第21章 一元二次方程复习卷(无答案)-人教版九年级数学上册
人教版九年级数学上学期 第21章 一元二次方程 单元练习

20.2020 年 3 月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这
3/6
一.选择题 1. C. 2. A. 3. A. 4. B. 5. A. 6. D. 7. C. 8. D. 9. D. 10. A. 二.填空题 11.﹣3、16. 12. 4. 13.6. 14. 18 或 21. 15. x(x﹣1)=21.
参考答案
三.解答题 16.解:(1)∵(x﹣2)2=9,
(6)
=1.
17.已知关于 x 的方程 x2﹣(k+1)x+k﹣1=0. (1)试判断该方程根的情况,说明理由; (2)若该方程与方程 2x2﹣(k﹣3)x+k﹣6=0 有且只有一个公共根,求 k 的值.
18.为深化疫情防控国际合作、共同应对全球公共卫生危机,我国有序开展医疗物资出口工 作.2020 年 3 月,国内某企业口罩出口订单额为 1000 万元,2020 年 5 月该企业口罩出口 订单额为 1440 万元.求该企业 2020 年 3 月到 5 月口罩出口订单额的月平均增长率.
则 x=
=
,
即 x1=
,x2=
;
(4)∵3x(x﹣2)=﹣2(x﹣2), ∴3x(x﹣2)+2(x﹣2)=0, 则(x﹣2)(3x+2)=0,
解得 x1=2,x2=﹣ ;
(5)∵(x﹣1)2﹣5(x﹣1)+4=0, ∴(x﹣1﹣1)(x﹣1﹣4)=0,即(x﹣2)(x﹣5)=0, 则 x﹣2=0 或 x﹣5=0, 解得 x1=2,x2=5; (6)两边都乘以 x﹣2,得:2x+2=x﹣2, 解得 x=﹣4, 检验:当 x=﹣4 时,x﹣2=﹣6≠0, ∴分式方程的解为 x=﹣4. 17.解:(1)方程有两个不相等的实数根,理由如下: △=[﹣(k+1)]2﹣4×1×(k﹣1)=k2﹣2k+5=(k﹣1)2+4. ∵(k﹣1)2≥0, ∴(k﹣1)2+4>0,即△>0, ∴无论 k 取何值,方程总有两个不相等的实数根. (2)设两个方程的一个公共根为 m,
人教版九年级上册第二十一章一元二次方程第1讲_一元二次方程 讲义(无答案)

初中九年级数学上册第1讲:一元二次方程一:思维导图 二:知识点讲解知识点一:一元二次方程的定义及一般形式➢ 定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程➢ 一元二次方程的一般形式是()002≠=++a c bx ax ,其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系统;c 是常数项 ➢ 构成一元二次方程的三个条件:✧ 是整式方程✧ 只含有一个未知数 ✧ 未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程➢ “0≠a ”是一元二次方程()002≠=++a c bx ax 的重要组成部分。
当0=a ,0≠b 时,它就成为一元一次方程。
若方程02=++c bx ax 未指明0≠a ,则它不一定是一元二次方程例1:下面关于x 的方程:①022=++x ax ;②()()119322=+--x x ;③xx x 1=+;④02=-a x (a 为任意实数);⑤11-=+x x 。
其中,为一元二次方程的有( )A. 1个B. 2个C. 3个D. 4个知识点二:一元二次方程的根➢ 概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,也叫做一元二次方程的根。
➢ 判断一个数是不是一元二次方程的根:将此数代入这个一元二次方程的左右两边,看是否相等,若相等,就是这个方程的根;若不相等,就不是这个方程的根例2:若31-是方程022=+-c x x 的一个根,则c 的值为( )A.2-B.234-C.33- D. 31+知识点三:根据实际问题列出一元二次方程➢ 步骤1.正确理解题目的含义2.找出其中的数量关系和等量关系 3.列出一元二次方程例3:将一块矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体水箱,且此长方体水箱的地面长比宽多2米。
求该矩形铁皮的长和宽各是多少米。
九年级数学上册第二十一章+一元二次方程复习同步测试+新人教版

浙江省三门县珠岙中学九年级数学上册 本章复习同步测试1 类型之一 一元二次方程的有关概念1.方程(m +2)x |m |+3mx +1=0是关于x 的一元二次方程,则( B )A .m =±2B .m =2C .m =-2D .m ≠±2【解析】 由一元二次方程的定义知⎩⎪⎨⎪⎧|m |=2,m +2≠0,即⎩⎪⎨⎪⎧m =±2,m ≠-2, ∴m =2. 2.设x 2,x 2是方程x 2-x -2 013=0的两实数根,则x 13+2 014x 2-2 013=__2__014__.3.已知x 是一元二次方程x 2-2x +1=0的根,求代数式x -33x 2-6x ÷⎝⎛⎭⎫x +2-5x -2的值. 解:∵x 2-2x +1=0,∴x 1=x 2=1,∴原式=x -33x (x -2)÷x 2-9x -2=x -33x (x -2)×x -2(x +3)(x -3)=13x (x +3)=112. 类型之二 一元二次方程的解法4.用括号中的方法解下列方程:(1)5(x +1)2=45(直接开平方法); (2)9(x -2)2=4(x +1)2(因式分解法);(3)4x 2+5=12x (配方法);(4)2x 2-3x -1=0(公式法).【解析】 (1)把方程化为形如(x +m )2=n (n ≥0)的形式后,直接开平方;(2)运用平方差公式因式分解;(3)把方程化为一般形式,再配方;(4)把方程化为一般形式,确定a ,b ,c 的值,代入公式中计算.解:(1)原方程可化为(x +1)2=425, 两边同时开方,得x +1=±25, 即x +1=25或x +1=-25, ∴x 1=-35,x 2=-75; (2)原方程可化为[3(x -2)]2-[2(x +1)]2=0,∴[3(x -2)+2(x +1)][3(x -2)-2(x +1)]=0,即(5x -4)(x -8)=0,∴5x -4=0或x -8=0,∴x 1=45,x 2=8; (3)移项,得4x 2-12x =-5,∴x 2-3x =-54, 配方,得x 2-3x +⎝⎛⎭⎫-322=-54+⎝⎛⎭⎫-322,即⎝⎛⎭⎫x -322=1,∴x -32=±1, ∴x 1=52,x 2=12; (4)∵a =2,b =-3,c =-1,b 2-4ac =(-3)2-4×2×(-1)=17>0,∴x =-(-3)±172×2=3±174, ∴x 1=3+174,x 2=3-174. 5.关于x 的一元二次方程x 2-2x +k =0有两个不相等的实数根,则k 的取值范围为( A )A .k <1B .k >1C .k <-1D .k >-1【解析】 ∵关于x 的一元一次方程x 2-2x +k =0有两个不相等的实数根,∴Δ>0,即4-4k >0,k <1.类型之三 一元二次方程根的判别式6.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则实数k 的取值范围是( D )A .k >-1B .k <1且k ≠0C .k ≥-1且k ≠0D .k >-1且k ≠07.关于x 的一元二次方程(a -1)x 2-2x +3=0有实数根,则整数a 的最大值是( C )A .2B .1C .0D .-18.已知关于x 的一元二次方程x 2+bx +b =0有两个相等的实数根,则b 的值是__0或4__. 9若|b -1|+a -4=0,且一元二次方程kx 2+ax +b =0有实数根,则k 的取值范围是__k ≤4且k ≠0__.10.关于x 的一元二次方程为(m -1)x 2-2mx +m +1=0(1)求出方程的根;(2)m 为何整数时,此方程的两个根都为正整数?解: (1)根据题意得m ≠1,Δ=(-2m )2-4(m -1)(m +1)=4,∴x 1=2m +22(m -1)=m +1m -1, x 2=2m -22(m -1)=1, (2)由(1)知x 1=m +1m -1=1+2m -1, ∵方程的两个根都是正整数,∴2m -1是正整数, ∴m -1=1或2.∴m =2或3.类型之四 一元二次方程根与系数的关系11.已知α、β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m 的值是( A ) A .3 B .1C .3或-1D .-3或112.已知关于x 的一元二次方程x 2-x -3=0的两个实数根分别为α、β,则(α+3)(β+3)=__9__.13.已知关于x 的一元二次方程x 2-(2k +1)x +k 2+2k =0有两个实数根x 1,x 2.(1)求实数k 的取值范围;(2)是否存在实数k 使得x 1·x 2-x 12-x 22≥0成立?若存在,请求出k 的值;若不存在,请说明理由.解:(1)∵原方程有两个实数根,∴[-(2k +1)]2-4(k 2+2k )≥0,∴4k 2+4k +1-4k 2-8k ≥0∴1-4k ≥0,∴k ≤14. ∴当k ≤14时,原方程有两个实数根. (2)假设存在实数k 使得x 1·x 2-x 12-x 22≥0成立.∵x 1,x 2是原方程的两根,∴x 1+x 2=2k +1,x 1·x 2=k 2+2k .由x 1·x 2-x 12-x 22≥0,得3x 1·x 2-(x 1+x 2)2≥0.∴3(k 2+2k )-(2k +1)2≥0,整理得:-(k -1)2≥0,∴只有当k =1时,上式才能成立.又∵由(1)知k ≤14, ∴不存在实数k 使得x 1·x 2-x 12-x 22≥0成立.14.如果关于x 的方程x 2+px +q =0的两个根是x 1,x 2,那么x 1+x 2=-p ,x 1·x 2=q .请根据以上结论,解决下列问题:(1)已知关于x 的方程x 2+mx +n =0(n ≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数;(2)已知a ,b 满足a 2-15a -5=0,b 2-15b -5=0,求a b +b a的值; (3)已知a ,b ,c 均为实数,且a +b +c =0,abc =16,求正数c 的最小值.解:(1)设x 2+mx +n =0(n ≠0)的两根为x 1,x 2,则x 1+x 2=-m ,x 1·x 2=n ,∴1x 1+1x 2=x 1+x 2x 1x 2=-m n ,1x 1·1x 2=1n, ∴所求一元二次方程为x 2+m n x +1n=0,即nx 2+mx +1=0. (2)①当a ≠b 时,由题意知a ,b 是一元二次方程x 2-15x -5=0的两根,∴a +b =15,ab =-5,∴a b +b a =a 2+b 2ab =(a +b )2-2ab ab =152-2×(-5)-5=-47. ②当a =b 时,a b +b a=1+1=2. 综上,得a b +b a=-47或2. (3)∵a +b +c =0,abc =16,∴a +b =-c ,ab =16c ,∴a ,b 是方程x 2+cx +16c=0的两根, ∴Δ=c 2-4×16c≥0.∵c >0,∴c 3≥64,∴c ≥4, ∴c 的最小值为4.类型之五 一元二次方程的创新应用15.对于实数a ,b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab (a ≥b )ab -b 2(a <b ),例如:4*2,因为4>2,所以4*2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1*x 2=__-3或3__.16.已知整数k <5,若△ABC 的边长均满足关于x 的方程x 2-3kx +8=0,则△ABC 的周长是__6或12或10__.类型之六 一元二次方程的创新应用17.“便民”水泥代销点销售某种水泥,每吨进价为250元.如果每吨售价定为290元时,平均每天可售出16吨.(1)若代销点采取降价促销的方式,试建立每吨的销售利润y (元)与每吨降价x (元)之间的函数关系式;(2)若每吨售价每降低5元,则平均每天能多售出4吨.问:每吨水泥的实际售价定为多少元时,每天的销售利润平均可达720元?解:(1)依题意,得y =290-x -250=40-x ;(2)依题意,得(40-x )⎝⎛⎭⎫16+45x =720, 解得x 1=x 2=10,290-10=280(元).答:每吨水泥的实际售价定为280元时,每天的销售利润平均可达720元.。
人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)

人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)一.选择题1.一元二次方程2x2﹣5x+1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定2.若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2B.2C.0D.﹣2或23.关于x的一元二次方程x2﹣2x﹣5=0有()A.两个相等的实数根B.两个不相等的正数根C.两个不相等的负数根D.一个正数根和一个负数根4.已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是()A.m≥B.m<C.m>且m≠1D.m≥且m≠1 5.关于x的多项式N=x﹣1,M=2x2﹣ax﹣2,a为任意实数,则下列结论中正确的有()个.①若M•N中不含x2项,则a=﹣2;②不论x取何值,总有M≥N;③若关于x的方程M=0的两个解分别为x1=t2,x2=2t﹣3,则实数a的最小值为﹣8;④不论a取何值,关于x的方程(M+N)2﹣(M+N)=6始终有4个不相同的实数解.A.1B.2C.3D.46.下列配方中,变形正确的是()A.x2+2x=(x+1)2B.x2﹣4x﹣3=(x﹣2)2+1C.2x2+4x+3=2(x+1)2+1D.﹣x2+2x=﹣(x+1)2﹣17.某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11、12两个月营业额的月均增长率,设该公司11、12两个月营业额的月均增长率为x,则根据题意可列的方程为()A.2500(1+x)2=9100B.2500[1+(1+x)+(1+x)2]=9100C.2500[(1+x)+(1+x)2]=9100D.9100(1+x)2=25008.已知A=x2+6x+n2,B=2x2+4x+2n2+3,下列结论正确的个数为()①若A=x2+6x+n2是完全平方式,则n=±3;②B﹣A的最小值是2;③若n是A+B=0的一个根,则4n2+=;④若(2022﹣A)(A﹣2019)=2,则(2022﹣A)2+(A﹣2019)2=4.A.1个B.2个C.3个D.4个9.已知关于x的方程x2+(k+3)x+k+2=0,则下列说法正确的是()A.不存在k的值,使得方程有两个相等的实数解B.至少存在一个k的值,使得方程没有实数解C.无论k为何值,方程总有一个固定不变的实数根D.无论k为何值,方程有两个不相等的实数根10.满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y),使取最小值,此最小值为()A.B.C.D.二.填空题11.对于实数m,n,先定义一种运算“⊗”如下:,若x⊗(﹣2)=10,则实数x的值为.12.德尔塔(Delta)是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有144人感染了德尔塔病毒,如果不及时控制,照这样的传染速度,经过三轮传染后,一共有人感染德尔塔病毒.13.已知m,n是方程x2﹣3x=2的两个根,则式子的值是.14.如图,某生物兴趣小组要在长40米、宽30米的矩形园地种植蔬菜,为便于管理,要在中间开辟一横两纵共三条等宽小路,若蔬菜种植面积为1008平方米,则小路的宽为米.15.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D 的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,线段BF、DG、CG和GF 中,长度恰好是方程x2+x﹣1=0的一个正根的线段为.三.解答题16.已知a是方程x2﹣2020x+1=0的一个根.求:(1)2a2﹣4040a﹣3的值;(2)代数式a2﹣2019a+的值.17.解方程:(1)2x2﹣4x﹣1=0;(2)3x(x﹣1)=2﹣2x.18.在理解例题的基础上,完成下列两个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0∴,解得.请解决以下问题:(1)若x2+4xy+5y2﹣4y+4=0,求y x的值;(2)若a,b,c是△ABC的边长,满足a2+b2=12a+8b﹣52,c是△ABC的最长边,且c为偶数,则c可能是哪几个数?19.【阅读材料】“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解:a2+6a+8=a2+6a+32﹣32+8=(a+3)2﹣1因为(a+3)2≥0,所以a2+6a+8≥﹣1,因此,当a=﹣3时,代数式a2+6a+8有最小值,最小值是﹣1.【问题解决】利用配方法解决下列问题:(1)当x取何值时,代数式x2﹣2x﹣1有最小值?最小值是多少?(2)当x=时,代数式2x2+8x+12有最小值,最小值为.20.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息如表:A型销售数量(台)B型销售数量(台)总利润(元)51025001052750(1)每台A型空气净化器的销售利润是元;每台B型空气净化器的销售利润是元;(2)该商场计划一次购进两种型号的空气净化器共80台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该商场销售完这80台空气净化器后的总利润最大,那么应该购进A型空气净化器台;B型空气净化器台.(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时.某长方体室内活动场地的总面积为300m2,室内墙高3m.该场地负责人计划购买7台空气净化器,每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,他至少要购买A型空气净化器多少台?参考答案一.选择题1.【解答】解:∵Δ=(﹣5)2﹣4×2×1=25﹣8=17>0,∴一元二次方程2x2﹣5x+1=0有两个不相等的实数根,故选:C.2.【解答】解:把x=0代入(k﹣2)x2+x+k2﹣4=0得:k2﹣4=0,解得k1=2,k2=﹣2,而k﹣2≠0,所以k=﹣2.故选:A.3.【解答】解:x2﹣2x﹣5=0,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣5)=24>0,所以方程有两个不相等的实数根,设方程x2﹣2x﹣5=0的两个根为e、f,则ef=﹣5<0,则e和f异号,即方程有一个正数根和一个负数根,故选:D.4.【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,∴,解得:m≥且m≠1.故选:D.5.【解答】解:M•N=(x﹣1)(2x2﹣ax﹣2)=2x3﹣(a+2)x2+(a﹣2)x+2,若M•N中不含x2项,则a+2=0,∴a=﹣2,故①正确;当x=0时,N=﹣1,M=﹣2,此时M<N,故②错误;若关于x的方程2x2﹣ax﹣2=0的两个解分别为x1=t2,x2=2t﹣3,则t2+2t﹣3=,∴a=2(t+1)2﹣8,∴当t=﹣1时,a的最小值是﹣8,故③正确;由(M+N)2﹣(M+N)=6得(M+N﹣3)(M+N+2)=0,∴M+N﹣3=0或M+N+2=0,由M+N﹣3=0得2x2+(1﹣a)x﹣6=0,Δ=(1﹣a)2+48>0,∴M+N﹣3=0有两个不相同的实数根,由M+N+2=0得2x2+(1﹣a)x﹣1=0,Δ=(1﹣a)2+8>0,∴M+N+2=0有两个不同的实数根,∴(M+N)2﹣(M+N)=6始终有4个不相同的实数解,故④正确,∴正确的有①③④,共3个,故选:C.6.【解答】解:x2+2x=x2+2x+1﹣1=(x+1)2﹣1,A错误.x2﹣4x﹣3=x2﹣4x+4﹣4﹣3=(x2﹣4x+4)+(﹣4﹣3)=(x﹣2)2﹣7.B错误.2x2+4x+3=2(x2+2x)+3=2(x2+2x+1﹣1)+3=2(x2+2x+1)﹣2×1+3=2(x+1)2﹣2+3=2(x+1)2+1.C正确.﹣x2+2x=﹣(x2﹣2x+1﹣1)=﹣(x2﹣2x+1)+1=﹣(x+1)2+1D错误.故选:C.7.【解答】解:设该公司11、12两个月营业额的月均增长率为x,则可列方程为2500[1+(1+x)+(1+x)2]=9100,故选:B.8.【解答】解:①∵A=x2+6x+n2是完全平方式,∴n=±3,故结论正确;②∵B﹣A=2x2+4x+2n2+3﹣(x2+6x+n2)=x2﹣2x+n2+3=(x﹣1)2+n2+2,而(x﹣1)2+n2≥0,∴B﹣A≥2,∴B﹣A的最小值是2,故结论正确;③∵A+B=x2+6x+n2+2x2+4x+2n2+3=3x2+10x+3n2+3,把x=n代入3x2+10x+3n2+3=0,得3n2+10n+3n2+3=0,即6n2+10n+3=0,解得n=,当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;故结论错误;④∵(2022﹣A+A﹣2019)2=(2022﹣2019)2=(2022﹣A)2+(A﹣2019)2+2(2022﹣A)(A﹣2019)=(2022﹣A)2+(A﹣2019)2+2×2=9,∴(2022﹣A)2+(A﹣2018)2=5;故结论错误;故选B.9.【解答】解:关于x的方程x2+(k+3)x+k+2=0,Δ=(k+3)2﹣4×1×(k+2)=k2+2k+1=(k+1)2≥0,A、当k=﹣1时,Δ=0,此时方程有两个相等的实数解,故此选项错误;B、因为Δ≥0,所以不存在k的值,使得方程没有实数解.故此选项错误;C、解方程得:x1=﹣1,x2=﹣k﹣2,所以无论k为何值,方程总有一个固定不变的实数根﹣1,故此选项正确;D、当k≠﹣1时,方程有两个不相等的实数解,故此选项错误;故选:C.10.【解答】解:令=t,则(x﹣3)2+(y﹣3)2=6可变形为:(x﹣3)2+(tx﹣3)2=6,整理得:(t2+1)x2﹣6(t+1)x+12=0,则Δ=[﹣6(t+1)]2﹣4×(t2+1)×12=36(t+1)2﹣48(t2+1)≥0,t2﹣6t+1≤0,由t2﹣6t+1=[t﹣(3﹣2)][t﹣(3+2)]知t2﹣6t+1≤0的解集为3﹣2≤t≤3+2,故取最小值,此最小值为3﹣2;故选:A.二.填空题11.【解答】解:分两种情况:当x≥﹣2时,∵x⊗(﹣2)=10,∴x2+x﹣2=10,x2+x﹣12=0,(x+4)(x﹣3)=0,x+4=0或x﹣3=0,x1=﹣4(舍去),x2=3,当x<﹣2时,∵x⊗(﹣2)=10,∴(﹣2)2+x﹣2=10,x=8(舍去),综上所述:x=3,故答案为:3.12.【解答】解:设每轮传染中平均一个人传染了x个人,依题意得:1+x+x(1+x)=144,整理得:x2+2x﹣143=0,解得:x1=11,x2=﹣13(不合题意,舍去).144+11×144=1728(人).答:经过三轮传染后,一共有1728人感染德尔塔病毒.故答案为:1728.13.【解答】解:∵m,n是方程x2﹣3x=2的两个根,∴m2=3m+2,n2﹣2=3n,m+n=3,∴m3﹣10m+n=m(3m+2)﹣10m+n=3m2﹣8m+n=3(3m+2)﹣8m+n=m+n+6=3+6=9,n﹣===3,原式=9×3=27.故答案为:27.14.【解答】解:小路的宽为x米.由题意可得:(40﹣2x)(30﹣x)=1008,解得:x1=2,x2=48(不合题意,舍去),答:小路的宽为2米,故答案为:2.15.【解答】解:设DG=m,则GC=1﹣m.由题意可知:△ADG≌△AHG,F是BC的中点,∴DG=GH=m,FC=0.5,根据勾股定理得AF=.∵S正方形=S△ABF+S△ADG+S△CGF+S△AGF,∴1×1=×1×+×1×m+××(1﹣m)+××m,∴m=.∵x2+x﹣1=0的解为:x=,∴取正值为x=.∴这条线段是线段DG.故答案为:DG.三.解答题16.【解答】解:(1)∵a是方程x2﹣2020x+1=0的一个根,∴a2=2020a﹣1,∴a2=2020a﹣1,∴2a2﹣4040a﹣3=2(2020a﹣1)﹣4040a﹣3=4040a﹣2﹣4040a﹣3=﹣5;(2)原式=2020a﹣1﹣2019a+=a+﹣1=﹣1=﹣1=2020﹣1=2019.17.【解答】解:(1)2x2﹣4x﹣1=0,x2﹣2x﹣=0,x2﹣2x=,x2﹣2x+1=,(x﹣1)2=,x﹣1=,∴x1=1+,x2=1﹣;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,∴x1=1,x2=﹣.18.【解答】解:(1)∵x2+4xy+5y2﹣4y+4=0,∴x2+4xy+4y2+y2﹣4y+4=0,∴(x+2y)2+(y﹣2)2=0,∴x+2y=0,y﹣2=0,解得x=﹣4,y=2,∴y x=2﹣4=;(2)已知等式整理得:(a﹣6)2+(b﹣4)2=0,解得:a=6,b=4,由△ABC中最长的边是c,∴6≤c<10,∵c为偶数,∴c可能是6或8.19.【解答】解:(1)x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2,因为(x﹣1)2≥0,所以x2﹣2x﹣1≥﹣2,因此,当x=1时,代数式x2﹣2x﹣1有最小值,最小值是﹣2;(2)2x2+8x+12=2(x2+4x)+12=2(x2+4x+4﹣4)+12=2[(x+2)2﹣4]+12=2(x+2)2﹣8+12=2(x+2)2+4,因为(x+2)2≥0,所以2x2+8x+12≥4,因此,当x=﹣2时,代数式2x2+8x+12有最小值,最小值是4;故答案为:﹣2;4.20.【解答】解:(1)设每台A型空气净化器的销售利润是x元,每台B型空气净化器的销售利润是y元,根据题意得:,解得:故答案为:200,150;(2)设购进a台A型空气净化器,总利润为w元,则:w=200a+150(80﹣a)=50a+12000,∵80﹣a≥2a,∴a≤26,∴a的最大值为:26,∵w随a的增大而增大,∴当a=26时,w有最大值,此时.80﹣a=54,故答案为:26,54;(3)设要购买A型空气净化器a台,由题意得:150a+100(7﹣a)≥300×3,解得:a≥4,所以a的最小值为:4,答:至少要购买A型空气净化器4台.。
初中数学人教版九年级上册第二十一章 一元二次方程单元复习-章节测试习题(6)

章节测试题1.【题文】已知关于x的一元二次方程(a+c)x2-2bx+(a-c)=0,其中a、b、c 分别为△ABC三边的长.(1)如果x=1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【答案】见解答.【分析】(1)把x=1代入方程得a+c-2b+a-c=0,整理得a=b,从而可判断三角形的形状;(2)根据判别式的意义得△=(-2b)2-4(a+c)(a-c)=0,即b2+c2=a2,然后根据勾股定理可判断三角形的形状;(3)利用等边三角形的性质得a=b=c,方程化为x2-x=0,然后利用因式分解法解方程.【解答】解:(1)把x=1代入方程得a+c-2b+a-c=0,则a=b,∴△ABC为等腰三角形;(2)根据题意得△=(-2b)2-4(a+c)(a-c)=0,即b2+c2=a2,∴△ABC为直角三角形;(3)∵△ABC为等边三角形,∴a=b=c,∴方程化为x2-x=0,解得x1=0,x2=1.2.【答题】将一元二次方程化为一般式后,二次项系数和一次项系数分别为()A. 3,-6B. 3,6C. 3,1D.【答案】A【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解化成一元二次方程一般形式是,则它的二次项系数是3,一次项系数是-6.选A.3.【答题】方程(x+1)2=0的根是()A. x1=x2=1B. x1=x2=-1C. x1=-1,x2=1D. 无实根【答案】B【分析】根据平方根的意义,利用直接开平方法即可进行求解.【解答】(x+1)2=0,∴x+1=0,∴x1=x2=-1,选B.4.【答题】解一元二次方程x2+4x-1=0,配方正确的是()A. B.C. D.【答案】C【分析】根据一元二次方程的配方法即可求出答案.【解答】∵x2+4x-1=0,∴x2+4x+4=5,∴(x+2)2=5,选C.5.【答题】关于x的方程x2-3x+k=0的一个根是2,则常数k的值为()A. 1B. 2C. -1D. -2【答案】B【分析】根据一元二次方程的解的定义,把x=2代入得4-6+k=0,然后解关于k的方程即可.【解答】把x=2代入得,4-6+k=0,解得k=2.故答案为:B.6.【答题】定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程.已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是().A. B. C. D.【答案】A【分析】∵方程有两个相等的实数根,∴根的判别式△=b2-4ac=0,又a+b+c=0,即b=-a-c,代入b2-4ac=0得(-a-c)2-4ac=0,化简即可得到a与c的关系.【解答】∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根∴△=b2−4ac=0,又a+b+c=0,即b=−a−c,代入b2−4ac=0得(−a−c)2−4ac=0,即(a+c)2−4ac=a2+2ac+c2−4ac=a2−2ac+c2=(a−c)2=0,∴a=c选A7.【答题】若关于的一元二次方程有一个根为0,则的值()A. 0B. 1或2C. 1D. 2【答案】D【分析】把x=0代入已知方程得到关于m的一元二次方程,通过解方程求得m的值;注意二次项系数不为零,即m-1≠0.【解答】解:根据题意,将x=0代入方程,得:m2-3m+2=0,解得:m=1或m=2,又m-1≠0,即m≠1,∴m=2,选D.8.【答题】若关于x的一元二次方程(a+1)x2+x+a2-1=0的一个解是x=0,则a的值为()A. 1B. -1C. ±1D. 0【答案】A【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于a的方程,从而求得a的值,且(a+1)x2+x+a2-1=0为一元二次方程,即.【解答】把x=0代入方程得到:a2-1=0解得:a=±1.(a+1)x2+x+a2-1=0为一元二次方程即.综上所述a=1.选A.9.【答题】将一元二次方程用配方法化成的形式为()A. B.C. D.【答案】A【分析】先移项得,x2-2x=3,然后在方程的左右两边同时加上1,即可化成(x+h)2=k的形式.【解答】移项,得x2-2x=3,配方,得x2-2x+1=3+1,即(x-1)2=4.选A.10.【答题】某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A. 2根小分支B. 3根小分支C. 4根小分支D. 5根小分支【答案】B【分析】先设每个支干长出x个分支,则每个分支又长出x个小分支,x个分支共长出x2个小分支;再根据主干有1个,分支有x个,小分支有x2个,列出方程;然后根据一元二次方程的解法求出符合题意的x的值即可.【解答】设每个支干长出x个分支,根据题意得1+x+x•x=13,整理得x2+x-12=0,解得x1=3,x2=-4(不符合题意舍去),即每个支干长出3个分支.故应选B.11.【答题】关于x的方程(m+n)x2+-(m-n)x=0(m+n≠0)的二次项系数与一次项系数的和为,差为2,则常数项为()A. B. C. D.【答案】A【分析】二次项系数与一次项系数的和为,差为2列方程组求出m、n的值,然后可求出常数项.【解答】由题意得,解之得,∴.选A.12.【答题】若代数式的值是,则的值为()A. 7或-1B. 1或-5C. -1或-5D. 不能确定【答案】A【分析】首先把方程化为一般形式x2-6x+5-12=0,即x2-6x-7=0,用因式分解法求解.【解答】∴解得:选A.13.【答题】如果关于x的一元二次方程(m-3)x2+3x+m2-9=0有一个解是0,那么m的值是()A. -3B. 3C. ±3D. 0或-3【答案】A【分析】把X=0代入方程(m-3)x+3x+m-9=0中,解关于m的一元二次方程,注意m的取值不能使原方程对二次项系数为0【解答】把x=0代入方程(m-3)x+3x +m-9=0中得:m-9=0解得m=-3或3当m=3时,原方程二次项系数m-3=0,舍去,选A14.【答题】若方程是关于的一元二次方程,则的取值范围是______.【答案】m≠1【分析】将原方程化为一般式,根据一元二次方程中,二次项系数不能为零求解即可.【解答】原方程可化为:,∵方程是关于的一元二次方程,∴,即,故答案为:.15.【答题】已知是一元二次方程的一根,则该方程的另一个根为______.【答案】-2【分析】由于该方程的一次项系数是未知数,∴求方程的另一解根据根与系数的关系进行计算即可.【解答】设方程的另一根为x1,由根与系数的关系可得:1×x1=-2,∴x1=-2.故答案为:-2.16.【答题】在实数范围内定义一种运算“*”,其规则为a*b=a2-b2,根据这个规则,方程(x+2)*5=0的解为______.【答案】3或-7【分析】本题考查了新定义、一元二次方程的解法.【解答】据题意得,∵(x+2)*5=(x+2)2-52∴x2+4x-21=0,∴(x-3)(x+7)=0,∴x=3或x=-7.17.【答题】若方程的两根,则的值为______.【答案】5【分析】根据根与系数的关系求出,代入即可求解.【解答】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.18.【题文】已知关于的方程.(1)为何值时,此方程是一元一次方程?(2)为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.【答案】(1)时,此方程是一元一次方程;(2).一元二次方程的二次项系数、一次项系数,常数项.;【分析】(1)根据一元一次方程的定义可得=0,且m+1≠0,解得m的值;(2)根据一元二次方程的定义可得≠0,可得m的取值范围,然后写出一元二次方程的二次项系数、一次项系数及常数项.【解答】解:(1)=0,且m+1≠0,解得m=1,答:当m=1时,此方程是一元一次方程;(2)≠0,解得m≠±1,答:当m≠±1时,此方程是一元二次方程,其二次项系数为,一次项系数为-(m+1),常数项为m.19.【题文】选择适当方法解下列方程:(1)(用配方法);(2);(3);(4).【答案】(1),;(2),;(3),;(4),.【分析】本题考查了一元二次方程的解法.【解答】解:,移项得:,配方得:,即,∴,∴,;,移项,得,,或,,;,∵,,,∴,∴,∴,;.,,或,,.20.【题文】已知:已知关于的方程(1)求证:不论为何值,方程总有两个不相等的实数根.(2)若该方程的一个根为1,求的值及方程的另一个根.【答案】(1)见解答;(2),方程的另一个根是.【分析】(1)由方程的各系数结合根的判别式可得出△>0,由此即可得出结论(2)将x=1代入原方程,得出关于m的一元一次方程,解方程求出m的值,将其代入原方程得出关于x的一元二次方程,结合根与系数的关系得出方程的另一个解.【解答】解:(1)证明:∵在关于x的方程中,,∴不论为何值,方程总有两个不相等的实数根;(2)将x=1代入方程中得出:1+m+m-2=0 解得:,∴原方程为:∴∵∴∴,方程的另一个根是.。
人教版九年级上册数学 第21章 一元二次方程 单元综合卷

第21章 一元二次方程 单元综合卷一、填空题1、(1)方程()13242+=+x x 的二次项系数是______,一次项系数是_______,常数项是____;(2)方程()3242-=+x x 化为一般式是 ,二次项系数是_____________,一次项系数是_____________,常数项是_____________;2、若方程016322=+-+x mx x 的一个根是1,则m=____________;3、方程()0532=+-+ax x a ,当a ________时是一元二次方程; 4、若一个一元二次方程的两根为2,–3,则这个方程为________________;5、若方程02=++b ax x 的一个解是2,另一个解是方程()52342+=+x x x 的正数根,则a =________;6、若方程()03212=-++-k kx x k 有两个不相等的实数根,则实数k 的取值范围是_______;7、如果23+和23-是一元二次方程的两个根,则这个一元二次方程是__________;8、若两个数之和为9,两数之积为8,则着两个数是____________________;9、已知方程022=+-c x ax 的两根是2,421=-=x x ,则a =______ ,c=______;10、甲、乙两人同解一个一元二次方程,甲看错常数项,解得两根为8和2,乙看错一次项系数,解得两根为-9和-1,则这个方程是 ; 二、选择题1、下列方程中,一元二次方程共有---------------------------------------------------------------( ) 212=-x , 122=+y x , x x 22=, 2122=+x xA 、4个B 、3个C 、2个D 、1个2、方程()()1231=+-x x 化为02=++c bx ax 形式后,a 、b 、c 的值为---------------( ) A 、1,–2,–15 B 、1,–2,–15 C 、1,2,–15 D 、–1,2,–153、已知方程07532=--x x 的两根为x 1、、x 2,下列根与系数关系的等式中,正确的是( ) A 、7,52121-=⋅=+x x x x B 、37,352121=⋅-=+x x x x C 、37,352121=⋅=+x x x x D 、37,352121-=⋅=+x x x x4、以215-和215+为根的一元二次方程是-----------------------------------------------( ) A 、0152=+-x x B 、02522=+-x x C 、0152=++x x D 、02522=++x x5、如果一元二次方程02=++c bx ax 的两个根是x 1,x 2,那么二次三项式c bx ax ++2分解因式的结果是--------------------------------------------------------------------------------------( )A 、()()212x x x x c bx ax --=++B 、()()212x ax x ax c bx ax --=++C 、()()212x x x x a c bx ax ++=++D 、()()212x x x x a c bx ax --=++ 6、方程()()0132=+-x x 的根是------------------------------------------------------------------( ) A 、3,121=-=x x B 、1,3,3321-=-==x x xC 、3,321-==x xD 、1,3,3321-=-==x x x7、已知直角三角形的两条直角边分别是方程0552=+-x x 的两个根,则斜边长为-( )A 、5B 、15C 、5D 、23 8、在实数范围内,1842++x x 可以分解为-----------------------------------------------------( )A 、()()3232++-+x xB 、⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛+--232232x x C 、()()322322++-+x x D 、()()32232241++-+x x 9、若方程0452=-++m mx x 的一个根01=x ,则另一根2x 及m 的值分别是-------( )A 、4,542==m xB 、4,542-==m xC 、4,542=-=m xD 、4,542-=-=m x 10、等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形的周长为-( )A 、27B 、33C 、27和33D 、以上都不对三、解方程1、用直接开平方法,解一元二次方程:(1)()()0291222=+--x x(2)()()02252=+-+x x x (3) 22314y y -= (4)()x x x 75222-=-+四、解答题1、求证:(1)方程()0122=++-m x m x 有两个不相等的实数根; (2)方程()()0632222=++-+m mx x m 没有实数根;2、已知一元二次方程()02122=++--k x k kx (1)当k 为何值时,方程有两个不相等的实数根?(2)当k 为何值时,方程无实数根?3、某厂今年一月份生产甲型机床64台,乙型机床若干台,从二月份起,甲型机床的逐月增长率比乙型机床逐月增加6台,已知二月份生产的甲型机床是乙型机床的4倍,三月份甲、乙两型机床共生产105台,求甲型机床的月增长率及一月份生产乙型机床的台数。
2022年九年级数学上册第二十一章一元二次方程测试卷1新版新人教版

第21章一元二次方程测试卷(1)一、精心选一选,相信自己的判断!(每小题3分,共30分)1.(3分)方程2x2﹣3=0的一次项系数是()A.﹣3 B.2 C.0 D.32.(3分)方程x2=2x的解是()A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=3.(3分)方程x2﹣4=0的根是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=44.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是()A.﹣1 B.0 C.1 D.25.(3分)用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=96.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.x2+130x﹣1400=0 B.x2+65x﹣350=0C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=07.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是()A.6 B.8 C.10 D.128.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是()A.1 B.1或﹣1 C.﹣1 D.210.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有()名学生.A.12 B.12或66 C.15 D.33二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分).11.(3分)写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2:.12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b= ,另一个根是.13.(3分)方程(2y+1)(2y﹣3)=0的根是.14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2= .15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是.三、按要求解一元二次方程:(20分)16.(20分)按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.四、细心做一做:17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?19.(7分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)经过几秒△PCQ的面积为△ACB的面积的?(2)经过几秒,△PCQ与△ACB相似?(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.参考答案与试题解析一、精心选一选,相信自己的判断!(每小题3分,共30分)1.(3分)方程2x2﹣3=0的一次项系数是()A.﹣3 B.2 C.0 D.3【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:方程2x2﹣3=0没有一次项,所以一次项系数是0.故选C.【点评】要特别注意不含有一次项,因而一次项系数是0,注意不要说是没有.2.(3分)方程x2=2x的解是()A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=【考点】解一元二次方程-因式分解法;因式分解-提公因式法.【专题】因式分解.【分析】把右边的项移到左边,用提公因式法因式分解,可以求出方程的两个根.【解答】解:x2﹣2x=0x(x﹣2)=0∴x1=0,x2=2.故选C.【点评】本题考查的是用因式分解法解一元二次方程,把右边的项移到左边,用提公因式法因式分解,可以求出方程的根.3.(3分)方程x2﹣4=0的根是()A.x=2 B.x=﹣2 C.x1=2,x2=﹣2 D.x=4【考点】解一元二次方程-直接开平方法.【分析】先移项,然后利用数的开方解答.【解答】解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选C.【点评】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b(a,b同号且a≠0),(x+a)2=b(b≥0),a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;(2)运用整体思想,会把被开方数看成整体;(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.4.(3分)若一元二次方程2x(kx﹣4)﹣x2+6=0无实数根,则k的最小整数值是()A.﹣1 B.0 C.1 D.2【考点】根的判别式;一元二次方程的定义.【分析】先把方程变形为关于x的一元二次方程的一般形式:(2k﹣1)x2﹣8x+6=0,要方程无实数根,则△=82﹣4×6(2k﹣1)<0,解不等式,并求出满足条件的最小整数k.【解答】解:方程变形为:(2k﹣1)x2﹣8x+6=0,当△<0,方程没有实数根,即△=82﹣4×6(2k﹣1)<0,解得k>,则满足条件的最小整数k为2.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.(3分)用配方法解一元二次方程x2﹣4x﹣5=0的过程中,配方正确的是()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】先移项,再方程两边都加上一次项系数一半的平方,即可得出答案.【解答】解:移项得:x2﹣4x=5,配方得:x2﹣4x+22=5+22,(x﹣2)2=9,故选D.【点评】本题考查了解一元二次方程,关键是能正确配方.6.(3分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,做成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.x2+130x﹣1400=0 B.x2+65x﹣350=0C.x2﹣130x﹣1400=0 D.x2﹣65x﹣350=0【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可.【解答】解:依题意得:(80+2x)(50+2x)=5400,即4000+260x+4x2=5400,化简为:4x2+260x﹣1400=0,即x2+65x﹣350=0.故选:B.【点评】本题考查的是一元二次方程的运用,解此类题目要注意运用面积的公式列出等式再进行化简.7.(3分)已知直角三角形的三边长为三个连续整数,那么,这个三角形的面积是()A.6 B.8 C.10 D.12【考点】勾股定理.【分析】设三边长分别为x,x+1,x+2,根据勾股定理可得(x+2)2=(x+1)2+x2,解方程可求得三角形的三边长,利用直角三角形的性质直接求得面积即可.【解答】解:设这三边长分别为x,x+1,x+2,根据勾股定理得:(x+2)2=(x+1)2+x2解得:x=﹣1(不合题意舍去),或x=3,∴x+1=4,x+2=5,则三边长是3,4,5,∴三角形的面积=××4=6;故选:A.【点评】本题考查了勾股定理、直角三角形面积的计算方法;熟练掌握勾股定理,由勾股定理得出方程是解决问题的关键.8.(3分)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定【考点】等腰三角形的性质;解一元二次方程-因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.9.(3分)若关于一元二次方程x2+2x+k+2=0的两个根相等,则k的取值是()A.1 B.1或﹣1 C.﹣1 D.2【考点】根的判别式.【分析】根据判别式的意义得到△=22﹣4(k+2)=0,然后解一次方程即可.【解答】解:根据题意得△=22﹣4(k+2)=0,解得k=﹣1.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.(3分)科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,那么全组共有()名学生.A.12 B.12或66 C.15 D.33【考点】一元二次方程的应用.【分析】设全组共有x名学生,每一个人赠送x﹣1件,全组共互赠了x(x﹣1)件,共互赠了132件,可得到方程,求解即可.【解答】解:设全组共有x名学生,由题意得x(x﹣1)=132解得:x1=﹣11(不合题意舍去),x2=12,答:全组共有12名学生.故选:A.【点评】本题考查一元二次方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.二、耐心填一填:(把答案填放相应的空格里.每小题3分,共15分).11.(3分)写一个一元二次方程,使它的二次项系数是﹣3,一次项系数是2:﹣3x2+2x ﹣3=0 .【考点】一元二次方程的一般形式.【专题】开放型.【分析】根据一元二次方程的一般形式和题意写出方程即可.【解答】解:由题意得:﹣3x2+2x﹣3=0,故答案为:﹣3x2+2x﹣3=0.【点评】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.在一般形式中a,b,c分别叫二次项系数,一次项系数,常数项.12.(3分)﹣1是方程x2+bx﹣5=0的一个根,则b=﹣4 ,另一个根是 5 .【考点】一元二次方程的解.【分析】把x=﹣1代入方程得出关于b的方程1+b﹣2=0,求出b,代入方程,求出方程的解即可.【解答】解:∵x=﹣1是方程x2+bx﹣5=0的一个实数根,∴把x=﹣1代入得:1﹣b﹣5=0,解得b=﹣4,即方程为x2﹣4x﹣5=0,(x+1)(x﹣5)=0,解得:x1=﹣1,x2=5,即b的值是﹣4,另一个实数根式5.故答案为:﹣4,5;【点评】本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的解.13.(3分)方程(2y+1)(2y﹣3)=0的根是y1=﹣,y2=.【考点】解一元二次方程-因式分解法.【专题】因式分解.【分析】解一元二次方程的关键是把二次方程化为两个一次方程,解这两个一次方程即可求得.【解答】解:∵(2y+1)(2y﹣3)=0,∴2y+1=0或2y﹣3=0,解得y1=,y2=.【点评】解此题要掌握降次的思想,把高次的降为低次的,把多元的降为低元的,这是解复杂问题的一个原则.14.(3分)已知一元二次方程x2﹣3x﹣1=0的两根为x1、x2,x1+x2= 3 .【考点】根与系数的关系.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,代入计算即可.【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根是x1、x2,∴x1+x2=3,故答案为:3.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.15.(3分)用换元法解方程+2x=x2﹣3时,如果设y=x2﹣2x,则原方程可化为关于y的一元二次方程的一般形式是y2﹣3y﹣1=0 .【考点】换元法解分式方程.【专题】换元法.【分析】此题考查了换元思想,解题的关键是要把x2﹣2x看作一个整体.【解答】解:原方程可化为:﹣(x2﹣2x)+3=0设y=x2﹣2x﹣y+3=0∴1﹣y2+3y=0∴y2﹣3y﹣1=0.【点评】此题考查了学生的整体思想,也就是准确使用换元法.解题的关键是找到哪个是换元的整体.三、按要求解一元二次方程:(20分)16.(20分)按要求解一元二次方程(1)4x2﹣8x+1=0(配方法)(2)7x(5x+2)=6(5x+2)(因式分解法)(3)3x2+5(2x+1)=0(公式法)(4)x2﹣2x﹣8=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.(2)方程移项变形后,采用提公因式法,可得方程因式分解的形式,即可求解.(3)方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,发现其结果大于0,故利用求根公式可得出方程的两个解.(4)方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)4x2﹣8x+1=0(配方法)移项得,x2﹣2x=﹣,配方得,x2﹣2x+1=﹣+1,(x﹣1)2=,∴x﹣1=±∴x1=1+,x2=1﹣.(2)7x(5x+2)=6(5x+2)(因式分解法)7x(5x+2)﹣6(5x+2)=0,(5x+2)(7x﹣6)=0,∴5x+2=0,7x﹣6=0,∴x1=﹣,x2=;(3)3x2+5(2x+1)=0(公式法)整理得,3x2+10x+5=0∵a=3,b=10,c=5,b2﹣4ac=100﹣60=40,∴x===,∴x1=,x2=;(4)x2﹣2x﹣8=0.(x+4)(x﹣2)=0,∴x+4=0,x﹣2=0,∴x1=﹣4,x2=2.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.四、细心做一做:17.(6分)有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长18 m),另三边用竹篱笆围成,如果竹篱笆的总长为35 m,求鸡场的长与宽各为多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设养鸡场的宽为xm,则长为(35﹣2x),根据矩形的面积公式即可列方程,列方程求解.【解答】解:设养鸡场的宽为xm,则长为(35﹣2x),由题意得x(35﹣2x)=150解这个方程;x2=10当养鸡场的宽为时,养鸡场的长为20m不符合题意,应舍去,当养鸡场的宽为x1=10m时,养鸡场的长为15m.答:鸡场的长与宽各为15m,10m.【点评】本题考查的是一元二次方程的应用,难度一般.18.(6分)如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的等宽的、供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】本题可根据关键语“小路的面积是草地总面积的八分之一”,把小路移到一起正好构成一个矩形,矩形的长和宽分别是(32﹣2x)和(15﹣x),列方程即可求解.【解答】解:设小路的宽应是x米,则剩下草总长为(32﹣2x)米,总宽为(15﹣x)米,由题意得(32﹣2x)(15﹣x)=32×15×(1﹣)即x2﹣31x+30=0解得x1=30 x2=1∵路宽不超过15米∴x=30不合题意舍去答:小路的宽应是1米.【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.19.(7分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?【考点】一元二次方程的应用.【专题】增长率问题.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率).(1)可先求出增长率,然后再求2007年的盈利情况.(2)有了2008年的盈利和增长率,求出2009年的就容易了.【解答】解:(1)设每年盈利的年增长率为x,根据题意,得1500(1+x)2=2160.解得x1=0.2,x2=﹣2.2(不合题意,舍去).∴1500(1+x)=1500(1+0.2)=1800.答:2007年该企业盈利1800万元.(2)2160(1+0.2)=2592.答:预计2009年该企业盈利2592万元.【点评】本题考查的是增长率的问题.增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.20.(7分)中华商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,这种衬衫每件涨价4元,其销售量就减少40件.如果商场计划每月赚得8000元利润,那么售价应定为多少?这时每月应进多少件衬衫?【考点】一元二次方程的应用.【专题】销售问题.【分析】设涨价4x元,则销量为(500﹣40x),利润为(10+4x),再由每月赚8000元,可得方程,解方程即可.【解答】解:设涨价4x元,则销量为(500﹣40x),利润为(10+4x),由题意得,(500﹣40x)×(10+4x)=8000,整理得,5000+2000x﹣400x﹣160x2=8000,解得:x1=,x2=,当x1=时,则涨价10元,销量为:400件;当x2=时,则涨价30元,销量为:200件.答:当售价定为60元时,每月应进400件衬衫;售价定为80元时,每月应进200件衬衫.【点评】本题考查的是一元二次方程的应用,根据题意正确找出等量关系、列出方程是解题的关键,注意分情况讨论思想的应用.21.(9分)如图1,在Rt△ABC中,∠C=90°,AC=8m,BC=6m,点P由C点出发以2m/s的速度向终点A匀速移动,同时点Q由点B出发以1m/s的速度向终点C匀速移动,当一个点到达终点时另一个点也随之停止移动.(1)经过几秒△PCQ的面积为△ACB的面积的?(2)经过几秒,△PCQ与△ACB相似?(3)如图2,设CD为△ACB的中线,那么在运动的过程中,PQ与CD有可能互相垂直吗?若有可能,求出运动的时间;若没有可能,请说明理由.【考点】一元二次方程的应用;相似三角形的判定.【专题】几何动点问题.【分析】(1)分别表示出线段PC和线段CQ的长后利用S△PCQ=S△ABC列出方程求解;(2)设运动时间为ts,△PCQ与△ACB相似,当△PCQ与△ACB相似时,可知∠CPQ=∠A或∠CPQ=∠B,则有=或=,分别代入可得到关于t的方程,可求得t的值;(3)设运动时间为ys,PQ与CD互相垂直,根据直角三角形斜边上的中线的性质以及等腰三角形的性质得出∠ACD=∠A,∠BCD=∠B,再证明△PCQ∽△BCA,那么=,依此列出比例式=,解方程即可.【解答】解:(1)设经过x秒△PCQ的面积为△ACB的面积的,由题意得:PC=2xm,CQ=(6﹣x)m,则×2x(6﹣x)=××8×6,解得:x=2或x=4.故经过2秒或4秒,△PCQ的面积为△ACB的面积的;(2)设运动时间为ts,△PCQ与△ACB相似.当△PCQ与△ACB相似时,则有=或=,所以=,或=,解得t=,或t=.因此,经过秒或秒,△OCQ与△ACB相似;( 3)有可能.由勾股定理得AB=10.∵CD为△ACB的中线,∴∠ACD=∠A,∠BCD=∠B,又PQ⊥CD,∴∠CPQ=∠B,∴△PCQ∽△BCA,∴=,=,解得y=.因此,经过秒,PQ⊥CD.【点评】本题考查了一元二次方程的应用,相似三角形的判定与性质,三角形的面积,勾股定理,直角三角形、等腰三角形的性质,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.。
人教版九年级上册数学 第21章 一元二次方程 单元复习试卷(含答案)

人教版九年级上册数学第21章一元二次方程单元复习试卷一.选择题1.下列方程是一元二次方程的是()A.(x2+3)2=9B.ax2+bx+c=0C.x2+3=0D.x2+=42.若关于x的方程(m+1)x|m|+1﹣2x=3是关于x的一元二次方程,则m的取值为()A.m=1B.m=﹣1C.m=±1D.m≠﹣13.某超市一月的营业额是72万元,三月份的营业额为96万元,设每月的平均增长率为x,则可列方程为()A.72(1﹣x)2=96B.72(1+x)2=96C.96(1﹣x)2=72D.96(1+x)2=724.一个三角形两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为()A.9B.11C.13D.9或135.下列是一元二次方程的是()A.ax2+bx+c=0B.C.x2﹣x=2D.x+m2﹣1=0的两不相等的实数根,且,则m的值是()A.B.﹣3C.D.7.如图,某小区计划在一个长80米,宽36米的长方形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪的面积都为260平方米,求道路的宽度.设道路宽度为x米,则根据题意可列方程为()A.=260×6B.36×80﹣2×36x﹣80x=260x6C.=260D.=2608.为防止疫情扩散,佩戴口罩成为疫情期间有效防范措施之一,某工厂为了能给市面上百日提供充足的口罩,第一个月至第三个月生产口罩由67500袋增加到90000袋,设该工厂第一个月至第三个月生产口罩平均每月增长率为x,则可列方程为()A.67500(1+2x)=90000B.67500×2(1+x)=90000C.67500+67500(1+x)+67500(1+x)2=90000D.67500(1+x)2=900009.如表是一张月历表,在此月历表上用一个正方形任意圈出2×2个数(如1,2,8,9),如果圈出的四个数中的最小数与最大数的积为308,那么这四个数的和为()12345 678910111213141516171819202122232425262728293031A.68B.72C.74D.7610.某公司2019年5月份营业额为60万元,7月份营业额达到100万元,设该公司这两个月的月平均增长率为x.应列方程是()A.60(1+x)=100B.60(1+x)2=100C.60(1+x)+60(1+x)2=100D.60+60(1+x)+60(1+x)2=100二.填空题11.已知x=﹣1是一元二次方程x2+2x+n=0的一个根,则n的值为.12.一元二次方程2x2+x+1=0的根的情况是.13.如图,用长为20m的篱笆,一面利用墙(墙的最大可用长度为11m),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料做了宽为1m的两扇小门.若花圃的面积刚好为40m2,则此时花圃AB段的长为m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程复习卷
一、选择题(每小题3分,共42分)
1、方程的解是( )
A.x=±1 B.x=0
C.D.x=1
2、下列方程:①x2=0,② 21x-2=0, ③22x+3x=(1+2x)(2+x), ④32x-x=0,
⑤32xx-8x+ 1=0中,一元二次方程的个数是( )
A.1个 B2个 C.3个 D.4个
3、把方程(x-5)(x+5)+(2x-1)2=0化为一元二次方程的一般形式是( )
A.5x2-4x-4=0 B.x2-5=0
C.5x2-2x+1=0 D.5x2-4x+6=0
4、方程x2=6x的根是( )
A.x1=0,x2=-6 B.x1=0,x2=6 C.x=6 D.x=0
5、方2x2-3x+1=0经为(x+a)2=b的形式,正确的是( )
A. 23162x; B.2312416x;
C. 231416x; D.以上都不对
6、若两个连续整数的积是56,则它们的和是( )
A.11 B.15 C.-15 D.±15
7、不解方程判断下列方程中无实数根的是( )
A.-x2=2x-1 B.4x2+4x+54=0; C. 2230xx D.(x+2)(x-3)==-5
1x0x21,
8、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率
为x,则由题意列方程应为( )
A.200(1+x)2=1000 B.200+200×2x=1000
C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000
9、关于x的一元二次方程22110axxa的一个根是0,则a值为( )
A、1 B、1 C、1或1 D、12
10、已知三角形两边长分别为2和9,第三边的长为二次方程x2-14x+48=0的一根, 则这个三角形的
周长为( )
A.11 B.17 C.17或19 D.19
11、已知一个直角三角形的两条直角边的长恰好是方程22870xx的两个根,则这个直角三角
形的斜边长是( )
A、3 B、3 C、6 D、9
12、使分式2561xxx 的值等于零的x是( )
A.6 B.-1或6 C.-1 D.-6
13、已知方程22xx,则下列说中,正确的是( )
(A)方程两根和是1 (B)方程两根积是2
(C)方程两根和是1 (D)方程两根积比两根和大2
14、从正方形的铁皮上,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁皮的面
积是( )
A.9cm2 B.68cm2 C.8cm2 D.64cm
2
二、填空题(每小题3分,共24分)
15、方程2532)1(2xx化为一元二次方程的一般形式是________ ,它的一次项系数是______.
16、关于x的一元二次方程x2+bx+c=0有实数解的条件是__________.
17、用 ______ 法解方程3(x-2)2=2x-4比较简便.
18、如果2x2+1与4x2-2x-5互为相反数,则x的值为________.
19、如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k 的最小整数值是__________.
20、如果关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______.
21、已知方程3ax2-bx-1=0和ax2+2bx-5=0,有共同的根-1, 则a= ______, b=______.
22、某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价
的百分率为______________.
三、解答题(共4小题,共54分)
23、用适当方法解方程:(共4小题,共20分)
1、22(3)5xx
2、22330xx
3、
4、
24、(10分)若方程05)3()2(852xmxmmm是一元二次方程,求m的值
25、(12分)如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),
把耕地分成大小不等的六块试验田,要使试验田的面积为570m2,道路应为多宽?
x4)3x)(3x(
027)1x4(2
26、(12分)某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,
增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,
商场平均每天可多售出2件。 求:若商场平均每天要赢利1200元,每件衬衫应降价多少元?