(2000•陕西)将一个边长为 a 的正方形硬纸板剪去四角,使它成为正八边形,求正八边形的面积() A. 2 ( 2 2 a2 B. 7 2 a 9 C. 2 2 a 2 D. 3 2 2 a 2 30.(2006•宿迁)如图,矩形内两相邻正方形的面积分别是 2 和 6,那么矩形内阴影部分的面积是.(结果保留根号)31.(2003•绵阳)如果一个三角形的三边的长分别为 a、b、c,那么可以根据秦(其中 p= 1 2 (a+b+c))或九韶-海伦公式 s p( p a p b p c ,其它方法求出这个三角形的面积.试求出三边长分别为 5 ,3,2 5 的三角形的面积. 4。
二次根式-中考数学一轮复习考点专题复习大全(全国通用)

考向08 二次根式【考点梳理】1、二次根式:一般地,形如a (a ≥0)的代数式叫做二次根式。
当a >0时,a 表示a 的算术平方根,其中0=02、 理解并掌握下列结论:(1))0(≥a a 是非负数(双重非负性); (2))0()2≥=a a a (; (3)⎩⎨⎧≤->=⎩⎨⎧<-≥=⎪⎩⎪⎨⎧<-=>==)0()0()0()0()0()0(0)0(2a a a a a a a a a a a a a a a ;口诀:平方再开方,出来带“框框” 3、二次根式的乘法:)0,0(≥≥=•b a ab b a ,反之亦成立4、二次根式的除法:)0,0(>≥=b a b a ba ,反之亦成立5、满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数不含分母,(2)被开方数不含开得尽方的因数或因式。
6、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式。
【题型探究】题型一:二次根式的概念和性质1.(2022·湖北黄石·统考中考真题)函数11y x =+-的自变量x 的取值范围是( ) A .3x ≠-且1x ≠B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠2.(2022·广东广州·广东番禺中学校考三模)若3y =,则2022()x y +等于( ) A .1B .5C .5-D .1-3.(2022·湖北黄石·校联考模拟预测)函数y 中,自变量x 的取值范围是( ) A .5x >B .35x ≤<C .5x <D .35x ≤≤题型二:二次函数的化简4.(2022·河北·统考中考真题)下列正确的是( )A 23+B 23=⨯C D 0.75.(2023·河北·b a 的值是( ) A .6B .9C .12D .276.(2022·四川绵阳·统考三模)已知y =,则xy =( )A .3B .-6C .±6D .±3题型三:二次根式的乘除7.(2022·广东广州· )A B C D .8.(2022·天津南开·二模)计算3)的结果等于______.9.(2022·河北唐山·=a =______;b =__.题型四:二次根式的加减10.(2022·黑龙江哈尔滨·=_____. 11.(2022·黑龙江绥化·统考中考真题)设1x 与2x 为一元二次方程213202x x ++=的两根,则()212x x -的值为________.12.(2022·黑龙江哈尔滨·______.题型五:分母的有理化13.(2022·河北保定·统考一模)已知x =2y = (1)22x y +=________; (2)2()x y xy --=________.14.(2022·广东中山·统考二模)小明喜欢构建几何图形,利用“数形结合”的思想解决代数问题.在计算tan 22.5︒时,如图,在Rt ACB 中,9045C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,得22.5D ∠=︒,所以tan 22.51AC CD ︒===,类比小明的方法,计算tan15︒的值为________.15.(2020·四川成都·四川省成都列五中学校考三模)3的整数部分是m ,小数部分是n ,则mn+3=_____.题型六:二次根式的比较大小16.(2021·四川成都·766517.(2020·陕西西安·西安市铁一中学校考二模)比较大小:1013-(填“>”、“=”、“<”)18.(2021·陕西宝鸡·17﹣5(填“>”或“<”)题型七:二次根式的化简求值问题19.(2023·江西·九年级专题练习)先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中53x =. 20.(2022·四川广元·统考一模)先化简,再求值:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中32a =+32b = 21.(2022·辽宁抚顺·模拟预测)先化简,再求值:22124()(1)442x x x x x x x-+-÷--+-,其中x =2+tan30°.【必刷基础】一、单选题22.(2023·广西玉林·一模)下列运算正确的是( ) A 257B .22525=+C 532=D .233323.(2022·福建泉州·校考三模)在函数32y x =+中,自变量x 的取值范围是( ) A .23x ≠-B .23x >-C .23x -D .23x -24.(2022·上海松江·校考三模)下列式子属于同类二次根式的是( ) A .2与22B .3与24C .5与25D .6与1225.(2022春·河北保定·九年级保定市第十七中学校考期中)如图,把一张矩形纸片ABCD 按如图所示方法进行两次折叠后,BEF △恰好是等腰直角三角形,若2BE =,则CD 的长度为( )A .22B .22+C .222+D .224+26.(2021·广西百色·统考二模)将一组数2,2,6,22,10,…,210,按下列方式进行排列: 2,2,6,22,10; 23,14,4,32,25;…若2的位置记为()1,2,23的位置记为()2,1,则36这个数的位置记为( )A .()54,B .()44,C .()43,D .()35,27.(2022·山东青岛·统考中考真题)计算1(2712)3-⨯的结果是( ) A .33B .1C .5D .328.(2022·河北廊坊·统考二模)一次函数()32y k x k =++-的图象如图所示,则使式子()011k k ++-有意义的k 的值可能为( )A .-3B .-1C .-2D .229.(2021·北京·统考中考真题)若7x -在实数范围内有意义,则实数x 的取值范围是_______________. 30.(2018·江苏苏州·校联考中考模拟)若x 满足|2017-x|+-2018x =x , 则x-20172=________31.(2021·辽宁鞍山·统考中考真题)先化简,再求值:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭,其中62a =+. 32.(2022春·福建泉州·九年级福建省安溪第一中学校考阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简:222||()()a a c c a b -++--.【必刷培优】一、单选题33.(2021·广东·统考中考真题)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是( ) A .6B .210C .12D .91034.(2021·湖南娄底·统考中考真题)2,5,m 是某三角形三边的长,则22(3)(7)m m -+-等于( ) A .210m -B .102m -C .10D .435.(2021·内蒙古·统考中考真题)若21x =+,则代数式222x x -+的值为( ) A .7 B .4C .3D .322-36.(2020·河北·统考中考真题)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4二、填空题37.(2019·广西柳州·中考模拟)如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.38.(2021·四川眉山·统考中考真题)观察下列等式:12211311112212x =++==+⨯; 22211711123623x =++==+⨯; 3221113111341234x =++==+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______.39.(2022·湖北荆州·统考中考真题)若32-的整数部分为a ,小数部分为b ,则代数式()22a b +⋅的值是______. 40.(2021·河南信阳·河南省淮滨县第一中学校考三模)已知625x =-为一元二次方程20x ax b ++=的一个根,且a ,b 为有理数,则=a ______,b =______.41.(2019·江苏·校考中考模拟)若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为_____. 42.(2022·四川遂宁·统考中考真题)实数a ,b 在数轴上的位置如图所示,化简()()2211a b a b +--+-=______.三、解答题43.(2021·四川成都·统考中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中33=a .44.(2022·安徽·统考二模)阅读下列解题过程: 21+21(21)(21)-+-2-1; 32+32(32)(32)-+-32; 43+434343-+-()()433 …解答下列各题: (1109+= ;(2= .(3)利用这一规律计算:)×).45.(2019·福建泉州·统考中考模拟)先化简,再求值:2443(1)11m m m m m -+÷----,其中2m .46.(2013·贵州黔西·中考真题)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:231+(,善于思考的小明进行了以下探索:设(2a m ++(其中a 、b 、m 、n 均为整数),则有2222a m n +++∴2222a m n b mn =+=,.这样小明就找到了一种把部分a + 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b ,得a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n ,填空: + =( +2;(3)若(2a m ++,且a 、b 、m 、n 均为正整数,求a 的值.参考答案:1.B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【详解】解:依题意,3010 xx+>⎧⎨-≠⎩∴3x>-且1x≠故选B【点睛】此题主要考查了函数自变量的取值范围,正确掌握二次根式与分式有意义的条件是解题关键.2.A【分析】直接利用二次根式中被开方数是非负数,得出x的值,进而得出y的值,再利用有理数的乘方运算法则计算即可.【详解】解:由题意可得:20 420xx-≥⎧⎨-≥⎩,解得:x=2,故y=-3,∴20222022()(213)=x y+=-.故选:A.【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.3.C【分析】根据二次根式、立方根、分式的性质分析,即可得到答案.【详解】根据题意,得50x->∴5x<故选:C.【点睛】本题考查了二次根式、立方根、分式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解.4.B【分析】根据二次根式的性质判断即可.【详解】解:23+,故错误;23=⨯,故正确;=≠0.7,故错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.5.D【分析】由二次根式的性质、二次根式的减法运算法则进行计算,即可得到答案.∴3a =,3b =, ∴3327=, 故选:D【点睛】本题考查了二次根式的性质、二次根式的减法运算,解题的关键是掌握运算法则,正确的进行解题. 6.B【分析】利用二次根式的被开方数具有非负性求出x 的值后,再求出y 的值,即可求解. 【详解】解:∵229090x x -+≥-≥,, ∴29x =, 又∵30x +≠, ∴3x =, ∴0012233y --==-+,∴()326xy =⨯-=-, 故选:B .【点睛】本题考查了二次根式有意义的条件以及性质,解题关键是求出x 的值与y 的值. 7.A【分析】根据二次根式的乘除运算法则进行计算,最后根据二次根式的性质化简即可.=== 故选:A .【点睛】)0,0a b ≥≥)0,0a b ≥>,熟练掌握相关运算法则是解题的关键. 8.4【分析】根据平方差公式计算即可.【详解】解:3)=223-=13-9 =4,故答案为:4.【点睛】本题考查二次式的混合运算,熟练掌握平方差公式是解题的关键. 9. 2 6化为最简二次根式,再利用二次根式的乘法法则解题.=2,6a b ∴==故答案为:2,6.【点睛】本题考查利用二次根式的性质化简计算,涉及最简二次根式、二次根式的乘法等知识,是基础考点,掌握相关知识是解题关键.10.-【分析】先把各二次根式化为最简二次根式,然后合并即可.【详解】解:原式==-故答案为:-【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 11.20【分析】利用公式法求得一元二次方程的根,再代入求值即可; 【详解】解:∵213202x x ++=△=9-4=5>0,∴13x =-23x =-,∴()212x x -=((223320-==,故答案为:20;【点睛】本题考查了一元二次方程的解,掌握公式法解一元二次方程是解题关键. 12【分析】根据二次根式的性质和二次根式的减法法则,即可求解.3==【点睛】本题主要考查二次根式的化简,掌握二次根式的性质和运算法则,是解题的关键. 13. 14 11【分析】根据分母有理化得到2x =x 和y 分别代入(1)(2)中根据二次根式的混合运算法则计算求解.【详解】解:∵123x =+, ∴()()12323232323x ===+-+--, ∴(1)22x y +()()222323=-++ 44334433=-++++14=,故答案为:14;(2)()2x y xy -- ()()()223232323⎡⎤=--+--+⎣⎦()()22343=---121=-11=,故答案为:11.【点睛】本题主要考查了分母有理化、二次根式的混合运算法则,理解相关知识是解答关键.14.23-【分析】仿照题意构造含15度角的直角三角形进行求解即可.【详解】解:如图,在Rt ACB 中,9030C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,∴∠BAD =∠D ,2AB BD AC ==,∴cos =3BC AC ABC AC =⋅∠,∴()23CD BC BD AC =+=+,∵∠ABC =∠BAD +∠D ,∴=15D ︒∠,∴1tan =tan15===2323AC D CD ︒-+∠, 故答案为:23-.【点睛】本题主要考查了解直角三角形,三角形外角的性质,等腰三角形的性质,正确理解题意构造出含15度角的直角三角形是解题的关键.15.2m 的值,小数部分n m ,把m 、n 代入分式m n+3中,应用分母有理化的方法进行化简,即可得到答案.【详解】解:∵12,∴m =1,n 1, ∴=n+3m=2.故答案为:2.【点睛】本题主要考查二次根式的分母有理化,熟练掌握分母有理化的方法是解题的关键.16.<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.==<故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.17.> 【分析】先将这两个数分别平方,通过比较两个数的平方的大小即可得解.【详解】解:∵21(10=,211()39-=且11109<,1<,∴13>- 故答案为:>【点睛】此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.18.>【分析】首先利用二次根式的性质可得【详解】解:∵∴>﹣故答案为:>.【点睛】本题主要考查了二次根式的大小比较,准确计算是解题的关键.19.13x x -+【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭ ()()()23221111x x x x x x ++-+=÷++- ()()()211313x x x x x +-+=⨯++13x x -=+.当3x =时,原式=. 【点睛】此题主要考查了分式的化简以及二次根式混合运算,正确化简分式是解题关键.20.ab ;7【分析】根据分式的混合运算法则化简,再代入3a =3b = 【详解】解:原式222a ab b a b a b ab-+-=÷- ()2a b ab ab a b a b-=⋅=--.当3a =3b =原式(33927==-=.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式、二次根式及乘法公式的运用.21.()212x -;3【分析】先根据异分母分式的加减化简括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后根据特殊角的三角函数值求得x 的值,代入化简结果进行计算即可. 【详解】解:22124()(1)442x x x x x x x -+-÷--+- ()()()()()22122422x x x x x x x x x x ⎡⎤-+-=-⨯⎢⎥---⎢⎥⎣⎦()2224=42x x x x x x x --+⨯-- ()241=42x x x -⋅-- ()212x =-2tan 302x =+︒=∴原式21322==⎛⎫ ⎪⎝⎭【点睛】本题考查了分式的化简求值,特殊角的三角函数值,实数的混合运算,二次根式的混合运算,正确的计算是解题的关键.22.D【分析】利用二次根式的加减运算法则进行计算,然后作出判断.【详解】解:AB、= CD、=故选:D .【点睛】本题考查二次根式的加减运算,掌握运算法则是解题关键.23.C【分析】根据被开方数大于等于0,列式求解即可.【详解】解:根据题意得:320x +,解得23x -.【点睛】本题主要考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.24.A【分析】根据同类二次根式的概念判断即可.【详解】解:A 、2与22是同类二次根式,符合题意;B 、3与26不是同类二次根式,不符合题意;C 、5与5不是同类二次根式,不符合题意;D 、6与23不是同类二次根式,不符合题意;故选A .【点睛】本题考查了同类二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.25.D【分析】根据翻折过程补全图形,然后根据矩形的性质和勾股定理即可解决问题.【详解】解:由折叠补全图形如图所示,四边形ABCD 是矩形,'90ADA B C A ∴∠=∠=∠=∠=︒,AD BC =,CD AB =,由第一次折叠得:'90DA E A ∠=∠=︒,1452ADE ADC ∠=∠=︒, 45AED ADE ∴∠=∠=︒,AE AD ∴=,在Rt ADE △中,根据勾股定理得,2DE AD =,由第二次折叠知,CD DE AB ==,222DE AE ∴=,2222()2(2)CD AB BE CD ∴=-=-,422CD ∴=+【点睛】本题考查了翻折变换,矩形的性质,等腰直角三角形,解决本题的关键是掌握翻折的性质.26.C∵36218÷=,18533÷=4行,第3个数字.故选:C .【点睛】此题考查的是数字的变化规律以及二次根式的化简,找出其中的规律是解题的关键.27.B再合并即可.【详解】解:94321 故选:B .【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.28.B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<.()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠ ∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意.故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底29.7x ≥【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:70x -≥,解得:7x ≥;故答案:为7x ≥.【点睛】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件.30.2018【分析】根据二次根式有意义的条件列出不等式,求解得出x 的取值范围,再根据绝对值的意义化简即可得出方程=2017,将方程的两边同时平方即可解决问题.【详解】解:由条件知,x-2018≥0, 所以x≥2018,|2017-x|=x-2017.所以x-2017+ =x ,即 =2017,所以x-2018=20172 ,所以x-20172=2018,故答案为:2018.【点睛】本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x 的取值范围是解题的关键.31.2a a -,1+【分析】根据分式的混合运算的运算法则把原式化简为2a a -,再代入求值. 【详解】解:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭ ()()()2132221a a a a a a ⎡⎤+=-⨯⎢⎥-+--⎣⎦()()()21221a a a a a a +-=⨯+-- 2a a =-.当2a 时,原式1==== 【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 32.a b -【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得a<0,0a c +<,0c a -<,0b >.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.33.Aa 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯==-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6a 与小数部分b 的值是解题关键.34.D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+, 解得:37x ,374m m -+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.35.C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.36.B【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大正方形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,222A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512 C 、∵3+4≠5,则不符合题意;D 、∵2+2=4112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.37.2【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】解:由数轴可得:0<a <2,则a=a =a +(2﹣a )=2.故答案为:2.【点睛】本题主要考查了二次根式的性质与化简,解题的关键是正确得出a 的取值范围.38.12021-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120202021⨯化为12015﹣12016,再进行分数的加减运算即可.11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++-=112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12020﹣12021﹣2021 =2020+1﹣12021﹣2021=12021-. 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算. 39.2【分析】先由12<得到132<<,进而得出a 和b ,代入()2b ⋅求解即可.【详解】解:∵ 12<,∴132<<,∵ 3的整数部分为a ,小数部分为b ,∴1a =,312b ==∴()((222242b ⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.40. 2; 4-;【分析】将x =1x =,则20x ax b ++=)()260a b a -+-+=,根据a ,b 为有理数,可得2a -,6b a -+)()260a b a -+-+=时候,只有20a -=,60b a -+=,据此求解即可.【详解】解:∵x ====1∴20x ax b ++=∴))2110a b ++= ∴60a b --+=60a b -++=)()260a b a -+-+=∵a ,b 为有理数,∴2a -,6b a -+也为有理数,∴2a =,4b =-,故答案是:2,4-;【点睛】本题考查了二次根式的化简,利用完全平方公式因式分解,一元二次方程的解,有理数,无理数的概念的理解,熟悉相关性质是解题的关键.41.4【分析】直接利用二次根式有意义的条件得出a 的值,进而利用负指数幂的性质得出答案.【详解】解:∵b 2,∴120210a a -≥⎧⎨-≥⎩∴1-2a=0,解得:a=12,则b=-2, 故ab=(12)-2=4. 故答案为4.【点睛】此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a 的值是解题关键. 42.2【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案.【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∴1a +=|1||1|||a b a b +--+-=1(1)()a b a b +----=11a b a b +-+-+=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.43.13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++ 13a =+,当3=a 时,原式= 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.44.(13;(2(3)2020【分析】(1,然后利用平方差公式和二次根式的性质计算,即可得到答案;(2(3)根据(1)和(2)的结论,先分母有理化,经加减运算后,再利用平方差公式计算,即可得到答案.【详解】(133;(2==(3)×)1+)×)1)×) =20211-=2020.【点睛】本题考查了二次根式和数字规律的知识:解题的关键是熟练掌握二次根式混合运算、数字规律、平方差公式的性质,从而完成求解.45.22m m-+ 1. 【详解】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m -- =221m m --()•122m m m --+-()() =﹣22m m -+ =22m m-+当m 2时,原式===﹣=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 46.(1)223m n +,2mn ;(2)13,4,2,1(答案不唯一);(3)7或13.【分析】根据题意进行探索即可.【详解】(1)∵2(a m +=+,∴2232a m n +=++∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.【点睛】本题考查二次根式的运算.根据题意找出规律是解决本题的关键.。
中考数学总复习《二次根式》练习题附有答案

中考数学总复习《二次根式》练习题附有答案一、单选题(共12题;共24分)1.若最简二次根式√a+2与√2a−3是可以合并的二次根式,则a的值为()A.5B.13C.-2D.322.使式子√x+1x−1有意义的x的取值范围是()A.x>1B.x≠1C.x≥1且x≠1D.x≥−1且x≠13.若等式√m2−4=√m+2⋅√m−2成立,则m的取值范围是()A.m≥−2B.m≥2C.−2≤m≤2D.m≥44.在函数y=1√x+3中,自变量x的取值范围是()A.x≥−3B.x≥−3且x≠0 C.x≠0D.x>−35.下列计算正确的一项是()A.√36=±6B.√0.49=0.7C.√919=313D.√(3−23)2=3−1136.计算正确的是()A.√114=112B.7a-5a=2C.(-3a)3=-9a3D.2a(a-1)=2a2-2a7.下列运算正确的是()A.2√2-√2=2B.a3·a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a68.下面是二次根式的是()A.12B.−3C.√3D.0 9.若式子√x−3有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x=3 10.有下列说法:①一元二次方程x2+px-1=0不论p为何值必定有两个不相同的实数根;②若b=2a+12c,则一元二次方程ax2+bx+c=0必有一根为-2;③代数式x2+√x+1+1有最小值1;④有两边和第三边上的高对应相等的两个三角形全等;其中正确的是()A.①④B.①②C.①②③D.①②③④运算结果在哪两个整数之间()11.估计(√24−√12)⋅√13A.0和1B.1和2C.2和3D.3和4 12.下列运算正确的是()A.√3+√4=√7B.(−√3)2=−3C.2√3−√3=2D.√3×√2=√6二、填空题(共6题;共7分)13.式子√x−1中x的取值范围是14.计算:(√3−√2)2012(√3+√2)2013=.15.若√x−5不是二次根式,则x的取值范围是16.若|a-b+1|与√a+2b+4互为相反数,则a=,b=.17.若x,y为实数,且y=2022+√x−4+√4−x,则x+y=.18.已知√24n是整数,则正整数n的最小值是.三、综合题(共6题;共86分)19.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且(a+2)2+ =0,(1)求a,b的值;(2)在坐标轴上存在一点M,使△COM的面积是△ABC的面积的一半,求出点M 的坐标.(3)如图2,过点C做CD△y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分角△AOP,OF△OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.20.有这样一类题目:将√a±2√b化简,如果你能找到两个数m、n,使m2+n2=a 且mn=√b,a±2√b将变成m2+n2±2mn,即变成(m±n)2,从而使√a±2√b得以化简.(1)例如,∵5+2√6=3+2+2√6=(√3)2+(√2)2+2√2×√3=(√3+√2)2 ∴√5+2√6=√(√3+√2)2= ,请完成填空. (2)仿照上面的例子,请化简√4−2√3;(3)利用上面的方法,设A =√6+4√2,B =√3−√5,求A +B 的值.21.计算:(1)(√12−3)0+√24−(−12)−1 ; (2)已知 y =√2−x +√x −2−3 ,求 (x +y)2021 的立方根;(3)如图,一次函数 y =kx +b 的图像分别与x 轴、y 轴交于点A 、B ,且经过点 (−1,32) ,求 △AOB 的面积.22.阅读下列计算过程:√2+1=√2(√2+1)(√2−1)=√2−1√3+√2=√3√2)(√3+√2)(√3−√2)=√3−√2√5+2=√5(√5+2)(√5−2)=√5−2试求: (1)1√11+√10的值;(2)1√n+√n−1的值;(3)求1+√2√2+√3√3+√4+⋅⋅⋅√199+√200 的值.23.计算:(1)√8+2 √3﹣(√27+ √2)(2)√23÷ √223× √25(3)(7+4 √3)(7﹣4 √3)24.(1)一个正数的平方根是a+3与2a﹣15,求a的值.(2)已知√a−16+(b+2)2=0,求ab的立方根.(3)已知x、y为实数,且y=√x−9−√9−x+√4.求√x+√y的值.参考答案1.【答案】A2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】D7.【答案】B8.【答案】C9.【答案】A10.【答案】B11.【答案】A12.【答案】D13.【答案】x≥114.【答案】√3+√215.【答案】x<516.【答案】-2;-117.【答案】202618.【答案】619.【答案】(1)解:∵(a+2)2+ =0∴a+2=0,b-3=0∴a=﹣2,b=3;(2)解:如图1,过点C作CT△x轴,CS△y轴,垂足分别为T、S.∵A(﹣2,0),B(3,0)∴AB=5∵C(﹣1,2)∴CT=2,CS=1∴△ABC的面积=AB•CT=5∵△COM的面积=△ABC的面积∴△COM的面积=若点M在x轴上,即OM•CT=∴OM=2.5.∴M的坐标为(2.5,0)(﹣2.5,0)若点M在y轴上,即OM•CS=∴OM=5∴点M坐标(0,5)或(0,﹣5)综上所述:点M的坐标为(0,5)或(﹣2.5,0)或(0,﹣5)或(2.5,0);(3)解:如图2,的值不变,理由如下:∵CD△y轴,AB△y轴∴△CDO=△DOB=90°∴AB△CD∴△OPD=△POB.∵OF△OE∴△POF+△POE=90°,△BOF+△AOE=90°∵OE平分△AOP∴△POE=△AOE∴△POF=△BOF∴△OPD=△POB=2△BOF.∵△DOE+△DOF=△BOF+△DOF=90°∴△DOE=△BOF∴△OPD=2△BOF=2△DOE∴=2.20.【答案】(1)√3+√2(2)解:∵4−2√3=3+1−2√3=(√3)2+1−2√3=(√3−1)2∴√4−2√3=√(√3−1)2=√3−1.(3)解:∵A=6+4√2=4+2+4√2=(√4)2+(√2)2+2×√4×√2=(2+√2)2∴A=√6+4√2=2+√2∵B=3−√5=6−2√52=5+1−2√52=(√5)2+12−2×1×√52=(√5−1)22∴B=√3−√5=√(√5−1)22=√5−1√2=√10−√22=12√10−12√2∴把A式和B式的值代入A+B中,得:A+B=2+√2+12√10−12√2=2+12√10+√2221.【答案】(1)解: 原式= 1+2√6+2=3+2√6;(2)解: ∵y=√2−x+√x−2−3∴2−x≥0,x−2≥0∴x≤2∴x=2∴y=−3∴(x+y)2021=(2−3)2021=−1;∴(x+y)2021的立方根为−1;(3)解: 由图像可得点B的坐标为(0,3),然后把点B(0,3)和点(−1,32)代入一次函数y=kx+b得:{b=3−k+b=32,解得:{k=32b=3∴一次函数的解析式为y=32x+3令y=0时,则有0=32x+3,解得:x=−2∴OA=2,OB=3∴S△AOB=12×2×3=3.22.【答案】(1)解:√11+√10=√11−√10(√11+√10)(√11−√10)=√11−√10(2)解:1√n+√n−1=√n−√n−1(√n+√n+1)(√n−√n−1)=√n−√n−1n−(n−1)=√n−√n−1(3)解:11+√21√2+√3+1√3+√41√199+√200=√2−1+√3−√2+√4−√3+···+√199−√198+√200−√199=√200−1=10√2−1. 23.【答案】(1)解:原式=2 √2+2 √3﹣3 √3﹣√2 = √2﹣√3(2)解:原式= √23×38×25= √1010(3)解:原式=49﹣48=124.【答案】(1)解:∵一个正数的平方根是a+3与2a﹣15∴(a+3)+(2a﹣15)=0∴a=4;(2)解:∵√a−16+(b+2)2=0∴a﹣16=0,b+2=0∴a=16,b=﹣2∴√a b3=√16−23=﹣2;(3)解:∵y=√x−9−√9−x+√4∴x=9,y=2∴√x+√y=√9+√2=3+√2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考专题复习
第六讲二次根式
【基础知识回顾】
一、 二次根式
式子a()叫做二次根式
【名师提醒:①二次根式a必须注意a_ __o这一条件,其结果也是一个非负数即:
a
_ __o ,②二次根式a(a≥o)中,a可以表示数,也可以是一切符合条件的代数式】
二、 二次根式的几个重要性质:
①(a)2= (a≥0)②2a==
③ba=(a≥0 ,b≥0)④ab=(a≥0, b>0)
【名师提醒:二次根式的性质注意其逆用:如比较23和32的大小,可逆用(a)
2
=a(a≥0)将根号外的正数移到根号内再比较被开方数的大小】
三、最简二次根式:
最简二次根式必须同时满足条件:
1、被开方数的因数是,因式是整式,
2、被开方数不含的因数或因式。
四、二次根式的运算:
1、二次根式的加减:先将二次根式化简,再将的二次根式进行合并,合并的方法与合
并同类项法则相同
2、二次根式的乘除:
乘除法则:a.b=(a≥0 ,b≥0)除法法则:ab=(a≥0,b>0)
3、二次根式的混合运算顺序:先算再算最后算。
【名师提醒:①、二次根式除法运算过程一般情况下是用将分母中的根号化去(分母有理
化)这一方法进行:如:32==;②、二次根式混合运算过程要特别注意两个乘法公式的
运用;③、二次根式运算的结果一定要化成】
【重点考点例析】
考点一:二次根式有意义的条件
例1 (2016•盘锦)若式子1xx有意义,则x的取值范围是.
(a<o)
(a≥o)
对应训练
1.(2016•广州)若代数式1xx有意义,则实数x的取值范围是( )
A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠1
考点二:二次根式的混合运算
例2 (2016•大连)计算:(15)-1+(1+3)(1-3)-12.
对应训练
2.(2016•济宁)计算:(2-3)2012•(2+3)2013-2|-32|-(-2)0.
考点三:与二次根式有关的求值问题
例3(2016•湖州模拟)化简求值:22212212aaaaaaa,其中a=2 +1.
3.(2013•宿城区一模)已知:
y=118812xx,求代数式
22xyxyyxyx
的值
.
.
【聚焦山东中考】
1.(2016•日照)要使式子2x有意义,则x的取值范围是.
2.(2016•青岛)计算:2-1+20÷5=.
3.(2016•泰安)化简:3(23)-24-|6-3|=.
4.(2016•滨州)(计算时不能使用计算器)
计算:33-( 3)2+(π+3)0- 27+|3 -2|.
【备考真题过关】
一、选择题
1.(2016•上海)下列式子中,属于最简二次根式的是( )
A.9 B.7 C.20 D.
1
3
2.(2016•苏州)若式子12x在实数范围内有意义,则x的取值范围是( )
A.x>1 B.x<1 C.x≥1 D.x≤1
3.(2016•娄底)式子211xx有意义的x的取值范围是( )
A.x≥-12且x≠1 B.x≠1 C.x≥-12 D.x>-12且x≠1
4.(2016•贵港)下列四个式子中,x的取值范围为x≥2的是( )
A.22xx B.12x C.2x D.
2x
5.(2016•曲靖)下列等式成立的是( )
A.a2•a5=a10 B.ababC.(-a3)6=a18 D.2a=a
6.(2016•衡阳)计算182+(2)0的结果为( )
A.2+2 B.2+1 C.3 D.5
7.(2016•佛山)化简2(21)的结果是( )
A.22-1 B.2-2 C.1- 2 D.
2+2
8.(2016•杭州一模)已知m=1+2,n=1-2,则代数式223mnmn的值为( )
A.9 B.±3 C.3 D.5
二、填空题
9.(2016•宜兴市二模)使13x有意义的x的取值范围是.
10.(2016•襄阳)使代数式213xx有意义的x的取值范围是.
11.(2016•玉林)化简:35=.
12.(2016•曲靖)若整数x满足|x|≤3,则使7x为整数的x的值是(只需填一个).
13.(2016•南通一模)当a=2+1,b=2-1时,11ab= .
14.(2016•六盘水)无论x取任何实数,代数式26xxm都有意义,则m的取值范围
为.
1
三、解答题
15.(2016•黔西南州)阅读材料:
小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=
(1+2)2.善于思考的小明进行了以下探索:
设a+b2=(m+n2)2(其中a、b、m、n均为整数),则有a+b2=m2+2n2+2mn2.
∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b2的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b3=(m+n3)2,用含m、n的式子分别表示a、
b,得:a= ,b= ;
(2)利用所探索的结论,找一组正整数a、b、m、n填空:
+ 3=(+ 3)2;
(3)若a+43=(m+n3)2,且a、m、n均为正整数,求a的值?
15.解:(1)∵a+b3=(m+n3)2,
∴a+b3=m2+3n2+2mn3,
∴a=m2+3n2,b=2mn.
故答案为m2+3n2,2mn.
(2)设m=1,n=1,
∴a=m2+3n2=4,b=2mn=2.
故答案为4、2、1、1.
(3)由题意,得:
a=m2+3n2,b=2mn
∵4=2mn,且m、n为正整数,
∴m=2,n=1或者m=1,n=2,
∴a=22+3×12=7,或a=12+3×22=13.