重庆数学中考26题专题训练
重庆中考数学26题专项.doc

中考26题第二小问专项讲解第一大类:线段最大值一、基本题型:_ _丄2 3 9例1:如图,抛物线J = _7X +T X + 2与兀轴交于A.B两点,与y轴交于C点, P为抛物线上BC±方的一点。
1、过点P作y轴的平行线交BC于M,求PM的最大值。
2、过点P作X轴的平行线交BC于M,求PM的最大值。
二、变式题型1:过点P作y轴的平行线交BC于M,作PN丄BC于N。
3、求PN的最大值,PM+PN的最大值。
4、求APMN周长的最大值。
5、求APMN面积的最大值。
三、变式题型2:P为抛物线上E C上方的一点。
D为E C延长线上的一点且C D = B C 6、求APBC面积的最大值。
7、求APDC面积的最大值。
例2:如图,抛物线与y = -yx2+|x + 2兀轴交于4, B两点,与y轴交于C点,P为抛物线的顶点。
1、M是BC上的一点,求PM + AM最小时M点的坐标。
2、D为点C关于x轴的对称点,M是BC±的一点,求DM+PM最小时M点的坐标。
3、M是BC上的一点,N是AC上的一点,求° OMN周长的最小值及M点的坐标。
4、M. N为直线B C±的动点,N在下方且MN = V5 ,最小值。
5、M. N为直线BC上的动点,N在下方且MN = V5 , D在抛物线上且在D与C对称。
求四边形PMND周长的最小值。
6、M为对称轴上的一点,MN丄y轴于N, D在抛物线上且在D与C对称。
求DM + MN + N A的最小值。
7、M为对称轴上的一点,MN丄y轴于N, D在抛物线上且在D与C对称。
求DM + MN + N B的最小值。
8、M为对称轴上的一点,N为y轴上一点,D在抛物线上且在D与C对称。
求OM + MN + N D第二大类: 线段和的最小值9、M为EC上的一点,求PM + 討的最小值。
求PM + MN + AN 的10、D在抛物线上且在D与C对称,在BC±找一点N, M是x轴上的一点。
2021年重庆中考数学第26题几何证明专题训练

2021年重庆中考数学第26题几何证明专题训练1.如图1,在Rt△ACB中,AC=BC,过B点作BD⊥CD于D点,AB交CD于E.(1)如图1,若AC=6,tan∠ACD=2,求DE的长;(2)如图2,若CE=2BD,连接AD,在AD上找一点F,使CF=DF,在FD上取一点G,使∠EGF=∠CFG,求证:AF=EG;(3)如图3,D为线段BC上方一点,且∠BDC=90°,AC=6,连接AD,将AD绕A点逆时针旋转90°,D点对应点为E点,H为DE中点,求当AH有最小值时,直接写出△ACH 的面积.2.在△ABC中,∠BAC=90°,点E为AC上一点,AB=AE,AG⊥BE,交BE于点H,交BC于点G,点M是BC边上的点.(1)如图1,若点M与点G重合,AH=2,BC=√26,求CE的长;(2)如图2,若AB=BM,连接MH,∠HMG=∠MAH,求证:AM=2√2HM;(3)如图3,若点M为BC的中点,作点B关于AM的对称点N,连接AN、MN、EN,请直接写出∠AMH、∠NAE、∠MNE之间的角度关系.3.如图,在△ABC和△DEF中,AB=AC,DE=DF,∠BAC=∠EDF=120°,线段BC与EF相交于点O.(1)若点O恰好是线段BC与线段EF的中点.①如图1,当点D在线段BC上,A、F、O、E四点在同一条直线上时,已知BC=4√3,DE=√3,求AD的长;②如图2,连接AD,CF相交于点G,连接OG,BG,当BG⊥OG时,求证:BG=√3CG.2(2)若点D与点A重合,CF//AB,H、K分别为OC、AF的中点,连接HK,直接写出HKAE−OF 的值.AC,连接4.在△ABC和△AEF中,∠AFE=∠ABC=90°,∠AEF=∠ACB=30°,AE=12 EC,点G是EC中点,将△AEF绕点A顺时针旋转.(1)如图1,若E恰好在线段AC上,AB=2,连接FG,求FG的长度;(2)如图2,若点F恰好落在射线CE上,连接BG,证明:GB=√3AB+GC;2GC最大时,直接写出直线AB,(3)如图3,若AB=3,在△AEF旋转过程中,当GB−12AC,BG所围成三角形的面积.5.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G为FC的中点,连接GD,ED.(1)如图①,E在AB上,直接写出ED,GD的数量关系.(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.6.如图1,在四边形ABCD中,AC交BD于点E,△ADE为等边三角形.(1)若点E为BD的中点,AD=4,CD=5,求△BCE的面积;(2)如图2,若BC=CD,点F为CD的中点,求证:AB=2AF;(3)如图3,若AB//CD,∠BAD=90°,点P为四边形ABCD内一点,且∠APD=90°,连接BP,取BP的中点Q,连接CQ.当AB=6√2,AD=4√2,tan∠ABC=2时,求CQ+√10BQ的最小值.107.已知△ABC中,∠ACB=90°,AC=2BC.(1)如图①,若AB=BD,AB⊥BD,求证:CD=√2AB;(2)如图②,若AB=AD,AB⊥AD,BC=1,求CD的长;(3)如图③,若AD=BD,AD⊥BD,AB=2√5,求CD的长.8.在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3√2,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.9.在平行四边形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于E,过点C作CF⊥CD交AE于点F,连接OF.以OF为直角边作Rt△OFG,其中∠OFG=90°,连接AG.(1)如图1,若∠EAB=30°,OA=2√3,AB=6,则求CE的长度;(2)如图2,若CF=CD,∠FGO=45°,求证:EC=√2AG+2EF;(3)如图3,动点P从点A运动到点D(不与点A、点D重合),连接FP,过点P作FP的垂线,又过点D作AD的垂线交FP的垂线于点Q,点A′是点A关于FP的对称点,连接A′Q.若AE=2EC,FG=2OF,EF=1,AG=√5,则在动点P的运动过程中,直接写出A′Q的最小值.10.在正方形ABCD中,E为边CD上一点(不与点C、D重合),垂直于BE的一条直线MN分别交BC、BE、AD于点M、P、N,正方形ABCD的边长为6.(1)如图1,当点M和点C重合时,若AN=4,求线段PM的长度;(2)如图2,当点M在边BC上时,判断线段AN、MB、EC之间的数量关系,并说明理由;(3)如图3,当垂足P在正方形ABCD的对角线AC上运动时,连接NB,将△BPN沿着BN翻折,点P落在点P′处,AB的中点为Q,直接写出P′Q的最小值.11.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求∠CPE的度数;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.12. 如图,在菱形ABCD 中,∠ABC =60°,分别过点B 作BC 的垂线,过点D 作CD 的垂线,两垂线相交于点E .(1)如图1,若AD =4,连接AE ,BD ,求三角形ADE 的面积;(2)如图2,点F 是DE 延长线上的一点,点G 为EB 延长线上的一点,且EF =BG ,连接BF ,DG ,DG 交FB 的延长线于点H ,连接AH ,试猜想线段AH ,BH ,HD 的数量关系并证明你的结论;(3)如图3,在(2)的条件下,在AH 上取得一点P ,使得HP =3AP ,已知Q 为直线ED 上一点,连接BQ ,连接QP ,当BQ +QP 最小时,直接写出S △QDC S 菱形ABCD 的值.13. 如图,已知△ABC 中,∠ABC =45°,CD 是边AB 上的高线,E 是AC 上一点,连接BE ,交CD 于点F .(1)如图1,若∠ABE =15°,BC =√3+1,求DF 的长;(2)如图2,若BF =AC ,过点D 作DG ⊥BE 于点G ,求证:BE =CE +2DG ;(3)如图3,若R 为射线BA 上的一个动点,以BR 为斜边向外作等腰直角△BRH ,M 为RH 的中点.在(2)的条件下,将△CEF 绕点C 旋转,得到△CE′F′,E ,F 的对应点分别为E′,F′,直线MF′与直线AB 交于点P ,tan∠ACD =13,直接写出当MF′取最小值时RMPF′的值.14. 如图△ABC 为等腰直角三角形,∠A =90°,D 、E 分别为AB 、AC 边上的点,连接DE ,以DE 为直角边向上作等腰直角三角形DEF ,连接BE 、BF .(1)如图1,当CE =AD 时,求证:BF ⊥BD ;(2)如图2,H 为BE 的中点,过点D 作DG ⊥BC 于点G ,连接GH.求证:BF =2HG ;(3)如图3,BE 与DF 交于点R ,延长BF 交AC 于点P ,∠APB 的角平分线交BE 于点Q.若点E 为AC 上靠近点A 的三等分点,且tan∠AED =67,请直接写出BR QR 的值.15. 如图,△ABC 是等边三角形,△BDE 是顶角为120°的等腰三角形,BD =DE ,连接CD ,AE .(1)如图1,连接AD ,若∠ABE =60°,AB =BE =√3,求CD 的长;(2)如图2,若点F 是AE 的中点,连接CF ,DF.求证:CD =2DF ;(3)如图3,在(2)的条件下,若AB =2√3,BD =2,将△BDE 绕点B 旋转,点H 是△AFC 内部的一点,当DF 最大时,请直接写出2HA +HF +√5HC 的最小值的平方.16.如图,点B,C,D在同一条直线上,△BCF和△ACD都是等腰直角三角形.连接AB,DF,延长DF交AB于点E.(1)如图1,若AD=BD,DE是△ABD的平分线,BC=1,求CD的长度;(2)如图2,连接CE,求证:DE=√2CE+AE;(3)如图3,改变△BCF的大小,始终保持点F在线段AC上(点F与点A,C不重合).将ED绕点E顺时针旋转90°得到EP.取AD的中点O,连接OP.当AC=2时,直接写出OP 长度的最大值.17.如图,已知△ABC为等腰直角三角形,AB=AC且∠CAB=90°,E为BC上一点,且BE=AC,过E作EF⊥BC且EF=EC,连接CF.(1)如图1,已知AB=2,连接AE、AF,求△AEF的面积;(2)如图2所示,D为AB上一点,连接DB,作∠DBH=45°交EF于H点,求证:CD=HF+√2CE;(3)已知△ABC面积为8+4√2,D为射线AC上一点,作∠DBH=45°,交射线EF于H,连接DH,点M为DH的中点,当CM有最小值时,请直接写出△CMD的面积.18.如图,Rt△ABC中,∠ABC=90°,AB=BC,点E是边BC上的一个动点,点D是射线AC上的一个动点;连接DE,以DE为斜边,在DE右侧作等腰Rt△DFE,再过点D 作DH⊥BC,交射线BC于点H.(1)如图1,若点F恰好落在线段AE上,且∠DEH=60°,CD=3√2,求出DF的长;(2)如图2,若点D在AC延长线上,此时,过F作FG⊥BC于点G,FG与AC边的交点记为M,当AE=DE时,求证:FM+√2MD=AB;(3)如图3,若AB=4√10,点D在AC延长线上运动,点E也随之运动,且始终满足AE=DE,作点E关于DF的对称点E′,连接CF、FE′、DE′,当CF取得最小值时,请直接写出此时四边形CFE′D的面积.19.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A顺时针旋转90°,得到AE,连接DE.(1)如图1所示,若BC=4,在D点运动过程中,当tan∠BDE=8时,求线段CD的长;11(2)如图2所示,点F是线段DE的中点,连接BF并延长交CA延长线于点M,连接DM,交AB于点N,连接CF,AF,当点N在线段CF上时,求证:AD+BF=CF;(3)如图3,若AB=2√3,将△ABC绕点A顺时针旋转得△AB′C′,连接CC′,P为线段CC′上一点,且CC′=√3PC′,连接BP,将BP绕点B顺时针旋转60°得到BQ,连接PQ,K 为PQ的中点,连接CK,请直接写出线段CK的最大值.20.在△ABC中,AC=BC,D为△ABC外一点,连接CD.(1)如图1,若∠ACB=60°,CD//AB,连接BD交AC于点E,且CD=2AB=2,求S△BCE.EC,(2)如图2,CE=CD,∠ECB=∠DCA,ED交AB于点F,FG垂直平分EC,且FG=12BF.M,N分别为AF,CD中点,连接MN,求证:MN=12(3)如图3,若∠ACB=90°,CD//AB,将AD绕着A点顺时针旋转60°得到AD′,连接DD′,BD′,且AC=√6,求BD′的最小值.21.已知,等腰直角△ABC中,AC=BC,∠ACB=90°,D为AB边上的一点,连接CD,以CD为斜边向右侧作直角△CDE,连接AE并延长交BC的延长线于点F.(1)如图1,当∠CDE=30°,AD=1,BD=3时,求线段DE的长;(2)如图2,当CE=DE时,求证:点E为线段AF的中点;(3)如图3,当点D与点A重合,AB=4时,过E作EG⊥BA交直线BA于点G,EH⊥BC交直线BC于点H,连接GH,求GH长度的最大值.22.如图,在锐角△ABC中,∠ACB=45°,点D是边BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接DE交AC于点F.(1)如图1,若∠ADC=60°,求证:DF=AF+EF;(2)如图2,在点D运动的过程中,当∠ADC是锐角时,点M在线段DC上,且AM=AD,连接ME,猜想线段ME,MD,AC之间存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,当∠ADC是钝角时,点N是线段DE上一动点,连接CN,若AF=m,请直接用含m的代数式表示2CN+√2NE的最小值.CF=3523.如图1,在Rt△ABC与Rt△ABD中,∠ACB=∠ADB=90°,∠BAC=60°,CE⊥AB交AB于点E,AE=AD,点F在线段BD上,连接AF.(1)若AC=4,求线段BD的长;(2)如图2,若∠DAF=60°,点M为线段BF的中点,连接CM,证明:2CM=BF+√3AC;(3)如图3,在(2)的条件下,将△ADF绕点A旋转得△AD′F′,连接BF′,点M为线段BF′的中点,连接D′M,当D′M长度取最小时,在线段AB上有一动点N,连接MN,将线段MN绕点M逆时针旋转60°至MN′,连接D′N′,若AC=4,请直接写出(2MN′−√2D′N′)的最小值.。
2020年重庆中考几何第26题专题训练一(含答案解析)

2020年中考几何题专题训练一答案解析\1、已知:在△ABC中,BC=2AC,∠DBC=∠ACB,BD=BC,CD交线段AB于点E.(1)如图1,当∠ACB=90°时,则线段DE、CE之间的数量关系为;(2)如图2,当∠ACB=120°时,求证:DE=3CE;(3)如图3,在(2)的条件下,点F是BC边的中点,连接DF,DF与AB交于G,△DKG和△DBG 关于直线DG对称(点B的对称点是点K,延长DK交AB于点H.若BH=10,求CE的长.2、(2016春•重庆校级期中)在△ABC中,AB=AC,D为射线BC上一点,DB=DA,E为射线AD上一点,且AE=CD,连接BE.(1)如图1,若∠ADB=120°,AC=2,求DE的长;(2)如图2,若BE=2CD,连接CE并延长交AB于点F,求证:CF=3EF;(3)如图3,若BE⊥AD,垂足为点E,猜想AE,BE,BD之间的数量关系,直接写出关系式.3、(2019秋•江岸区校级月考)在菱形ABCD中,∠ABC=60°(1)如图1,P是边BD延长线上一点,以AP为边向右作等边△APE,连接BE、CE.①求证:CE⊥AD;②若AB=,BE=,求AE的长;(2)如图2,P是边CD上一点,点D关于AP的对称点为E,连接BE并延长交AP的延长线于点F,连接DE、DF.若BE=11,DE=5,求△ADF的面积.4、(2016秋•南岗区校级月考)已知:如图,在等边△ABC中,点D是AC上任意一点,点E在BC延长线上,连接DB,使得BD=DE.(1)如图1,求证:AD=CE;(2)如图2,取BD的中点F,连接AE、AF.求证:∠CAE=∠BAF;(3)如图3,在(2)的条件下,过点F作AE的垂线,垂足为H,若AH=.求EH的长.5、已知,在Rt△ABC中,∠C=90°,AC=BC,点D在边BC上,连接AD,作DE⊥AD,且DE=AD,连接BE、AE,DE与AB交于点H,(1)如图1所示,求证:∠C=∠ABE;(2)如图2,把射线AD沿AB折叠,分别交BE、DE的延长线于点F、点G.若∠AEB=75°,求证:HG=2DH;(3)在(2)的条件下,若BE=3,求DH的长?6、如图,在△ABC中,∠ABC=90°,AB=BC,点D是△ABC内部一点,连接AD,BD和CD.(1)如图1,若∠BDC=90°,BD=1,CD=2,求AC的长.(2)如图2,若CD平分∠ACB,∠BDC=90°,过点B作BE∥AC交AD的延长线于点E,求证:AD =DE.(3)如图3,若CD=CB,∠BCD=30°,取线段AC的中点F,连接DF,求证:∠AFD=45°7、(2013•洪山区模拟)如图1,直角梯形ABCD中,BC=CD,AB∥CD,∠ABC=90°,点P为边AD上一点,BC=PB.(1)求证:∠CBP=2∠DCP;(2)如图2,若∠ABP的平分线交CP的延长线于点E,连接DE,求证:BE+DE=CE;(3)在(2)的条件下,若AB=1,BC=2,请直接写出线段CE的长度.8、(2016秋•松北区期末)如图,在△ABC中,∠ACB=60°,点D在射线BC上,AB=AD.(1)如图1,求证:BC+CD=AC;(2)如图2,取AB的中点F,延长CA至点E,连接BE、DE、EF,使得∠ABE=∠CAD,EF=AE,求证:∠BEF=2∠ABD;(3)如图3,在(2)的条件下,FG⊥BE于点G,FG=4,EF=,求△AED的面积.9、(2016•九龙坡区校级一模)已知,Rt△ABC中,∠ACB=90°,∠CAB=30°,分别以AB、AC为边,向Rt△ABC外作等边△ABD和等边△ACE(1)如图1,连接BE、CD,若BC=2,求BE的长;(2)如图2,连接DE交AB于点F,作BH⊥AD于H,连接FH.求证:BH=2FH;(3)如图3,取AB、CD得中点M、N,连接M、N,试探求MN和AE的数量关系,并直接写出结论.10、重庆八中初2020级九上期末11、重庆实验外国语学校初2020级九上期末12、重庆双福育才中学初2020级九上期末2020年中考几何题专题训练一答案解析\1、已知:在△ABC中,BC=2AC,∠DBC=∠ACB,BD=BC,CD交线段AB于点E.(1)如图1,当∠ACB=90°时,则线段DE、CE之间的数量关系为DE=2CE;(2)如图2,当∠ACB=120°时,求证:DE=3CE;(3)如图3,在(2)的条件下,点F是BC边的中点,连接DF,DF与AB交于G,△DKG和△DBG 关于直线DG对称(点B的对称点是点K,延长DK交AB于点H.若BH=10,求CE的长.(1)解:∵∠DBC=∠ACB=90°,∴∠DBC+∠ACB=180°,∴AC∥BD,∴∠DBE=∠CAE又∵∠DEB=∠AEC,∴△DBE∽△CAE,∴=,又∵BD=BC=2AC,∴DE=2CE;故答案为:DE=2CE.(2)证明:如图2,∵∠DBC=∠ACB=120°,BD=BC,∴∠D=∠BCD=30°,∴∠ACD=90°,过点B作BM⊥DC于M,则DM=MC,BM=BC,∵AC=BC,∴BM=AC,∵在△BME和△ACE中∴△BME≌△ACE(AAS),∴ME=CE=CM,∴DE=3EC;(3)解:如图,过点B作BM′⊥DC于点M′,过点F作FN⊥DB交DB的延长线于点N,设BF=a,∵∠DBF=120°,∴∠FBN=60°,∴FN=a,BN=a,∵DB=BC=2BF=2a,∴DN=DB+BN=a,∴DF===a,∵AC=BC,BF=BC,∴BF=AC,∴△BDF≌△BCA(SAS),∴∠BDF=∠CBA,又∵∠BFG=∠DFB,∴△FBG∽△FDB,∴==,∴BF2=FG×FD,∴a2=a×FG,∴FG=a,∴DG=DF﹣FG=a,BG==a,∵△DKG和△DBG关于直线DG对称,∴∠GDH=∠BDF,∴∠ABC=∠GDH,又∵∠BGF=∠DGH,∴△BGF∽△DGH,∴=,∴GH==a,∵BH=BG+GH=a=10,∴a=2;∴BC=2a=4,CM′=BC cos30°=2,∴DC=2CM′=4,∵DE=3EC,∴EC=DC=.2、(2016春•重庆校级期中)在△ABC中,AB=AC,D为射线BC上一点,DB=DA,E为射线AD上一点,且AE=CD,连接BE.(1)如图1,若∠ADB=120°,AC=2,求DE的长;(2)如图2,若BE=2CD,连接CE并延长交AB于点F,求证:CF=3EF;(3)如图3,若BE⊥AD,垂足为点E,猜想AE,BE,BD之间的数量关系,直接写出关系式.(1)解:∵DA=DB,∠ADB=120°,∴∠ABC=∠BAD=30°,∵AB=AC,∴∠ABC=∠C=30°,∴∠CAD=90°,在RtACD中,tan30°=,∴AD=2×=2,AE=CD=2AD=4 ∴DE=AE﹣AD=CD﹣AD=4﹣2=2;(2)证明:如图,过A作AG∥BC,∵DB=DA,AB=AC,∴∠BAD=∠ABC,∠ABC=∠ACB,∴∠BAD=∠ACB,∵AE=CD,在△ABE和△CAD中∴△ABE≌△CAD(SAS),∴BE=AD,∵BE=2CD,∴AD=2CD=2AE,∴AE=DE,∵AG∥BC,∴∠G=∠DCE,∠GAE=∠CDE,在△AGE和△DCE中∴△AGE≌△DCE(AAS),∴GE=CE,AG=CD=AE,∴△AGE为等腰三角形,∴∠GAF=∠ABC=∠BAD,∴F为GE的中点,∴CE=EG=2EF,∴CF=3EF;(3)如图3,取BE中点M,延长AM至N,使MN=AM,连接BN,EN,∴四边形ABNE是平行四边形,∴AE∥BN,∴∠NBC=∠D,BN=AE=CD,∵AB=AC,DB=DA,∴∠ABC=∠ACB=∠BAD,∴∠BAC=∠D=∠NBC,∵∠ABN=∠NBC+∠ABC,∠ACD=∠BAC+∠ABC,∴∠ABN=∠ACD,在△ABN和△ACD中∴△ABN≌△ACD(SAS),∴BD=AD=AN=2AM,∵BE⊥AD,∴AE2+ME2=AM2,∴AE2+(BE)2=(AN)2,∴AE2+BE2=BD2.3、(2019秋•江岸区校级月考)在菱形ABCD中,∠ABC=60°(1)如图1,P是边BD延长线上一点,以AP为边向右作等边△APE,连接BE、CE.①求证:CE⊥AD;②若AB=,BE=,求AE的长;(2)如图2,P是边CD上一点,点D关于AP的对称点为E,连接BE并延长交AP的延长线于点F,连接DE、DF.若BE=11,DE=5,求△ADF的面积.(1)①证明:在菱形ABCD中,∠ABC=60°,∴∠ADC=60°,且AB=BC=DA=DC,∴△ADC和△ABC是等边三角形,∴AB=AC,∠BAC=∠CAD=60°,又∵△APE是等边三角形,∴AE=AP,∠EAP=60°,∴∠BAC+∠CAP=∠PAE+∠CAP,即∠BAP=∠CAE,∴△BAP≌△CAE(SAS),∴∠ACE=∠ABP=∠ABC=30°,∵∠CAD=60°,∴∠ACE+∠CAD=90°,∴CE⊥AD;②解:如图1,设AC与BD交于点O,由①知,∠ACE=30°,且∠ACB=60°,∴∠ACE+∠ACB=∠BCE=90°,∵在Rt△BCE中,BC=AB=,BE=,∴CE==4,由①知,△BAP≌△CAE,∴BP=CE=4,在Rt△BOC中,∠ACB=60°,∴BO=BC=,CO=AO=BC=,∴OP=BP﹣BO=,∴在Rt△AOP中,AP===,∴AE=AP=;(2)解:如图2,连接AE,过点A作AH⊥BF于点H,∵点D关于AP的对称点为E,∴AP垂直平分DE,∴AD=AE,FD=FE,∴∠EAF=∠DAF=∠EAD,∠DFA=∠EFA=∠DFE,又∵在菱形ABCD中,AB=AD,∴AB=AE,∴AH垂直平分BE,∴EH=BH=BE=,∠BAH=∠EAH=∠BAE,∴∠HAF=∠EAH+∠EAF=∠BAD,∵∠ABC=60°,∴∠BAD=180°﹣∠ABC=120°,∴∠HAF=60°,∴∠AFH=90°﹣∠HAF=30°,∴∠DFE=60°,∴△DEF为等边三角形,∴EF=DE=5,∴HF=HE+EF=+5=,在Rt△AHF中,∠AFH=30°,∴AH=HF=,∴S△AEF=EF•AH=×5×=,∵AD=AE,FD=FE,AF=AF,∴△ADF≌△AEF(SSS),∴△ADF的面积为.4、(2016秋•南岗区校级月考)已知:如图,在等边△ABC中,点D是AC上任意一点,点E在BC延长线上,连接DB,使得BD=DE.(1)如图1,求证:AD=CE;(2)如图2,取BD的中点F,连接AE、AF.求证:∠CAE=∠BAF;(3)如图3,在(2)的条件下,过点F作AE的垂线,垂足为H,若AH=.求EH的长.解:(1)如图1,作DF∥AB,∵DF∥AB,∴,∵AC=BC,∴CF=CD,∴BF=AD,∵DF∥AB,∴∠DFC=60°,∴∠BFD=120°,∵BD=DE,∴∠E=∠DBE,在△BDF和△EDC中,,∴△BDF≌△EDC,(AAS)∴BF=CE,∴AD=CE,(2)如图2,过点B作BG∥AC交AF的延长线于G,∴∠G=∠DAF,∠CBG=∠ACB=60°,∴∠ABG=∠ABC+∠CBG=120°=∠ACE,∵点F是BD中点,∴BF=DF,在△BFG和△DFA中,,∴△BFG≌△DFA,∴BG=AD,由(1)知,AD=CE,∴BG=CE,在△ABG和△ACE中,,∴△ABG≌△ACE,∴∠BAF=CAE;(3)由(2)知,∠BAF=∠CAE,∴∠FAE=∠FAC+∠CAE=∠FAC+∠BAF=∠BAC=60°,∵FH⊥AE,∴∠AHF=90°,∴∠AFH=90°﹣∠FAE=30°,在Rt△AFH中,AH=,∴AF=2,由(2)知,△BFG≌△DFA,∴GF=AF=2,由(2)知,△ABG≌△ACE,∴AE=AG=2AF=4,∴EH=AE﹣AH=4﹣=3.5、已知,在Rt△ABC中,∠C=90°,AC=BC,点D在边BC上,连接AD,作DE⊥AD,且DE=AD,连接BE、AE,DE与AB交于点H,(1)如图1所示,求证:∠C=∠ABE;(2)如图2,把射线AD沿AB折叠,分别交BE、DE的延长线于点F、点G.若∠AEB=75°,求证:HG=2DH;(3)在(2)的条件下,若BE=3,求DH的长?证明:(1)如图1,过点E作EM⊥BC于M,∵∠ACB=90°,AD⊥DE∴∠ACB=∠ADE=90°∵∠ADB=∠ACB+∠DAC=∠ADE+∠EDB∴∠DAC=∠EDB,且∠ACD=∠EMD=90°,AD=DE ∴△ACD≌△DME(AAS)∴AC=DM,CD=EM∵AC=BC,∴BC=DM∴CD=BM∴BM=EM,且EM⊥BM∴∠EBM=45°∵∠C=90°,AC=BC∴∠ABC=∠BAC=45°∴∠ABE=180°﹣∠ABC﹣∠EBM=90°∴∠C=∠ABE(2)如图2,过点E作EM⊥BC于M,∵∠C=90°,AC=BC,∠ADE=90°,AD=DE∴∠CAB=∠DAE=∠AED=45°由(1)可知∠EBM=45°,∴∠CBE=135°,∵∠DAE+∠AEB+∠DBE+∠ADB=360°,且∠AEB=75°,∴∠ADB=105°∴∠ACD+∠CAD=∠ADB=105°∴∠CAD=15°∴∠DAB=30°∵把射线AD沿AB折叠,分别交BE、DE的延长线于点F、点G.∴∠DAB=∠BAG=30°∴∠DAG=60°,且∠ADE=90°∴∠G=30°=∠BAG∴AH=HG∵∠ADE=90°,∠DAH=30°∴AH=2DH∴HG=2DH(3)作EN平分∠DEB交BC于点N,∵EM=BM,∠EMB=90°∴BE=EM,且BE=3,∴EM=∵∠AEB=75°,∠AED=45°∴∠DEN=30°∵EN平分∠DEB∴∠DEN=15°∵∠EDM=∠CAD=15°∴∠DEN=∠EDB=15°,∴DN=EN,∠ENM=30°,且EM⊥BM∴NE=2EM=3,NM=EM=在Rt△DEM中,DE==3+3=AD∵∠DAH=30°,∠ADH=90°∴AD=DH=3+3∴DH=3+6、如图,在△ABC中,∠ABC=90°,AB=BC,点D是△ABC内部一点,连接AD,BD和CD.(1)如图1,若∠BDC=90°,BD=1,CD=2,求AC的长.(2)如图2,若CD平分∠ACB,∠BDC=90°,过点B作BE∥AC交AD的延长线于点E,求证:AD =DE.(3)如图3,若CD=CB,∠BCD=30°,取线段AC的中点F,连接DF,求证:∠AFD=45°解:(1)如图1,∵∠BDC=90°,BD=1,CD=2,∴BC===,∵AB=BC=,由勾股定理得:AC===;(2)如图2,延长BD交AC于P,∵DC平分∠ACB,∴∠BCD=∠ACD,∵∠BDC=90°,∴∠BDC=∠PDC=90°,∵CD=CD,∴△BDC≌△PDC,∴BD=PD,∵BE∥AC,∴∠E=∠EAC,∠EBD=∠DPA,∴△BDE≌△PDA,∴AD=DE;(3)如图3,以BD为边作等边三角形BDE,连接BF、CE,∴BD=DE=BE,∵AB=BC,F是AC的中点,∴BF⊥AC,∴∠AFB=90°,∵∠ABC=90°,∴BF=AF,∵CD=BC,∠BCD=30°,∴∠CBD=∠CDB=75°,∵CE=CE,∴△CEB≌△CED,∴∠BCE=∠DCE=15°,∵∠CBD=75°,∠DBE=60°,∴∠CBE=75°﹣60°=15°,∵∠ABC=90°,∴∠ABD=90°﹣75°=15°,∴∠ABD=∠CBE,∴△ABD≌△CBE,∴∠BAD=∠BCE=15°,∴∠ABD=∠BAD=15°,∴AD=BD,∵DF=DF,∴△ADF≌△BDF,∴∠AFD=∠BFD=∠AFB=×90°=45°.7、(2013•洪山区模拟)如图1,直角梯形ABCD中,BC=CD,AB∥CD,∠ABC=90°,点P为边AD上一点,BC=PB.(1)求证:∠CBP=2∠DCP;(2)如图2,若∠ABP的平分线交CP的延长线于点E,连接DE,求证:BE+DE=CE;(3)在(2)的条件下,若AB=1,BC=2,请直接写出线段CE的长度.解:(1)取CP的中点F,连接BF,如图1,∵BC=BP,BF是底边上的中点,∴∠CBF=∠PBF=∠CBP,BF⊥PC,∴∠CBF+∠BCF=90°,∵∠BCF+∠DCP=90°,∴∠DCP=∠CBF,∴∠CBP=2∠DCP;(2)过得C作CG⊥CE交EB的延长线于点G,连接BD,如图2,∵BC=CD,∠BCD=90°,∴∠CBD=45°,∵∠EBF=∠EBP+∠PBF=∠ABP+∠CBP=45°,∴∠BEF=180°﹣∠EBF﹣∠BFE=45°,∴△CEG是等腰直角三角形,∴EG=CE,CG=CE,∵∠ECG=90°=∠BCD,∴∠BCG=∠DCE,在△CBD和△CDE中∴△CBD≌△CDE(SAS),∴BG=DE,∴DE+BE=BG+BE=EG=CE;(3)CE=,理由如下;取CD的中点M,连接MF,设MF的延长线交直线AB与B′,如图2,∵F是PC的中点,∴FM∥AD,∵AB∥CD,∴四边形AB′MD是平行四边形,∴AB′=DM=1=AB,∴B′与B重合,即B、F、M在一条直线上,∴BM⊥CE,∵∠CBF=∠MBC,∴△BFC∽△BCM,∴=,即=,∴BF=2CF,∵∠BEF=45°,∠BFE=90°,∴EF=BF=2CF,∵CF=PF,∴CF=PF=PE,CE=3CF,∵S△BCM=CF•BM=BC•CM,∴CF===,∴CE=3CF=.8、(2016秋•松北区期末)如图,在△ABC中,∠ACB=60°,点D在射线BC上,AB=AD.(1)如图1,求证:BC+CD=AC;(2)如图2,取AB的中点F,延长CA至点E,连接BE、DE、EF,使得∠ABE=∠CAD,EF=AE,求证:∠BEF=2∠ABD;(3)如图3,在(2)的条件下,FG⊥BE于点G,FG=4,EF=,求△AED的面积.(1)证明:延长DB至E,使BE=CD,连接AE,∵AB=AD,∴∠ABD=∠ADB,∵∠ABE+∠ABD=180°,∠ADC+∠ADB=180°,∴∠ABE=∠ADC,在△ABE和△ADC中,,∴△ABE≌△ADC,∴∠C=∠E=60°,∴△AEC为等边三角形,∴AC=CE,∵BC+BE=CE,∴BC+CD=AC;(2)证明:∵AB=AD,∴∠ABD=∠ADB,∵∠CAD+∠ADB=∠ACB=60°,∠CAD=∠ABE,∴∠ABE+∠ABD=∠CAD+∠ADB=60°,∴△BEC为等边三角形,过点A作AN∥BC交EB于N,∴△ENA为等边三角形,∠NAB=∠ABD,∴AN=AE,∴BN=AC,∴∠NAB=∠ADC,在△BNA和△ACD中,,∴△BNA≌△ACD,∴AN=CD,∴CD=AE,延长EF至M使得EF=FM,连接BM,∴△AEF≌△BMF,∴AE=BM,AE∥BM,∴BM=CD,∠MBC=∠ECB=60°,∴∠EBM=∠EBC+∠MBC=120°,又∵∠ECD=∠EBM=120°,∴△BEM≌△CED,∴∠BEF=∠CED,∵EF=AE,∴∠EFA=∠EAF,∴∠BEF+∠EBF=∠ACB+∠ABD,∴∠BEF+60°﹣∠ABD=∠ABD+60°,∴∠BEF=2∠ABD∠CED=2∠ABD;(3)解:由(2)得,△EMD是等边三角形,∴,过点A作AP⊥DE于P,由(2)可证△EFG≌△EAP,∴AP=FG=4,∴S△AED=DE×AP=××4=37.9、(2016•九龙坡区校级一模)已知,Rt△ABC中,∠ACB=90°,∠CAB=30°,分别以AB、AC为边,向Rt△ABC外作等边△ABD和等边△ACE(1)如图1,连接BE、CD,若BC=2,求BE的长;(2)如图2,连接DE交AB于点F,作BH⊥AD于H,连接FH.求证:BH=2FH;(3)如图3,取AB、CD得中点M、N,连接M、N,试探求MN和AE的数量关系,并直接写出结论.解:(1)如图1,Rt△ABC中,∠CAB=30°,BC=2,∴AB=4,AC=2,∵△ACE是等边三角形,∴AE=AC=2,∠EAC=60°,∴∠EAB=60°+30°=90°,在Rt△EAB中,EB===2;(2)如图2,过E作EG∥BD,交BA的延长线于G,∴∠EGA=∠ABD,∵△ABD是等边三角形,∴∠ABD=60°,∴∠EGA=60°,Rt△AEG中,设AG=x,∴EG=2x,AE=x,∴AC=AE=BH=x,∵∠BDH=60°,∴BD=2x,∴EG=BD=2x,∵∠EFG=∠BFD,∴△EFG≌△DFB,∴EF=DF,等边△ABD中,∵BH⊥AD,∴AH=DH,∴FH是△AED的中位线,∴FH=AE=BH,∴BH=2FH;(3)如图3,连接BN,并延长交AD于H,∵∠CBA=60°=∠BAD,∴BC∥AD,∴∠BCN=∠NDH,∵CN=ND,∠CNB=∠DNH,∴△CNB≌△DNH,∴BN=NH,BC=DH,∵M是AB的中点,∴MN是△ABH的中位线,∴MN=AH,设BC=x,则DH=x,AB=AD=2x,∴AH=x,∴MN=x,Rt△ACB中,AC=2x,∴AE=2x,∴==,∴AE=4MN.10、重庆八中初2020级九上期末11、重庆实验外国语学校初2020级九上期末12、重庆双福育才中学初2020级九上期末。
2020重庆中考复习数学第26题专题训练六(含答案解析)

2020重庆中考复习数学第26题专题训练六 1、如图1,在△ABC中,∠BAC=90°,AC=2AB,D是线段AC中点,E是线段AD上一点,过点D作DF⊥BE交BE的延长钱于点F,连接AF,过点A作AG⊥AF于点A,交BF于点G(1)若∠ABE=∠C,BC=2,求AE的长;(2)若点E为AD中点,求证:GE﹣FE=FD;(3)如图2,连接BD,点N为BD中点,连接GN,若AD=GF,请直接写出NG、GE、EA的数量关系.4、已知△ABC中,点D为BC的中点,BD=AB,AD⊥BC.(1)如图1,求∠BAD的度数;(2)如图2,点E为BC上一点,点F为AC上一点,连接AE、BF交于点G,若∠AGF=60°,求证:BE=CF;(3)如图3,在(2)的条件下,点G为BF的中点,点H为AG上一点,延长BH交AC于点K,AK =HK,BM⊥AE交AE延长线于点M,BG=9,HM=10,求线段AG的长.5、已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB=9,求BG 的长.6、如图,在△ABC中,AB=AC,∠BAC=90°,D为BC边的中点,点E在直线BC上(不与点D重合),连接AE,过点C作直线AE的垂线,垂足为点F,交直线AD于点G,连接EG.(1)如图(1),当点E在线段BD上时,易证DE=DG,请直接写出三条线段BE,AB,EG之间的数量关系是 ;(2)如图(2),当点E在线段BC的延长线上时,请写出三条线段BE、AB、EG之间的数量关系,并证明你的结论;(3)若线段BC=2,当△AEG为等腰三角形时,请直接写出的值.7、如图,在△ABC中,∠BAC=90°,将△ABC沿AD翻折,点B恰好与点C重合,点E在AC边上,连接BE.(1)如图①,若点F是BE的中点,连接DF,且AF=5,AE=6,求DF的长;(2)如图②,若AF⊥BE于点F,并延长AF交BC于点G,当点E是AC的中点时,连接EG,求证:AG+EG=BE;(3)在(2)的条件下,连接DF,请直接写出∠DFG的度数.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D、E分别在AC、BC上,BD与AE交于点O,且CD=CE,若点F是BD的中点,连接CF,交AE于点G.(1)求证:CF⊥AE;(2)如图2,过点F作FM⊥BC,交AE的延长线于点M,垂足为H,连接CM,若CG=GM.①求证:CF=CM;②求的值.9、(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为AC的中点,过点A作BD的垂线,垂足为E,延长AE交BC于点F,求△ABF的面积.小明发现,过点C作AC的垂线,交AF的延长线于点G,构造出全等三角形,经过推理和计算,能够得到BF与CF的数量关系,从而使问题得到解决,请直接填空:= 2,△ABF的面积为 .(2)【类比探究】如图2,将(1)中的条件“点D为AC的中点”改为“点D为边AC上的一点,且满足CD=2AD”,其他条件不变,试求△ABF的面积,并写出推理过程.(3)【拓展迁移】如图3,在△ABC中,AB=AC=4,∠BAC=120°,点D为AC上一点,且满足CD =2AD,E为BD上一点,∠AEB=60°,延长AE交BC于F,请直接写出△ABF的面积.2020重庆中考复习数学第26题专题训练六参考答案 1、如图1,在△ABC中,∠BAC=90°,AC=2AB,D是线段AC中点,E是线段AD上一点,过点D作DF⊥BE交BE的延长钱于点F,连接AF,过点A作AG⊥AF于点A,交BF于点G(1)若∠ABE=∠C,BC=2,求AE的长;(2)若点E为AD中点,求证:GE﹣FE=FD;(3)如图2,连接BD,点N为BD中点,连接GN,若AD=GF,请直接写出NG、GE、EA的数量关系.解:(1)∵△ABC中,∠BAC=90°,AC=2AB,BC=2,∴由勾股定理可得AB=2,AC=4,∵∠ABE=∠C,∠BAE=∠CAB=90°,∴△BAE∽△CAB,∴AB2=AE×AC,即22=AE×4,解得AE=1,(2)证明:如图1,过A作AH⊥BF于H,则∠AHE=90°,∵DF⊥BE,∠BAC=90°,∠AEB=∠FED,∴∠ABG=∠ADF,∵AG⊥AF,∠BAC=90°,∴∠BAG=∠DAF,∵AC=2AB,D是线段AC中点,∴AB=AD,在△ABG和△ADF中,,∴△ABG≌△ADF(ASA),∴AG=AF,∴△AGF是等腰直角三角形,∴AH=GF=GH,∵点E为AD中点,∴AE=DE,在△AEH和△DEF中,,∴△AEH≌△DEF(AAS),∴EH=EF,AH=DF=GH,∵GE﹣HE=GH,∴GE﹣FE=FD;(3)NG、GE、EA的数量关系为:NG+GE=2AE.理由:如图2,连接AN,NF,由(2)可得,△AGF是等腰直角三角形,∵AB=AD,∠BAD=90°,N是BD的中点,∴∠DAN=45°=∠ADN,∴△ADN是等腰直角三角形,∵AD=GF,∴等腰Rt△AGF与等腰Rt△ADN全等,∴AG=AF=AN=ND,∵Rt△BDF中,N是BD的中点,∴NF=ND=BN,∴AN=NF=AF,即△ANF是等边三角形,∴∠NAF=∠ANF=60°,∵∠DAN=45°,△ABG≌△ADF,∴∠DAF=15°=∠BAG,∵∠ABN=∠BAN=45°,∴∠GAN=30°,∵∠AGF=45°,∴∠ABE=30°,∴Rt△ABE中,BE=2AE,∵∠ABN=45°,∴∠GBN=15°,由NF=ND=NB,可得∠FND=2∠GBN=30°,在△ANG和△NDF中,,∴△ANG≌△NDF(SAS),∴GN=FD=BG,∵BG+GE=BE=2AE,∴NG+GE=2AE.MDEFBACG解: (1)由E 为CR 中点可得AG 平分BAC ,过G 作GH AB ,则有GH=CG=1,故BG=2(2)延长FD 交AG 于点M ,易证:()BFD AMD AAS ,所以BF=AM再证:()BFC CEA AAS ,所以BF=CE=AM ,CF=AE∴CF-CE=AE-AM ,即EM=EF ∴EFM 为等腰直角三角形 ∴222EFFMDF(3)结论为:622BDEF4、(2017秋?许昌月考)已知△ABC中,点D为BC的中点,BD=AB,AD⊥BC.(1)如图1,求∠BAD的度数;(2)如图2,点E为BC上一点,点F为AC上一点,连接AE、BF交于点G,若∠AGF=60°,求证:BE=CF;(3)如图3,在(2)的条件下,点G为BF的中点,点H为AG上一点,延长BH交AC于点K,AK =HK,BM⊥AE交AE延长线于点M,BG=9,HM=10,求线段AG的长.解:(1)∵点D为BC的中点,AD⊥BC,∴AB=AC,BD=CD=BC,∵BD=AB,∴AB=BC=AC,∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BC,∴∠BAD=∠BAC=30°;(2)由(1)知,△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∴∠ABF+∠CBF=60°,∵∠AGF=60°,∴∠BAE+∠ABF=60°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF,(3)如图,过F作FN⊥AE于N,过F作FD⊥BM,交BM的延长线于D,∵AM⊥BM,∴GM∥DF,∵BG=GF,∴BM=DM,∵∠AGF=60°,∴∠BGM=60°,∵BM⊥AE,∴∠BMG=90°,∴∠GBM=30°,在Rt△BMG中,MG=BG=,BM=DM=FN=,∵AK=HK,∴∠HAK=∠AHK=∠BHM,∵∠ANF=∠HMB=90°,∴△ANF≌△HMB,∴AN=HM=10,Rt△FGN中,∠NFG=∠GBM=30°,∴GN=GF=,∴AG=AN+NG=10+=14.5.5、(2019秋?中山市期末)已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB=9,求BG 的长.(1)证明:如图1,∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∴∠BDF=60°,∴∠DFB=60°=∠B=∠BDF,∴△BDF是等边三角形;(2)解:∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∠A=∠DFE,∴∠ADC=120°,∵CF=EF,∴∠FEC=∠FCE,设∠FEC=∠FCE=x,则∠A=∠DFE=∠FEC+∠FCE=2x,在△ADC中,∠A+∠ACD+∠ADC=180°,即2x+x+120°=180°,解得:x=20°,∴∠A=2x=40°;(3)解:同(1)得:∠BDF=60°,△BDG是等边三角形,∠ADE=∠B=60°,∴BG=BD,由折叠的性质得:AD=FD,∵BF⊥AB,∴∠BFD=90°﹣60°=30°,∴FD=2BD,∴AD=2BD,∵AD+BD=AB,∴2BD+BD=9,∴BD=3,∴BG=BD=3.6、(2018?连山区一模)如图,在△ABC中,AB=AC,∠BAC=90°,D为BC边的中点,点E在直线BC上(不与点D重合),连接AE,过点C作直线AE的垂线,垂足为点F,交直线AD于点G,连接EG.(1)如图(1),当点E在线段BD上时,易证DE=DG,请直接写出三条线段BE,AB,EG之间的数量关系是 AB﹣EG=BE;(2)如图(2),当点E在线段BC的延长线上时,请写出三条线段BE、AB、EG之间的数量关系,并证明你的结论;(3)若线段BC=2,当△AEG为等腰三角形时,请直接写出的值.解:(1)如图1中,结论:AB﹣EG=BE理由:∵AB=AC,∠BAC=90°,BD=DC,∴AD⊥BC,∠ABC=∠ACB=45°,AD=BD=DC,∴BD=AB,∵CF⊥AE,∴∠AFG=∠CDG=90°,∵∠AGF=∠CGD,∴∠FAG=∠GCD,∵∠ADE=∠CDG,∴△ADE≌△CDG,∴DE=DG,∴DE=EG,∵BE+ED=BD,∴BE+EG=AB,∴AB﹣EG=BE.(2)如图2中,结论:AB+EG=BE.理由:同法可证:△ADE≌△CDG,∴DE=DG,∴DE=EG,∵BE﹣ED=BD,∴BE+﹣EG=AB,∴AB+EG=BE.(3)①如图2中,当GA=GE时,DG=DE=2﹣2,EG=4﹣2,此时:==﹣1.②如图3中,当GA=GE时,设BD=AD=CD=a,则AB=AC=CE=a,DG=DE=a+a,EG=a+2a,∴==1+.③当点E与点C重合时,EG=AB,可得EG:AB=1,综上所述,的值为﹣1或1+或1.7、(2018?站前区校级一模)如图,在△ABC中,∠BAC=90°,将△ABC沿AD翻折,点B恰好与点C重合,点E在AC边上,连接BE.(1)如图①,若点F是BE的中点,连接DF,且AF=5,AE=6,求DF的长;(2)如图②,若AF⊥BE于点F,并延长AF交BC于点G,当点E是AC的中点时,连接EG,求证:AG+EG=BE;(3)在(2)的条件下,连接DF,请直接写出∠DFG的度数.解:(1)∵将△ABC沿AD翻折,点B恰好与点C重合,∴AB=AC,BD=CD,∠ADB=∠ADC=90°,且∠BAC=90°,∴△ABC是等腰直角三角形,∵点F是BE的中点,AF=5,∠BAC=90°,∴BE=10,∴AB===8,∴AC=8,∴EC=2,∵BD=CD,BF=EF,∴DF=EC=1,(2)如图②,过点C作CH⊥AC交AG的延长线于点H,∵AB=AC,∠BAC=90°,BD=CD,∴∠ABC=∠BAD=∠DAC=∠ACB=45°,∵∠BEA+∠CAH=90°,∠CAH+∠H=90°,∴∠H=∠BEA,且AB=AC,∠AFB=∠ACH=90°,∴△ABE≌△CAH(AAS)∴BE=AH,AE=CH,∠CAH=∠ABE,∵AE=CE,∴CE=CH,∵∠ACH=90°,∠ACB=45°,∴∠ACB=∠GCH,且CE=CH,CG=CG,∴△CEG≌△CHG(SAS)∴EG=GH,∵BE=AH=AG+GH,∴AG+EG=BE;(3)如图②,连接NG,∵∠ABC=∠BAD=∠DAC=∠ACB=45°,∴AD=BD=CD,∵∠BAN=∠ACG=45°,AB=AC,∠ABE=∠CAH,∴△ABN≌△CAG(ASA)∴AN=CG,∴AD﹣AN=CD﹣CG,∴DN=DG,∴∠DNG=45°∵∠NDG=∠NFG=90°,∴点N,点F,点G,点D四点共圆,∴∠DFG=∠DNG=45°.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D、E分别在AC、BC上,BD与AE交于点O,且CD=CE,若点F是BD的中点,连接CF,交AE于点G.(1)求证:CF⊥AE;(2)如图2,过点F作FM⊥BC,交AE的延长线于点M,垂足为H,连接CM,若CG=GM.①求证:CF=CM;②求的值.(1)证明:如图1中,∵AC=BC,∠ACE=∠BCD=90°,CE=CD,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵DF=FB,∴CF=FD=FB,∴∠FCB=∠FBC,∴∠FCB=∠CAE,∵∠CAB+∠AEC=90°,∴∠AEC+∠FCB=90°,∴∠CGE=90°,∴CF⊥AE.(2)①证明:如图2中,∵FM⊥BC,∴∠FHC=∠CGE=∠MGF=90°,∴∠ECG+∠CEG=90°,∠ECG+∠CFH=90°,∴∠CEG=∠CFH,∵CG=GM,∴△CGE≌△MGF(AAS),∴CE=FM,EG=GF,∵CD=CE,∴CD=FM,∵∠FHB=∠ACB=90°,∴CD∥FM,∴四边形CDFM是平行四边形,∴CM=DF,∵CF=DF=FB,∴CM=CF.②连接EF,BM.设FG=EG=a,∵CM=BF,CM∥BF,∴FG∥BM,∴=,∵△CAE≌△CBD,∴∠CAE=∠CBD,∵∠CAB=∠CBA,∴∠OAB=∠OBA,∴OA=OB,∴=,易知OG=GF=EG=a,EF=EM=a,∴OM=2a+a,∴==.9、(2015?新乡二模)(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为AC的中点,过点A作BD的垂线,垂足为E,延长AE交BC于点F,求△ABF的面积.小明发现,过点C作AC的垂线,交AF的延长线于点G,构造出全等三角形,经过推理和计算,能够得到BF与CF的数量关系,从而使问题得到解决,请直接填空:= 2,△ABF的面积为 .(2)【类比探究】如图2,将(1)中的条件“点D为AC的中点”改为“点D为边AC上的一点,且满足CD=2AD”,其他条件不变,试求△ABF的面积,并写出推理过程.(3)【拓展迁移】如图3,在△ABC中,AB=AC=4,∠BAC=120°,点D为AC上一点,且满足CD =2AD,E为BD上一点,∠AEB=60°,延长AE交BC于F,请直接写出△ABF的面积.解:(1)如图1,过点C作AC的垂线,交AF的延长线于点G.∵∠BAC=90°,∴∠ABD+∠ADB=90°,∵AE⊥BD,∴∠DAE+∠ADB=90°,∴∠CAG=∠ABD,在△ACG和△BAD中,,∴△ACG≌△BAD(ASA),∴CG=AD=AC=,∵BA∥CG,∴△CFG∽△BFA,∴==,即BF=BC,BF:CF=2,∴△ABF的面积=××4×4=;故答案为2,.(2)如图2,过点C作AC的垂线,交AF的延长线于点H.∵∠BAC=90°∴∠ABD+∠ADB=90°,∵AE⊥BD,∴∠DAE+∠ADB=90°,∴∠CAG=∠ABD,在△ACG和△BAD中,,∴△ACH≌△BAD(ASA),∴CH=AD=AC=AB,∵BA∥CH,∴△CFH∽△BFA,∴==,即BF=BC,∴△ABF的面积=××4×4=6;(3)如图3中,作CH⊥BC交AF的延长线于H,AK⊥BC于K.∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠BCH=90°,∴∠ACH=∠BAD=120°,∵∠ABD+∠ADB=180°﹣120°=60°,∠AEB=∠EAD+∠ADE=60°,∴∠ABD=∠CAH,∴△BAD≌△ACH(ASA),∴CH=AD∵AK⊥BC,∴BK=CK,在Rt△ACK中,∵AC=4,∠ACK=30°,∴AK=AC=2,CK=BK=2,∵AK∥CH,AD=CH=,∴FK:FC=AK:CH=2:=3:2,∴BF:BC=4:5,∴S△ABF=?S△ABC=××4×2=.。
2020重庆中考复习数学第26题专题训练六(含答案解析)

2020重庆中考复习数学第26题专题训练六1、如图1,在△ABC中,∠BAC=90°,AC=2AB,D是线段AC中点,E是线段AD上一点,过点D作DF⊥BE交BE的延长钱于点F,连接AF,过点A作AG⊥AF于点A,交BF于点G(1)若∠ABE=∠C,BC=2,求AE的长;(2)若点E为AD中点,求证:GE﹣FE=FD;(3)如图2,连接BD,点N为BD中点,连接GN,若AD=GF,请直接写出NG、GE、EA的数量关系.4、已知△ABC中,点D为BC的中点,BD=AB,AD⊥BC.(1)如图1,求∠BAD的度数;(2)如图2,点E为BC上一点,点F为AC上一点,连接AE、BF交于点G,若∠AGF=60°,求证:BE=CF;(3)如图3,在(2)的条件下,点G为BF的中点,点H为AG上一点,延长BH交AC于点K,AK =HK,BM⊥AE交AE延长线于点M,BG=9,HM=10,求线段AG的长.5、已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB=9,求BG 的长.6、如图,在△ABC中,AB=AC,∠BAC=90°,D为BC边的中点,点E在直线BC上(不与点D重合),连接AE,过点C作直线AE的垂线,垂足为点F,交直线AD于点G,连接EG.(1)如图(1),当点E在线段BD上时,易证DE=DG,请直接写出三条线段BE,AB,EG之间的数量关系是 ;(2)如图(2),当点E在线段BC的延长线上时,请写出三条线段BE、AB、EG之间的数量关系,并证明你的结论;(3)若线段BC=2,当△AEG为等腰三角形时,请直接写出的值.7、如图,在△ABC中,∠BAC=90°,将△ABC沿AD翻折,点B恰好与点C重合,点E在AC边上,连接BE.(1)如图①,若点F是BE的中点,连接DF,且AF=5,AE=6,求DF的长;(2)如图②,若AF⊥BE于点F,并延长AF交BC于点G,当点E是AC的中点时,连接EG,求证:AG+EG=BE;(3)在(2)的条件下,连接DF,请直接写出∠DFG的度数.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D、E分别在AC、BC上,BD与AE交于点O,且CD=CE,若点F是BD的中点,连接CF,交AE于点G.(1)求证:CF⊥AE;(2)如图2,过点F作FM⊥BC,交AE的延长线于点M,垂足为H,连接CM,若CG=GM.①求证:CF=CM;②求的值.9、(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为AC的中点,过点A作BD的垂线,垂足为E,延长AE交BC于点F,求△ABF的面积.小明发现,过点C作AC的垂线,交AF的延长线于点G,构造出全等三角形,经过推理和计算,能够得到BF与CF的数量关系,从而使问题得到解决,请直接填空:= 2,△ABF的面积为.(2)【类比探究】如图2,将(1)中的条件“点D为AC的中点”改为“点D为边AC上的一点,且满足CD=2AD”,其他条件不变,试求△ABF的面积,并写出推理过程.(3)【拓展迁移】如图3,在△ABC中,AB=AC=4,∠BAC=120°,点D为AC上一点,且满足CD =2AD,E为BD上一点,∠AEB=60°,延长AE交BC于F,请直接写出△ABF的面积.2020重庆中考复习数学第26题专题训练六参考答案1、如图1,在△ABC中,∠BAC=90°,AC=2AB,D是线段AC中点,E是线段AD上一点,过点D作DF⊥BE交BE的延长钱于点F,连接AF,过点A作AG⊥AF于点A,交BF于点G(1)若∠ABE=∠C,BC=2,求AE的长;(2)若点E为AD中点,求证:GE﹣FE=FD;(3)如图2,连接BD,点N为BD中点,连接GN,若AD=GF,请直接写出NG、GE、EA的数量关系.解:(1)∵△ABC中,∠BAC=90°,AC=2AB,BC=2,∴由勾股定理可得AB=2,AC=4,∵∠ABE=∠C,∠BAE=∠CAB=90°,∴△BAE∽△CAB,∴AB2=AE×AC,即22=AE×4,解得AE=1,(2)证明:如图1,过A作AH⊥BF于H,则∠AHE=90°,∵DF⊥BE,∠BAC=90°,∠AEB=∠FED,∴∠ABG=∠ADF,∵AG⊥AF,∠BAC=90°,∴∠BAG=∠DAF,∵AC=2AB,D是线段AC中点,∴AB=AD,在△ABG和△ADF中,,∴△ABG≌△ADF(ASA),∴AG=AF,∴△AGF是等腰直角三角形,∴AH=GF=GH,∵点E为AD中点,∴AE=DE,在△AEH和△DEF中,,∴△AEH≌△DEF(AAS),∴EH=EF,AH=DF=GH,∵GE﹣HE=GH,∴GE﹣FE=FD;(3)NG、GE、EA的数量关系为:NG+GE=2AE.理由:如图2,连接AN,NF,由(2)可得,△AGF是等腰直角三角形,∵AB=AD,∠BAD=90°,N是BD的中点,∴∠DAN=45°=∠ADN,∴△ADN是等腰直角三角形,∵AD=GF,∴等腰Rt△AGF与等腰Rt△ADN全等,∴AG=AF=AN=ND,∵Rt△BDF中,N是BD的中点,∴NF=ND=BN,∴AN=NF=AF,即△ANF是等边三角形,∴∠NAF=∠ANF=60°,∵∠DAN=45°,△ABG≌△ADF,∴∠DAF=15°=∠BAG,∵∠ABN=∠BAN=45°,∴∠GAN=30°,∵∠AGF=45°,∴∠ABE=30°,∴Rt△ABE中,BE=2AE,∵∠ABN=45°,∴∠GBN=15°,由NF=ND=NB,可得∠FND=2∠GBN=30°, 在△ANG和△NDF中,,∴△ANG≌△NDF(SAS),∴GN=FD=BG,∵BG+GE=BE=2AE,∴NG+GE=2AE.G解:(1)由E 为CR 中点可得AG平分BAC ∠,过G 作GH AB ⊥,则有GH=CG=1,故 (2)延长FD 交AG 于点M,易证:()BFD AMD AAS ∆≅∆,所以BF=AM 再证:()BFC CEA AAS∆≅∆,所以BF=CE=AM,CF=AE ∴CF-CE=AE-AM,即EM=EF ∴EFM ∆为等腰直角三角形∴2EF FM ==(3)结论为:2BD EF +=4、(2017秋•许昌月考)已知△ABC中,点D为BC的中点,BD=AB,AD⊥BC.(1)如图1,求∠BAD的度数;(2)如图2,点E为BC上一点,点F为AC上一点,连接AE、BF交于点G,若∠AGF=60°,求证:BE=CF;(3)如图3,在(2)的条件下,点G为BF的中点,点H为AG上一点,延长BH交AC于点K,AK =HK,BM⊥AE交AE延长线于点M,BG=9,HM=10,求线段AG的长.解:(1)∵点D为BC的中点,AD⊥BC,∴AB=AC,BD=CD=BC,∵BD=AB,∴AB=BC=AC,∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BC,∴∠BAD=∠BAC=30°;(2)由(1)知,△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∴∠ABF+∠CBF=60°,∵∠AGF=60°,∴∠BAE+∠ABF=60°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴BE=CF,(3)如图,过F作FN⊥AE于N,过F作FD⊥BM,交BM的延长线于D,∵AM⊥BM,∴GM∥DF,∵BG=GF,∴BM=DM,∵∠AGF=60°,∴∠BGM=60°,∵BM⊥AE,∴∠BMG=90°,∴∠GBM=30°,在Rt△BMG中,MG=BG=,BM=DM=FN=,∵AK=HK,∴∠HAK=∠AHK=∠BHM,∵∠ANF=∠HMB=90°,∴△ANF≌△HMB,∴AN=HM=10,Rt△FGN中,∠NFG=∠GBM=30°,∴GN=GF=,∴AG=AN+NG=10+=14.5.5、(2019秋•中山市期末)已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB=9,求BG 的长.(1)证明:如图1,∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∴∠BDF=60°,∴∠DFB=60°=∠B=∠BDF,∴△BDF是等边三角形;(2)解:∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∠A=∠DFE,∴∠ADC=120°,∵CF=EF,∴∠FEC=∠FCE,设∠FEC=∠FCE=x,则∠A=∠DFE=∠FEC+∠FCE=2x,在△ADC中,∠A+∠ACD+∠ADC=180°,即2x+x+120°=180°,解得:x=20°,∴∠A=2x=40°;(3)解:同(1)得:∠BDF=60°,△BDG是等边三角形,∠ADE=∠B=60°,∴BG=BD, 由折叠的性质得:AD=FD,∵BF⊥AB,∴∠BFD=90°﹣60°=30°,∴FD=2BD,∴AD=2BD,∵AD+BD=AB,∴2BD+BD=9,∴BD=3,∴BG=BD=3.6、(2018•连山区一模)如图,在△ABC中,AB=AC,∠BAC=90°,D为BC边的中点,点E在直线BC上(不与点D重合),连接AE,过点C作直线AE的垂线,垂足为点F,交直线AD于点G,连接EG. (1)如图(1),当点E在线段BD上时,易证DE=DG,请直接写出三条线段BE,AB,EG之间的数量关系是 AB﹣EG=BE;(2)如图(2),当点E在线段BC的延长线上时,请写出三条线段BE、AB、EG之间的数量关系,并证明你的结论;(3)若线段BC=2,当△AEG为等腰三角形时,请直接写出的值.解:(1)如图1中,结论:AB﹣EG=BE理由:∵AB=AC,∠BAC=90°,BD=DC,∴AD⊥BC,∠ABC=∠ACB=45°,AD=BD=DC,∴BD=AB,∵CF⊥AE,∴∠AFG=∠CDG=90°,∵∠AGF=∠CGD,∴∠F AG=∠GCD,∵∠ADE=∠CDG,∴△ADE≌△CDG,∴DE=DG,∴DE=EG,∵BE+ED=BD,∴BE+EG=AB,∴AB﹣EG=BE.(2)如图2中,结论:AB+EG=BE.理由:同法可证:△ADE≌△CDG,∴DE=DG,∴DE=EG,∵BE﹣ED=BD,∴BE+﹣EG=AB,∴AB+EG=BE.(3)①如图2中,当GA=GE时,DG=DE=2﹣2,EG=4﹣2,此时:==﹣1.②如图3中,当GA=GE时,设BD=AD=CD=a,则AB=AC=CE=a,DG=DE=a+a,EG=a+2a,∴==1+.③当点E与点C重合时,EG=AB,可得EG:AB=1,综上所述,的值为﹣1或1+或1.7、(2018•站前区校级一模)如图,在△ABC中,∠BAC=90°,将△ABC沿AD翻折,点B恰好与点C重合,点E在AC边上,连接BE.(1)如图①,若点F是BE的中点,连接DF,且AF=5,AE=6,求DF的长;(2)如图②,若AF⊥BE于点F,并延长AF交BC于点G,当点E是AC的中点时,连接EG,求证:AG+EG=BE;(3)在(2)的条件下,连接DF,请直接写出∠DFG的度数.解:(1)∵将△ABC沿AD翻折,点B恰好与点C重合,∴AB=AC,BD=CD,∠ADB=∠ADC=90°,且∠BAC=90°,∴△ABC是等腰直角三角形,∵点F是BE的中点,AF=5,∠BAC=90°,∴BE=10,∴AB===8,∴AC=8,∴EC=2,∵BD=CD,BF=EF,∴DF=EC=1,(2)如图②,过点C作CH⊥AC交AG的延长线于点H,∵AB=AC,∠BAC=90°,BD=CD,∴∠ABC=∠BAD=∠DAC=∠ACB=45°,∵∠BEA+∠CAH=90°,∠CAH+∠H=90°,∴∠H=∠BEA,且AB=AC,∠AFB=∠ACH=90°,∴△ABE≌△CAH(AAS)∴BE=AH,AE=CH,∠CAH=∠ABE,∵AE=CE,∴CE=CH,∵∠ACH=90°,∠ACB=45°,∴∠ACB=∠GCH,且CE=CH,CG=CG,∴△CEG≌△CHG(SAS)∴EG=GH,∵BE=AH=AG+GH,∴AG+EG=BE;(3)如图②,连接NG,∵∠ABC=∠BAD=∠DAC=∠ACB=45°,∴AD=BD=CD,∵∠BAN=∠ACG=45°,AB=AC,∠ABE=∠CAH,∴△ABN≌△CAG(ASA)∴AN=CG,∴AD﹣AN=CD﹣CG,∴DN=DG,∴∠DNG=45°∵∠NDG=∠NFG=90°,∴点N,点F,点G,点D四点共圆,∴∠DFG=∠DNG=45°.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D、E分别在AC、BC上,BD与AE交于点O,且CD=CE,若点F是BD的中点,连接CF,交AE于点G.(1)求证:CF⊥AE;(2)如图2,过点F作FM⊥BC,交AE的延长线于点M,垂足为H,连接CM,若CG=GM.①求证:CF=CM;②求的值.(1)证明:如图1中,∵AC=BC,∠ACE=∠BCD=90°,CE=CD,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵DF=FB,∴CF=FD=FB,∴∠FCB=∠FBC,∴∠FCB=∠CAE,∵∠CAB+∠AEC=90°,∴∠AEC+∠FCB=90°,∴∠CGE=90°,∴CF⊥AE.(2)①证明:如图2中,∵FM⊥BC,∴∠FHC=∠CGE=∠MGF=90°,∴∠ECG+∠CEG=90°,∠ECG+∠CFH=90°, ∴∠CEG=∠CFH,∵CG=GM,∴△CGE≌△MGF(AAS),∴CE=FM,EG=GF,∵CD=CE,∴CD=FM,∵∠FHB=∠ACB=90°,∴CD∥FM,∴四边形CDFM是平行四边形,∴CM=DF,∵CF=DF=FB,∴CM=CF.②连接EF,BM.设FG=EG=a,∵CM=BF,CM∥BF,∴FG∥BM,∴=,∵△CAE≌△CBD,∴∠CAE=∠CBD,∵∠CAB=∠CBA,∴∠OAB=∠OBA,∴OA=OB,∴=,易知OG=GF=EG=a,EF=EM=a,∴OM=2a+a,∴==.9、(2015•新乡二模)(1)【问题发现】如图1,在Rt△ABC中,AB=AC=4,∠BAC=90°,点D为AC的中点,过点A作BD的垂线,垂足为E,延长AE交BC于点F,求△ABF的面积.小明发现,过点C作AC的垂线,交AF的延长线于点G,构造出全等三角形,经过推理和计算,能够得到BF与CF的数量关系,从而使问题得到解决,请直接填空:= 2,△ABF的面积为.(2)【类比探究】如图2,将(1)中的条件“点D为AC的中点”改为“点D为边AC上的一点,且满足CD=2AD”,其他条件不变,试求△ABF的面积,并写出推理过程.(3)【拓展迁移】如图3,在△ABC中,AB=AC=4,∠BAC=120°,点D为AC上一点,且满足CD =2AD,E为BD上一点,∠AEB=60°,延长AE交BC于F,请直接写出△ABF的面积.解:(1)如图1,过点C作AC的垂线,交AF的延长线于点G.∵∠BAC=90°,∴∠ABD+∠ADB=90°,∵AE⊥BD,∴∠DAE+∠ADB=90°,∴∠CAG=∠ABD,在△ACG和△BAD中,,∴△ACG≌△BAD(ASA),∴CG=AD=AC=,∵BA∥CG,∴△CFG∽△BF A,∴==,即BF=BC,BF:CF=2,∴△ABF的面积=××4×4=;故答案为2,.(2)如图2,过点C作AC的垂线,交AF的延长线于点H.∵∠BAC=90°∴∠ABD+∠ADB=90°,∵AE⊥BD,∴∠DAE+∠ADB=90°,∴∠CAG=∠ABD,在△ACG和△BAD中,,∴△ACH≌△BAD(ASA),∴CH=AD=AC=AB,∵BA∥CH,∴△CFH∽△BF A,∴==,即BF=BC,∴△ABF的面积=××4×4=6;(3)如图3中,作CH⊥BC交AF的延长线于H,AK⊥BC于K.∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠BCH=90°,∴∠ACH=∠BAD=120°,∵∠ABD+∠ADB=180°﹣120°=60°,∠AEB=∠EAD+∠ADE=60°, ∴∠ABD=∠CAH,∴△BAD≌△ACH(ASA),∴CH=AD∵AK⊥BC,∴BK=CK,在Rt△ACK中,∵AC=4,∠ACK=30°,∴AK=AC=2,CK=BK=2,∵AK∥CH,AD=CH=,∴FK:FC=AK:CH=2:=3:2,∴BF:BC=4:5,∴S△ABF=•S△ABC=××4×2=.。
最新2018重庆中考数学第26题专题训练

N MPCBA 1.如图,抛物线y=﹣x 2﹣2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=2DQ ,求点F 的坐标. 2.如图,已知抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,连接BC 。
(1)求A 、B 、C 三点的坐标;(2)若点P 为线段BC 上的一点(不与B 、C 重合),PM ∥y 轴,且PM 交抛物线于点M ,交x 轴于点N ,当△BCM 的面积最大时,求△BPN 的周长;(3)在(2)的条件下,当BCM 的面积最大时,在抛物线的对称轴上存在点Q ,使得△CNQ 为直角三角形,求点Q 的坐标。
3.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0)。
(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点。
①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值。
4.如图,已知抛物线y=x 2+bx+c 的图象与x 轴的一个交点为B (5,0),另一个交点为A ,且与y 轴交于点C (0,5). (1)求直线BC 与抛物线的解析式;(2)若点M 是抛物线在x 轴下方图象上的一动点,过点M 作MN ∥y 轴交直线BC 于点N ,求MN 的最大值; (3)在(2)的条件下,MN 取得最大值时,若点P 是抛物线在x 轴下方图象上任意一点,以BC 为边作平行四边形CBPQ ,设平行四边形CBPQ 的面积为S 1,△ABN 的面积为S 2,且S 1=6S 2,求点P 的坐标. 5.如图1,在平面直角坐标系中,抛物线2y x =++交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点W ,顶点为C ,抛物线的对称轴与x 轴的交点为D 。
中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。
答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。
答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。
答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。
答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。
解:首先,将方程因式分解为(x - 6)(x + 2) = 0。
然后,解得x = 6或x = -2。
答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。
若长方体的体积为V,求V的表达式。
解:由题意可知,a + c = 2b,所以c = 2b - a。
长方体的体积V = abc = ab(2b - a)。
答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。
最新重庆中考数学第26题专题训练

N MPCBA 1.如图,抛物线y=﹣x 2﹣2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F 作y轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=2DQ ,求点F 的坐标.2.如图,已知抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,连接BC 。
(1)求A 、B 、C 三点的坐标;(2)若点P 为线段BC 上的一点(不与B 、C 重合),PM ∥y 轴,且PM 交抛物线于点M ,交x 轴于点N ,当△BCM 的面积最大时,求△BPN 的周长;(3)在(2)的条件下,当BCM 的面积最大时,在抛物线的对称轴上存在点Q ,使得△CNQ 为直角三角形,求点Q 的坐标。
3.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0)。
(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点。
①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值。
4.如图,已知抛物线y=x 2+bx+c 的图象与x 轴的一个交点为B (5,0),另一个交点为A ,且与y 轴交于点C (0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.5.如图1,在平面直角坐标系中,抛物线233334y x x=-++交x轴于A,B两点(点A在点B的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
x
y
O
x =4
A
B
C
P
H
M
重庆数学中考题26题专题训练
26.四边形OABC 是等腰梯形,OA ∥BC ,在建立如图的平面直角坐标系中,A (10,0),B (8,6),直线x =4与直线AC 交于P 点,与x 轴交于H 点;
(1)直接写出C 点的坐标,并求出直线AC 的解析式;
(2)求出线段PH 的长度,并在直线AC 上找到Q 点,使得△PHQ 的面积为△AOC 面积的5
1
,求出Q 点坐标;
(3)M 点是直线AC 上除P 点以外的一个动点,问:在x 轴上是否存在N 点,使得 △MHN 为等腰直角三角形?若有,请求出M 点及对应的N 点的坐标,若没有,
请说明理由.
26. 解:(1)C(2,6)…… (1分)
直线AC 过点A(10,0),C(2,6), 设直线AC 解析式为: y=kx+b(k≠0) 根据题意得:⎩⎨
⎧+=+=b
k b k 26100 解得:k= 43-,b=215
,
即直线AC :y=4
3
-x+
215
……(3分) (2)将x=4代入上述解析式,y=29,即PH=2
9
……(4分)
∵Q 点在直线AC 上,设Q 点坐标为(t ,4
3-t+215
)
2
由题知:21
PH ·|t-4|=51×2
1OA ·|y C |,解得t=
320或3
4
,……(6分) 即满足题意的Q 点有两个,分别是Q 1(320,25)或Q 2(34,2
13
)……(7分)
(3)存在满足题意的M 点和N 点,……(8分)
设M 点坐标为(a ,4
3
-a+
2
15), 当a ﹥10时,无满足题意的点; ①若∠MNH 为直角,则MN=HN ,即43-a+215
=︱a -4︱,解得a=7
46或-14,
此时M 点坐标为(746,7
18
)或(-14,18);…… (10分)
②若∠HMN 为直角,则过M 作MM ′⊥x 轴交于M ′点,则H M ′= M ′N=M M ′, 综上,当M 点坐标为(
746,718)时,N 点坐标为N 1(746,0)或N 2(7
64
,0); 当M 点坐标为(-14,18)时,N 点坐标为N 3(-14,0)或N 4(-32,0).
26.如图,在直角梯形ABCD 中,∠D =∠BCD = 90°,∠B = 60°,AB = 6,AD = 9,点E 是CD 上的一个动点(E 不与D 重合),过点E 作EF ∥AC ,交AD 于点F (当E 运动到C 时,EF 与AC 重合),把△DEF 沿着EF 对折,点D 的对应点是点G ,如图①.
(1)求CD 的长及∠1的度数;
(2)设DE = x ,△GEF 与梯形ABCD 重叠部分的面积为y .求y 与x 之间的函数关系式, (3)当点G 刚好落在线段BC 上时,如图②,若此时将所得到的△EFG 沿直线CB 向左平移,速度为每秒1个单位,当E 点移动到线段AB 上时运动停止.设平移时间为t (秒),在平移过程中是否存在某一时刻t ,使得△ABE 为等腰三角形?若存在,求出t 的值;若不存在,请说明理由.
26题图①
26题图②
26.(1)过点A作AH⊥BC于点H(1
∵在Rt△AHB中,AB=6,∠B=60°
∴AH=AB·sin B=
∵四边形ABCD
∴四边形为矩形
∴CD=AH=
(2分)
∵tan CD
CAD
AD
==
∠=
∴∠CAD=30°
∵EF∥AC
∴∠1=∠CAD=30°
(4分)
(2)点G恰好在BC上,由对折的对称性可知△FGE≌△FDE
∴ GE=DE =x,∠FEG=∠FED=60°
∴∠GEC=60°
因为△CEG是直角三角形
∴∠EGC=30°
∴在Rt△CEG中,EC
=1
2
EG=1
2
x
由DE+EC=CD 得1
2
x x
+=
∴x=(5分)
当0x
<≤
EGF EDF
y S S
==
△△
1
2
DE DF
=⋅⋅
1
2
x
=⋅2x
当x≤FG,EG分别交BC于点M
∵DE=x
∴EC=x,NE=2()x
∴NG=G E-NE=()
2
x x
-=3x-
又∵∠MNG=∠ENC=30°,∠G=90°
∴MG=tan30
NG⋅︒3x-
(
11
33
22
MNG
S NG MG x x
=⋅⋅=--
△
2
3x
=-
(9分)
(3)由题意可知:AB=6,分三种情况:
①若AE=BE, 解得t=9
②若AB=AE,解得
③若BA=BE,解得分)
3。