七桥问题和一笔画
七桥问题与一笔画的通解

七桥问题与一笔画的通解(论文拟稿)在柯尼斯堡的一个公园里,有七座桥将一条河上的两座岛和两岸相连接。
当时有人提出了这么一个问题:如何一次性不重复不遗漏走完七座桥。
后来,数学家欧拉将它变成了一个一笔画问题(如图)。
从欧拉的简化图来看,似乎我们无论如何,也不能一笔画完图形。
但是,这是为什么呢?在这个图中,有ABCD 4个点,有五条线汇聚到A点,三条线汇聚到B,C,D 点,我们可以把这种有奇数条线(3条及以上)汇聚的点称为奇点,作为对应,把有偶数条线(4条及以上)汇聚的点称为偶点。
那么,我们不难发现,在任意封闭图形中,奇点的个数一定是偶数。
因为一条线定连接两个点(或重合),若存在奇数个奇点,则此图形定不符合封闭图形定义。
从一个奇点来看,若要一笔画成,则此奇点定是起笔点或停笔点。
起笔点,停笔点只有两个,所以说,奇点为两个或没有奇点的封闭图形可以一笔画。
回来看七桥问题,图中有四个奇点,以任意两个作为起笔点和落笔点,则还有两个奇点无法连接。
故七桥问题无解。
从上面总结出以下结论:■⒈凡是由偶点组成的连通图,一定可以一笔画成。
画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
■⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。
画时必须把一个奇点为起点,另一个奇点为终点。
■⒊其他情况的图都不能一笔画出。
(奇点数除以二便可算出此图需几笔画成。
)我们可以把得到的结论推广到所有一笔画解法存在问题,如汉字“田”,我们观察到,它有四个奇点,故不可以一笔画。
而汉字“日”,只有两个奇点,则可以一笔画。
早在1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,就阐述了这种方法,也为后来的数学新分支--拓扑学的建立奠定了基础。
从这里我们可以看出,伟大的创造一开始可能并不像我们想象的那么高深莫测,仔细观察生活,我们也会有了不起的发现。
哥尼斯堡七桥问题与一笔画课件

在18世纪,人们开始对图论进行 研究,探索图的结构和性质,其 中哥尼斯堡七桥问题成为了图论 研究的重要问题之一。
哥尼斯堡七桥问题的起源
哥尼斯堡七桥问题起源于18世纪初,当时有一位名叫欧拉的 人,他是一位数学家和工程师,对图论进行了深入研究。
欧拉在研究哥尼斯堡的桥梁和河流时,提出了一个问题:是 否存在一条路径,能够遍历哥尼斯堡的所有桥梁,每座桥只 过一次?这就是著名的哥尼斯堡七桥问题。
哥尼斯堡七桥问题对一笔画问题的影响
哥尼斯堡七桥问题的解决推动了数学领域的发展,它证明了不存在一条遍历七座 桥的路径,每座桥只过一次,最后回到开始的地方。
这个问题的解决对于一笔画问题的研究具有重要意义,它揭示了一笔画问题的复 杂性和多样性,也促使数学家们深入研究一笔画问题的性质和规律。
一笔画问题在哥尼斯堡七桥问题中的应用
哥尼斯堡七桥问题是一笔画问题的经典案例,它探讨的是从哥尼斯堡的一个地方开 始,能否遍历城市的七座桥,每座桥只过一次,最后回到开始的地方。
一笔画问题则是一个更广泛的几何问题,研究的是在一个连通图上,是否存在一条 路径能够遍历所有的边,每条边只过一次。
哥尼斯堡七桥问题实际上是几何图形的一笔画问题,它为后续一笔画问题的研究提 供了基础。
哥尼斯堡七桥问题的历史意义
哥尼斯堡七桥问题的解决标志着图论 的诞生,成为图论发展史上的一个里 程碑。
该问题的解决为后续的图论研究提供 了基础和指导,推动了数学和图论的 发展。
02 一笔画问题概述
一笔画问题的定义
一笔画问题,也称为欧拉路径问题,是图论中的一个经典 问题。它主要探讨的是在一个给定的图形中,是否存在一 条路径,使得这条路径能够遍历图形的每一条边且只遍历 一次。
地图导航
七桥问题与一笔画

( C点 ) , 如图l 1 . 如 果 要 选 择 最
二
D
个偶 点 : A、 B、 D、 F, 2 个奇点 : C、 , 可 以 一
笔 画成 . 图7 中有2 个 偶点 : 4、 C, 2 个奇 点 :
B、 D, 可 以 一 笔 画 成 .图 8 中有 1 个偶 点 : D。 4 个奇点 : A、 、 C、 D, 不 能 一 笔 画 成 .再
找 几 个 图形 试 一 试 , 你 能 发 现什 么 规 律 吗 ?
【 规律 】
① 可 以 一 笔 画 成 的 图形 . 与 偶 点 个 数
无关 , 与奇点个 数有关 . 也 就是说 , 凡 是 图
短 的线 路 , 谁 先 回到 邮 局 ?
c
形 中没 有 奇 点 的 ( 奇 点 个数 为0 ) , 可 选 任 一
个点做起点 . 且 一 笔 画后 可 以 回到 出 发 点 .
7 2
E F
图 1 1
T 1 n t e 慧 l l i g 散 e n 掌 t m a t h e m a t i c s
条线都只能画一次而不能重复. 图5 一图 8 四个 图 形 中 。 你 能 找 出图5 一
图8 的 每 个 图形 中 奇 点 和 偶 点 的 个 数 吗 ? 请 你 试 一 试 其 中 哪些 可 以一 笔 画 出 ?
E
超
店
图 5
图6
7
图 8
【 分析 】 图5 中有6 个偶 点 : A、 B、 c、 D、
看几 个一 笔 画 的问题 .
先 让 我 们 来 了解 三 个 新 概 念 .
七桥问题和一笔画

七桥问题和一笔画18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。
如图1所示:河中的小岛A与河的左岸B、右岸C各有两座桥相连结,河中两支流间的陆地D与A、B、C各有一座桥相连结。
当时哥尼斯堡的居民中流传着一道难题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。
图 1 图 2七桥问题引起了著名数学家欧拉(17071783)的关注。
他把具体七桥布局化归为图2所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从A、B、C、D中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f、g各条线只画一次不准重复),并且最后返回起点?欧拉经过研究得出的结论是:图2是不能一笔画出的图形。
这就是说,七桥问题是无解的。
这个结论是如何产生呢?请看下面的分析。
如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。
如果画笔经过一个n次,那么就有2n条线与该点相连结。
因此,这个图形中除起点与终点外的各点,都与偶数条线相连。
如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。
综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。
图2中的A点与5条线相连结,B、C、D各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。
1736年,欧拉在圣彼得堡科学院作了一次学术报告。
在报告中,他证明了上述结论。
后来他又给出了鉴别任一图形能否一笔画出的准则,即欧拉定理。
为了介绍这个定理,我们先来看下面的预备知识:由有限条线组成的图形叫做网络,其中每条线都要求有两个不同的端点。
哥尼斯堡七桥问题与一笔画精品PPT课件

著名的哥尼斯堡大学,傍倚于两条支流的河旁, 使这一秀色怡人的区域,又增添了几分庄重的韵味! 有七座桥横跨普累格河及其支流,其中五座把河岸 和河心岛连接起来。这一别致的桥群,古往今来, 吸引了众多的游人来此散步。
这在人类智慧所未及的领域,是很常见的事!
拿起栓有15个圆环的绳子,任选一个桥的支柱作为起点,沿桥依次套圈,看看 是否可以让除起点之外的13个桥柱上都有一个圈。(起点的柱子上有两个圈)。 结论是,不可能实现完成该任务。
❖ 欧拉
欧拉(L.Euler,1707.4.151783.9.18)著名的数学家。生于 瑞士的巴塞尔,卒于彼得堡。大 部分时间在俄国和德国度过。他 早年在数学天才贝努里赏识下开 始学习数学, 17岁获得硕士学位, 毕业后研究数学,是数学史上最高 产的作家。在世发表论文700多篇, 去世后还留下100多篇待发表。其 论著几乎涉及所有数学分支。
课后作业
请你观察生活,设计一个运 用“一笔画”的数学知识来解 决的实际问题。并与同伴交流。
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
②若奇点个数为2,可选其中一个奇点做起点, 而终点一定是另一个奇点,即一笔画后不可以 回到出发点。
③凡是图形中有2个以上奇点的,不能完成一 笔画。
用你发现的规律,说一说七桥问题的答案?
由于七桥问题中的四个点都是奇点,因此可 以判断它是无法一笔画出来的 ,也就是说 根本不存在能不重复走遍七座桥的路线!
七桥问题与一笔画

七桥问题与一笔画18世纪时,风景秀丽的欧洲小城哥尼期堡中有一条河,河的中间有两个小岛,河两岸与两岛之间共建有七座桥(图1)当时小城的居民中流传着一道难题:一个人怎样才能不重复地走过所有的七座桥,再回到出发点?这就是数学史上著名的“七桥问题”,为了解决这个问题,我们首先学习一下“一笔画”吧。
把一个图形用笔描绘一遍,笔不能离开图面,已经描过的地方不可以重复,这个图形叫做一笔画。
如图2,由A点出发先走向B点,从B点先描出圆,回到B点后,再描全矩形,这就是一个一笔画。
但图3就不是一个一笔画。
图的顶点可分为两类,奇点和偶点从某点出发的边的条数是奇数时,这样的点叫做奇点(如图3中A、B、C、D);从某点出发的边的条数是偶数时,这样的点叫偶点(如图2中A、B)由例3我们知道并非所有的图形均可一笔画出,通过研究发现有以下三条规律。
1.凡是仅由偶点组成的图形,一定可以一笔画出,画时可以任意偶点为起点,最后仍回到这点。
2.凡是只有两个奇顶点和任意个偶顶点组成的图形,也可以一笔画出,画时必须以一个奇顶点为起点,而以另一个奇顶点为终点。
3.如果图形中的奇顶点多于两个,那么这个图就不可能一笔画出。
掌握这些结论后,我们就可以顺利的解决七桥问题,首先把被河流隔开的四块区域缩写为A、B、C、D四个点,这样七桥问题就变成了四个点间由七条线相连所成的图(图4)。
因为本图有四个奇点(A、B、C、D),所以一个人不可能不重复地走过所有的七座桥而再回到出发点,这就是著名数学家欧拉研究后得出的结论。
欧拉用他的智慧,把七桥问题变成了一个与位置关系有关的问题,这也为许多现实生活中的七桥问题找到解决的途径。
下面我们来看看它的重要运用。
例1,图5中的线段代表林中小路,在B点A、B两处各有一人,他们约定以相同的速度同时从各自所在的位置出发,走遍林中的每一条小路,最后到达C点,在哪个点出发的人最先到达C点。
分析:从A点出发的人先到。
原因是图中只有A、C两个奇点,由规律可知:从A出发的人可以不重复地走完每一条小路后终止在奇点C;B是偶点,从B点出发不可能不重复地走完每一条小路,他要到达C点,必须在某段小路上重复走一次,从B点出发的人到达C的行程比从A点出发的人更长。
哥尼斯堡七桥问题与一笔画通用课件

问题的意义
01
哥尼斯堡七桥问题推动了图论的 发展,成为图论和几何图形研究 的重要基础。
02
问题揭示了图论中节点和边的概 念,以及它们之间的关系和限制 条件,为后续的图论研究提供了 重要的启示。
02
一笔画问题概述
一笔画的基本概念
一笔画
一笔画是指从一个给定的点开始 ,沿着某些路径(通常是线段) 前进,最后回到起始点,路径在 任何地方都不交叉或重复。
际应用价值。
THANKS。
05
哥尼斯堡七桥问题的解决方案
欧拉解决哥尼斯堡七桥问题的方法
欧拉通过数学分析,证明了哥尼斯堡七桥问题没有一笔画的 可能性,即不存在一条路径能够遍历七座桥而不重复经过任 何一座桥。
欧拉的方法基于图论的基本原理,通过分析图中的奇点(起 点和终点)和偶点(中间的交点),证明了七桥问题没有一 笔画的可能性。
地图染色
地图染色问题是一笔画问题的一个变种,它要求将地图上 的国家或地区按照一定的规则进行染色,使得相邻的国家 或地区颜色不同。
物流配送
在物流配送中,一笔画问题可以用于解决最优配送路线问 题,即如何规划一条或多条路线,使得所有客户都被访问 且只被访问一次,同时总距离最短。
一笔画问题的未来发展
算法优化
现代技术的应用
随着计算机技术的发展,现代数学软件和算法可以模拟和验证图论中的问题,为 解决复杂问题提供了更高效的方法。
现代技术可以用于分析和处理大规模的图数据,例如社交网络、交通网络等,这 些网络结构与哥尼斯堡七桥问题类似,可以通过计算机模拟和算法找到最优解或 近似解。
对其他类似问题的启示
哥尼斯堡七桥问题的解决为图论和其他相关领域的研究提 供了基础和启示,推动了数学和科学的发展。
哥尼斯堡七桥问题与一笔画

年 前 的 一 个 著 名 问 题 —— 哥 尼 斯 堡 七 桥 问
题. 十八世纪 , 东普鲁 士哥尼斯堡城( 今 俄 罗 斯加 里 宁格 勒 ) 有一 条 河 叫普莱 格 尔河 , 它 有 两个 支流 , 在 城 市 的 中心汇 成大 河 , 中间是 岛 区, 河 上 有 7座桥 , 将 河 中的两 个 岛和河 岸 连
图 l
图 2
图 3
如 果 你 画 出来 了 ,那 么 请你 再 看 图 2能 不能一 笔 画 出来?
一
这个问题看起来似乎并不难 ,但人们始
虽然你动了脑筋 ,但我相信你肯定不能 终 没 有 能找 到 答 案 . 最后 , 问题 被 提 到 了大 数
笔 画 出图 2 1这 就是 一笔 画 问题 , 它 是一 种 学 家 欧拉 那 里 .欧 拉 以 深邃 的洞 察力 很 快 证
是奇 点 , 共有 四个 , 所 以这个 图肯定 不 能 一笔 画成. 欧拉对“ 七桥问题” 的 研 究 是 图论 研 究
在 图 中添 上一 条线 段 , 使它 能一 笔画 成 .
的开始 ,同时也为拓扑学的研究提供 了一个
初级 例 子 .
【 例题 赏析 】 图 中添加 最 少 的线段 ,将 其 改成 一 笔 画 的 图
参考路 线 : 4 - 1 _ 2 - 5 — 8 一 - 9 - 6 - 1 0 - 1 1 - 7 - 4 — 3 .
点为终点; ( 4 ) 奇点个数超过两个的图形 , 一定
不能 一笔 画 出 .
现在 对 照七 桥 问题 的 图 ,所有 的顶 点都
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 七桥问题引起了著名数学家欧拉 (1707—1783)的关注。他把具体七桥 布局化归为图所示的简单图形,于是, 七桥问题就变成一个一笔画问题:怎样 才能从A、B、C、D中的某一点出发,一 笔画出这个简单图形
• 奇偶点。
• 下列图形中,请找出每个图的奇点个数, 偶点个数。试一试哪些可以一笔画出, 从中你能发现什么规律?
七桥问题和一笔画
七桥问题
• • • • • 18世纪时,欧洲有一个风 景秀丽的小城哥尼斯堡, 那里有七座桥。如图所示: 河中的小岛A与河的左岸B、 右岸C各有两座桥相连结,河中两支流间 的陆地D与A、B、C各有一座桥相连结。 当时哥尼斯堡的居民中流传着一道难题: 一个人怎样才能一次走遍七座桥,每座 桥只走过一次,最后回到出发点?
• ■⒈凡是由偶点组成的连通图,一定可 以一笔画成。画时可以把任一偶点为起 点,最后一定能以这个点为终点画完此 图。 ■⒉凡是只有两个奇点的连通图(其余 都为偶点),一定可以一笔画成。画时 必须把一个奇点为起点,另一个奇点终 点。 ■⒊其他情况的图都不能一笔画出。(奇 点数除以二便可算出此图需几笔画成。) •