各种曝气设备的性能及充氧能力剖析

合集下载

曝气设备的性能及充氧能力

曝气设备的性能及充氧能力

1.0-1.2 1-3 1.53.5 2-4
5.3-5.9 2-5
水下曝气器的轮曝气器图片
1. 上平板 2. 进气孔 3. 上压罩 4.下压罩 5. 导流锥顶 6. 引气孔 7. 进水口 8. 叶片
泵形叶轮曝气器的技术性能指标
•叶轮的浸没度hS--水面距叶轮上边缘的距离。 hS=0~40mm •叶轮外缘最佳线速度应在4.5~5.0m/s的范围内。 •泵型叶轮的充氧量和轴功率可按下列经验公式计算: Qs=0.379K1v2.8D1.88 (kgO2/h) Na=0.0804K2v3D2.08 (kW)
型号
规格 (mm)
300×300×35 Ø60~100 L500~600
服务面积 (m2/个)
氧利用 动力效率EP 率EA(%) (kgO2/kWh)
7~14 10~13 1.8~2.5 2.0 4~6 4~6 3.4 4.4~5.45
0.3~0.75 0.3~0.75 1~3 2
20~25 20~25 27~38 18~30
引自:文献 , 引自:文献[7,11]
曝气设备在污水中的充氧性能
不同充氧方式的效率
曝气方式 充氧效率 kgO2/(kW·h)
引自:文献 引自:文献[8]
单边曝气
全面曝气 (间距6.1 m) 1.57
中心曝气
全面曝气 (间距3.05 m) 1.82
1.05
1.33
曝气设备在污水中的充氧性能
在污水中,特别是负荷较高时,由于表面活性物质的影 响及微孔曝气器的堵塞,微孔曝气的效率下降。在混合液中, 池进口处α系数约0.3、池尾处则约为0.8,即其充氧效率从 1.2左右增至3.2kgO2/kWh,而机械表曝α系数始终接近1,故 在混合液中其充氧效率仍接近2kgO2/kWh。HAS即为曝气他入 口处使用机械表曝。其效率不因水中存在有机物而降低,再 接之以微孔曝气,这样就同时吸取了它们的长处,避免了短 处。此外,还在很大程度上减少了微孔曝气器堵塞的可能性。

曝气设备充氧能力的测定

曝气设备充氧能力的测定

实验三 曝气设备充氧能力的测定一 实验目的通过本实验希望达到下述目的:(1)掌握测定曝气设备的氧总传递系数和充氧能力的方法;(2)对比表面曝气器在不同位置下的曝气效果;(3)了解各种测试方法和数据整理方法的特点。

二 实验原理活性污泥法处理过程中曝气设备的作用是使空气,活性污泥和污染物三者充分混合,使活性污泥处于悬浮状态,促使氧气从气相转移到液相,从液相转移到活性污泥上,保证微生物有足够的氧进行物质代谢。

由于氧的供给是保证生化处理过程正常进行的主要因素之一,因此,工程设计人员和操作管理人员常需通过实验测定氧的总传递系数K La 、评价曝气设备的供氧能力和动力效率。

评价曝气设备充氧能力的试验方法有两种:(1)不稳定状态下进行试验,即试验过程水中溶解氧浓度是变化的,由零增到饱和浓度;(2)稳定状态下的试验,即试验过程水中溶解氧浓度保持不变。

试验可以用清水或在生产运行条件下进行。

下面分别介绍各种方法的基本原理。

(一)不稳定状态下进行试验在生产现场用自来水或曝气池出流的上清液进行试验时,先用亚硫酸钠(或氮气)进行脱氧,使水中溶解氧降到零,然后再曝气,直至溶解氧升高到接近饱和水平。

假定这个过程中液体是完全混和的,符合一级动力学反应,水中溶解氧的变化可用式(1)表示()C C K dtdCs La −= (1) 式中:dt dC /——氧转移速率(mg/L .h);K La ——氧的总转递系数(1/h);可以认为是一混和系数,其倒数表示使水中的溶解氧由C 变到C s 所需要的时间,是气液界面阻力和界面面积的函数。

C s ——试验条件下自来水(或污水)的溶解氧饱和浓度(mg/L); C ——相应于某一时刻t 的溶解氧浓度(mg/L). 将式(1)积分得()常数+⋅−=−t K C C La s ln (2) 式(2)表明,通过试验测得C s 和相应于每一时刻t 的溶解氧C 值后,绘制1n(C s 一C)与t 的关系曲线,其斜率即K La 。

曝气设备充氧能力实验

曝气设备充氧能力实验


V(kg⁄h)
三、实验设备与试剂
1、溶解氧测定仪
2、空压机
3、曝气筒
4、搅拌器
5、秒表
6、分析天平
7、烧杯
8、亚硫酸钠
9、氯化钴
四、实验步骤
1、向曝气筒内注入自来水,测定水样体积 V 及水温 t;
2、由水温查出实验条件水样溶解氧饱和值CS,并根据CS和 V 求投药量,然后投 药脱氧。
①脱氧剂亚硫酸钠的用量计算:
五、实验结果整理
1、水温:
水样体积:
Cs:
亚硫酸钠用量:
氯化钴用量:
2、实验记录
3、������������������ 计算 ①根据公式计算:
②用图解法计算:
������������������
=
2.303 t − t0 ∙
log
10
CS CS
− C0 − Ct
用半对数坐标轴作亏氧值CS − C和时间 t 的关系曲线,斜率即为������������������。
于中等程度溶解的气体,这两层膜都呈现相当的阻力。 氧气是难溶解气体,传质阻力主要来源于液膜,因此理论上它的传质速率������������
������������
通常正比于溶液中溶解氧的饱和浓度差������������ − ������,即: ������������ ������������ = ������������������(������������ − ������)
所以单位水样投加钴盐量为:
0.4 × 4.0 = 1.6 g⁄m3
本实验钴盐投加量为:1.6V(g)
③将亚硫酸钠用热水化开,均匀导入曝气筒内,溶解的钴盐倒入水中,并开动搅 拌叶轮轻微搅动使其混合,进行脱氧。

曝气设备充氧能力实验报告

曝气设备充氧能力实验报告

12实验目的(1)(2)掌握测定曝气设备的K La和充氧能力α、β 的实验方法及计算Q s;(3)(4)评价充氧设备充氧能力的好坏;(5)(6)掌握曝气设备充氧性能的测定方法。

34实验原理活性污泥处理过程中曝气设备的作用是使氧气、活性污泥、营养物三者充分混合,使污泥处于悬浮状态,促使氧气从气相转移到液相,从液相转移到活性污泥上,保证微生物有足够的氧进行物质代谢。

由于氧的供给是保证生化处理过程正常进行的主要因素,因此工程设计人员通常通过实验来评价曝气设备的供氧能力。

在现场用自来水实验时,先用Na2S03(或N2)进行脱氧,然后在溶解氧等于或接近零的状态下再曝气,使溶解氧升高趋于饱和水平。

假定整个液体是完全混合的,符合一级反应此时水中溶解氧的变化可以用以下式子表示:式中:d C/d t——氧转移速率,mg/(L·h);K La——氧的总传递系数,L/h;C s——实验室的温度和压力下,自来水的溶解氧饱和浓度,mg/L;C——相应某一时刻t的溶解氧浓度,mg/L。

将上式积分,得由于溶解氧饱和浓度、温度、污水性质和混乱程度等因素影响氧的传递速率,因此应进行温度、压力校正,并测定校正废水性质影响的修正系数α、β。

所采用的公式如下:充氧能力为56实验内容6.16.2实验设备与试剂(1)(2)溶解氧测定仪(3)(4)空压机。

(5)(6)曝气筒。

(7)(8)搅拌器。

(9)(10)秒表。

(11)(12)分析天平(13)(14)烧杯。

(15)(16)亚硫酸钠(Na2S03)(17)(18)氯化钴(CoCl2·6H20)。

6.36.4实验装置实验装置如图3-1所示。

图3-1 曝气设备充氧能力实验装置简图6.56.6实验步骤(1)(2)向曝气筒内注入20L自来水,测定水样体积V(L)和水温t (℃);(3)(4)由实验测出水样溶解氧饱和值C s,并根据C s和V 求投药量,然后投药脱氧;a)b)脱氧剂亚硫酸钠(Na2S03)的用量计算。

曝气设备充氧能力实验报告

曝气设备充氧能力实验报告

1实验目的(1)掌握测定曝气设备的K La和充氧能力α、β 的实验方法及计算Q s;(2)评价充氧设备充氧能力的好坏;(3)掌握曝气设备充氧性能的测定方法。

2实验原理活性污泥处理过程中曝气设备的作用是使氧气、活性污泥、营养物三者充分混合,使污泥处于悬浮状态,促使氧气从气相转移到液相,从液相转移到活性污泥上,保证微生物有足够的氧进行物质代谢。

由于氧的供给是保证生化处理过程正常进行的主要因素,因此工程设计人员通常通过实验来评价曝气设备的供氧能力。

在现场用自来水实验时,先用Na2S03(或N2)进行脱氧,然后在溶解氧等于或接近零的状态下再曝气,使溶解氧升高趋于饱和水平。

假定整个液体是完全混合的,符合一级反应此时水中溶解氧的变化可以用以下式子表示:式中:d C/d t——氧转移速率,mg/(L·h);K La——氧的总传递系数,L/h;C s——实验室的温度和压力下,自来水的溶解氧饱和浓度,mg/L;C——相应某一时刻t的溶解氧浓度,mg/L。

将上式积分,得由于溶解氧饱和浓度、温度、污水性质和混乱程度等因素影响氧的传递速率,因此应进行温度、压力校正,并测定校正废水性质影响的修正系数α、β。

所采用的公式如下:充氧能力为3实验内容3.1实验设备与试剂(1)溶解氧测定仪(2)空压机。

(3)曝气筒。

(4)搅拌器。

(5)秒表。

(6)分析天平(7)烧杯。

(8)亚硫酸钠(Na2S03)(9)氯化钴(CoCl2·6H20)。

3.2实验装置实验装置如图3-1所示。

图3-1 曝气设备充氧能力实验装置简图3.3实验步骤(1)向曝气筒内注入20L自来水,测定水样体积V(L)和水温t (℃);(2)由实验测出水样溶解氧饱和值C s,并根据C s和V 求投药量,然后投药脱氧;a)脱氧剂亚硫酸钠(Na2S03)的用量计算。

在自来水中加入Na2S03还原剂来还原水中的溶解氧。

相对分子质量之比为:故Na2S03理论用量为水中溶解氧的8倍。

各种曝气设备的性能及充氧能力ppt

各种曝气设备的性能及充氧能力ppt

潜水曝气设备
螺旋桨曝气设备
射流曝气设备
具有较小的充氧能力和动力效率,但噪音较小,适用于小型污水处理厂和景观水体。
具有较小的充氧能力和动力效率,但噪音较小,适用于浅水区域和河道治理。
具有较小的充氧能力和动力效率,但噪音较小,适用于小型污水处理厂和景观水体。
指曝气设备每小时能够向水中充氧的量,单位为千克/小时。
充氧能力
指曝气设备每消耗1度电能能够向水中充氧的量,单位为千克/度。
动力效率
指曝气设备运行所需的能量,单位为千瓦时/小时。
能耗
曝气设备的性能指标
曝气设备性能比较图表
鼓风曝气设备的充氧能力和动力效率最高,但噪音较大,能耗较高。
螺旋桨曝气设备的充氧能力和动力效率较低,但噪音较小,能耗较低。
潜水曝气设备的充氧能力和动力效率较低,但噪音较小,能耗较低。
曝气设备的充氧能力图表
04
曝气设备的应用案例
曝气设备在污水处理厂中发挥着重要的作用,通过提供足够的氧气来促进微生物对有机物的分解,从而实现对污水的有效处理。
污水处理厂应用概述
曝气设备在污水处理厂中的具体应用包括鼓风机、表面曝气器和潜水曝气器等,不同的设备适用于不同的处理流程和场合。
污水处理厂应用细节
对曝气设备应用领域的建议
谢谢您的观看
THANKS
01
曝气设备对污水处理效果至关重要,其性能和充氧能力直接影响污水处理的效果和质量。
02
在实验测试的曝气设备中,部分设备的性能和充氧能力表现优秀,可以满足污水处理工艺的需求。
01
未来曝气设备将面临更加严格的要求,需要进一步提高性能和充氧能力,以满足更高的污水处理标准。
对曝气设备未来发展的展望

(完整版)曝气设备充氧能力实验报告

(完整版)曝气设备充氧能力实验报告

1实验目的(1)掌握测定曝气设备的K La和充氧能力α、β 的实验方法及计算Q s;(2)评价充氧设备充氧能力的好坏;(3)掌握曝气设备充氧性能的测定方法。

2实验原理活性污泥处理过程中曝气设备的作用是使氧气、活性污泥、营养物三者充分混合,使污泥处于悬浮状态,促使氧气从气相转移到液相,从液相转移到活性污泥上,保证微生物有足够的氧进行物质代谢。

由于氧的供给是保证生化处理过程正常进行的主要因素,因此工程设计人员通常通过实验来评价曝气设备的供氧能力。

在现场用自来水实验时,先用Na2S03(或N2)进行脱氧,然后在溶解氧等于或接近零的状态下再曝气,使溶解氧升高趋于饱和水平。

假定整个液体是完全混合的,符合一级反应此时水中溶解氧的变化可以用以下式子表示:d C=K La(C s−C)d t式中:d C/d t——氧转移速率,mg/(L·h);K La——氧的总传递系数,L/h;C s——实验室的温度和压力下,自来水的溶解氧饱和浓度,mg/L;C——相应某一时刻t的溶解氧浓度,mg/L。

将上式积分,得ln(C s−C)=−K La t+常数由于溶解氧饱和浓度、温度、污水性质和混乱程度等因素影响氧的传递速率,因此应进行温度、压力校正,并测定校正废水性质影响的修正系数α、β。

所采用的公式如下:K La(T)=K La(20℃)1.024T−20C s(校正)=C s(实验)×标准大气压(kPa)实验时的大气压(kPa)α=废水的K La 自来水的K Laβ=废水的C s 自来水的C s充氧能力为Q s=d Cd t·V=K La(20℃)·C s(校正)·V(kg/h)3实验内容3.1实验设备与试剂(1)溶解氧测定仪(2)空压机。

(3)曝气筒。

(4)搅拌器。

(5)秒表。

(6)分析天平(7)烧杯。

(8)亚硫酸钠(Na2S03)(9)氯化钴(CoCl2·6H20)。

各种曝气设备的性能及充氧能力

各种曝气设备的性能及充氧能力
SBQⅡ潜水式曝气机
泵形叶轮曝气器图片
1. 上平板 2. 进气孔 3. 上压罩 4.下压罩 5. 导流锥顶 6. 引气孔 7. 进水口 8. 叶片
泵形叶轮曝气器的技术性能指标
•叶轮的浸没度hS--水面距叶轮上边缘的距离。 hS=0~40mm
•叶轮外缘最佳线速度应在4.5~5.0m/s的范围内。 •泵型叶轮的充氧量和轴功率可按下列经验公式计算:
3~8
8.7
2.2~2.6
射流曝气器的技术性能指标
单级单喷嘴射流曝气器
自吸供气,动力效率为1.4~2.0kgO2/kWh ; 压力供气,动力效率为2.0kgO2/kWh以上。
引自:文献[2]
水下曝气器的技术性能指标
SBQ I 水下曝气器
型号
SBQⅠ-31-50 SBQⅠ-32-80 SBQⅠ-33-80 SBQⅠ-35-100 SBQⅠ-37-100
对机械曝气设备: (1)动力效率-Ep,以kgO2/kWh计; (2)氧的转移效率-EL,又称充氧能力,通过机械 曝气装置的转动,在单位时间内转移到混合液中 的氧量,以kgO2/h计。
各种曝气设备在清水中的充氧能力
生产厂家提供曝气设备的氧转移参 数是在标准条件下测定的,即水温 20°C、气压为1.013×105Pa。测定 用水是脱氧清水。
44.5~63.9
调速
55
普通 1930
34.5~49.3
调速
45
引自:文献[4]
清水充氧量 (kgO2/h) 2.5~8.0 5 14~39 27 30~82.5 54.5 48~130 96
提升力
电机功率
(N)
(kw)
410~1400 2.2
670
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档