16—17学年下学期七年级期中考试数学试题(附答案)
吉林省长春市东北师范大学附属中学2023-2024学年七年级下学期期中数学试题(解析版)

2023-2024学年东北师大附中初中部初一年级数学学科试卷第二学期期中考试考试时长:120分钟试卷分值:120分一、选择题(共8小题,每题3分,共24分)1. 如图,下列四种通信标志中,其图案是轴对称图形的是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了轴对称图形的识别,根据轴对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.【详解】解:A 、不是轴对称图形,故此选项不符合题意;B 、不是轴对称图形,故此选项不符合题意;C 、是轴对称图形,故此选项符合题意;D 、不是轴对称图形,故此选项不符合题意;故选:C .2. 已知,下列不等式成立的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了不等式的基本性质,易错在不等式的基本性质3,不等式两边同时乘以或除以同一个负数,不等号的方向改变.不等式性质:基本性质1.不等式两边同时加上或减去同一个整式,不等号的方向不变.基本性质2.不等式两边同时乘以或除以同一个正数,不等号的方向不变.基本性质3.不等式两边同时乘以或除以同一个负数,不等号的方向改变.根据性质逐一分析即可.【详解】解:A .∵,∴,故不符合题意;B . ∵,∴,a b >a b->-22a b -<-22a b <0a b -<a b >a b -<-a b >a b -<-∴,故符合题意;C .∵,∴,故不符合题意;D . ∵,∴,故不符合题意.故选:B .3. 一副三角板,按如图所示叠放在一起,则图中的度数为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了与三角板有关的运算以及三角形内角和性质,先得出,再运用三角形内角和进行列式,计算即可作答.【详解】解:如图所示:由题意得出,∴,∵,∴,故选:C .4. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形【答案】C【解析】【分析】一个多边形的镶嵌应该符合其内角度数可以整除360°【详解】A 、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;22a b -<-a b >22a b >a b >0a b ->α∠60︒65︒75︒85︒115ABD ABC ∠=∠-∠=︒6045ABD ABC ∠=︒∠=︒,1604515ABD ABC ∠=∠-∠=︒-︒=︒90D Ð=°180901575α∠=︒-︒-︒=︒B 、四边形内角和为360°,能整除360°,能密铺,故此选项不合题意;C 、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D 、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意;故选C .【点睛】本题主要考查图形的镶嵌问题,重点是掌握多边形镶嵌的原理.5. 已知是关于x ,y 的方程,x +ky =3的一个解,则k 的值为( )A. -1B. 1C. 2D. 3【答案】B【解析】【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:∵是关于x 、y 的方程x +ky =3的一个解,∴把代入到原方程,得1+2k =3,解得k =1,故选:B .【点睛】本题主要考查了二元一次方程的解的定义,解一元一次方程,熟知方程的解是使方程两边相等的未知数的值是解题的关键.6. 一个三角形两边的长分别是3和5,则这个三角形第三边的长可能是( )A. 1B. C. 2 D. 4【答案】D【解析】【分析】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可.【详解】解:设三角形第三边的长为x ,则,即,只有选项D 符合题意.故选D .7. 不等式的解集在数轴上表示正确的是( )12x y =⎧⎨=⎩12x y =⎧⎨=⎩12x y =⎧⎨=⎩1.55353x -<<+28x <<53x -≥A.B.C.D.【答案】A【解析】【分析】本题考查的是解一元一次不等式,利用数轴表示不等式的解集.先求出不等式的解集,再在数轴上表示出来不等式的解集即可,注意大于小于用空心,大于等于小于等于用实心,大于大于等于开口向右,小于小于等于开口向左.【详解】解:,,数轴上表示:,故选:A .8. 某学校为学生配备物理电学实验器材,一个电表包内装有1个电压表和2个电流表.某生产线共60名工人,每名工人每天可生产14个电压表或20个电流表.若分配名工人生产电压表,名工人生产电流表,恰好使每天生产的电压、电流表配成套,则可列出方程组( )A. B. C. D. 【答案】D【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是得到电压表数量和电流表数量的等量关系.【详解】解:若分配名工人生产电压表,名工人生产电流表,由题意,得.故选:D .二、填空题(共6小题,每小题3分,共18分)9. 已知二元一次方程,用含x 的代数式表示y ,则______.为53x -≥∴2x ≤x y 6022014x y y x+=⎧⎨⨯=⎩6014202x y x y +=⎧⎪⎨=⎪⎩601420x y x y +=⎧⎨=⎩6021420x y x y+=⎧⎨⨯=⎩x y 6021420x y y y +=⎧⎨⨯=⎩327x y +=y =【答案】【解析】【分析】本题考查了解二元一次方程,根据,将x 看成已知数,进行移项,再系数化1,即可作答.【详解】解:∵∴故答案为:10. 在通过桥洞时,往往会看到如图所示标志:这是限制车高的标志,表示车辆高度不能超过,通过桥洞的车高应满足的不等式为_____________.【答案】##【解析】【分析】根据不等式的定义列不等式即可.【详解】解:∵车辆高度不能超过,∴.故答案为.【点睛】本题主要考查列不等式,掌握不等式的定义是解答本题的关键.11. 不等式组的最小整数解为_________.【答案】【解析】【分析】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集,根据“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:解不等式组得:,∴最小整数解为,故答案为:.的7322x -327x y +=327x y +=273y x=-7322y x =-7322x -5m m x 5x ≤5x≥5m 5x ≤5x ≤10{212x x -<-≥210{212x x -<-≥32x ≥2212. 如图,正五边形ABCDE 和正六边形EFGHMN 的边CD 、FG 在直线l 上,正五边形在正六边形左侧,两个正多边形均在l 的同侧,则的大小是___度.【答案】48【解析】【分析】利用正多边形的内角和,求出其中一个角的度数,进一步求出三角形DEF 的两个内角,最后由三角形内角和定理来求解.【详解】解:正五边形内角和为且在直线上,,正六边形内角和为且在直线上,,在中,,,,,故答案是:.【点睛】本题考查了正多边形的内角、三角形的内角和定理,解题的关键是:掌握正多边形内角和的求法.13. 我国传统数学名著九章算术记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两问牛、羊各一直金几何?”译文问题:“假设有头牛、只羊,值两银子;头牛、只羊,值两银子,问一头牛、一只羊一共值多少两银子?”则头牛、只羊一共值 ______ 两银子.【答案】【解析】【分析】设每头牛值两银子,每只羊值两银子,根据“头牛、只羊,值两银子;头牛、只羊,值两银子”,可得出关于,的二元一次方程组,利用,即可求出结论.DEF ∠ 540︒CD l 5401085EDC ︒∴∠==︒ 720︒FG l 7201206EFG ︒∴∠==︒EDF 180DEF EDF EFD ∠=︒-∠-∠18010872EDF ∠=︒-︒=︒ 18012060EFD ∠=︒-︒=︒48DEF ∴∠=︒48《》.52192516115x y 52192516x y ()7+÷①②【详解】解:设每头牛值两银子,每只羊值两银子,根据题意得:,得:,∴头牛、只羊一共值两银子,故答案为:.【点睛】本题考查了二元一次方程组的应用以及数学文化,找准等量关系,正确列出二元一次方程组是解题的关键.14. 为了更好的开展大课间活动,某班级计划购买跳绳和呼啦圈两种体育用品,已知一个跳绳8元,一个呼啦圈12元.准备用120元钱全部用于购买这两种体育用品(两种都要买且钱全部用完),则该班级的购买方案有______种.【答案】4【解析】【分析】设购买个跳绳,个呼啦圈,利用总价单价数量,即可得出关于,的二元一次方程,结合,均为正整数,即可得出购买方案的数量.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.【详解】解:设购买个跳绳,个呼啦圈,依题意得:,.,均为正整数,为3的倍数,或或或,该班级共有4种购买方案.故答案为:4.三、解答题(共10小题,共78分)15. 解方程组:(1)x y 52192516x y x y +=⎧⎨+=⎩①②()7+÷①②5x y +=1155x y =⨯x y x y x y 812120x y +=2103y x ∴=-x y x ∴∴38x y =⎧⎨=⎩66x y =⎧⎨=⎩94x y =⎧⎨=⎩122x y =⎧⎨=⎩∴23328y x x y =-⎧⎨+=⎩(2)【答案】(1) (2)【解析】【分析】本题主要考查了解二元一次方程组:(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组即可.【小问1详解】解:把①代入②得:,解得,把代入①得,∴方程组的解为;小问2详解】解:得:,解得,把代入①得:,解得,∴方程组解为.16. 解下列不等式(组):(1);(2)【的28452x y x y +=⎧⎨-=⎩21x y =⎧⎨=⎩32x y =⎧⎨=⎩23328y x x y =-⎧⎨+=⎩①②()32238x x +-=2x =2x =2231y =⨯-=21x y =⎧⎨=⎩28452x y x y +=⎧⎨-=⎩①②2⨯-①②714y =2y =2y =228x +=3x =32x y =⎧⎨=⎩()32723x +≥()313122x x x x ⎧->⎪⎨--≥⎪⎩【答案】(1) (2)无解【解析】【分析】本题考查了解一元一次不等式以及解一元一次不等式组,正确掌握相关性质内容是解题的关键.(1)先去括号,再移项合并同类项,系数化1,即可作答.(2)分别算出每个不等式组的解集,再取公共部分的解集,即可作答.【小问1详解】解:,,,;【小问2详解】解:,由,得,解得,由,得,解得,此时不等式组无解.17. 如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的,线段在网格线上.(1)画出边上的高线;(2)画出边上的中线;(3)在线段上任取一点P ,则的面积是______.【答案】(1)见详解 (2)见详解(3)513x ≥()32723x +≥62123x +≥62x ≥13x ≥()313122x x x x ⎧->⎪⎨--≥⎪⎩()31x x ->33x x ->32x >3122x x --≥243x x -≥-1x ≤ABC MN AB CD BC AE MN ABP【解析】【分析】本题考查了三角形的高,中线的定义,运用网格求面积,正确掌握相关性质内容是解题的关键.(1)过点C 作垂直于的延长线,交点为点,即可作答.(2)根据网格特征以及中线定义,进行作图即可;(3)根据平行线之间的距离处处相等的性质,得出与的距离为5,再结合三角形面积公式进行计算,即可作答.【小问1详解】解:边上的高线如图所示:【小问2详解】解: 边上的中线如图所示:【小问3详解】解:如图所示:∴的面积.CD BA D MN AB AB CD BC AE ABP 12552=⨯⨯=18. 如图,在中,是的角平分线,,,求的度数.【答案】【解析】【分析】根据三角形外角的性质,角平分线的定义以及三角形的内角和定理即可得到结论.此题主要考查了三角形外角的性质,角平分线的定义,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.【详解】解:∵.∴,∵是角平分线,∴,在中,.19.若一个多边形的内角和的比它的外角和多,那么这个多边形的边数是多少?【答案】12【解析】【分析】设这个多边形的边数是n ,根据题意,列方程求解即可.【详解】解:设这个多边形的边数是n ,由题意得:,解得:,答:这个多边形的边数是12.【点睛】本题考查了多边形的内角和和外角和定理,熟练掌握两个定理是解题的关键.20. 在长方形中,放入5个形状大小相同的小长方形(空白部分),其中,,求图中阴影部分图形的面积.ABC AN ABC 50B ∠=︒80ANC ∠=︒C ∠70︒5080ANC B BAN B ANC ∠=∠+∠∠=︒∠=︒,,805030BAN ANC B ∠∠∠=-=︒-︒=︒AN BAC ∠223060BAC BAN ∠=∠=⨯︒=︒ABC 180180506070C B BAC ∠=︒-∠-∠=︒-︒-︒=︒1490︒1(2)180360904n -⨯︒=︒+︒1(2)180360904n -⨯︒=︒+︒12n =ABCD 8cm AB =12cm BC =【答案】【解析】【分析】设小长方形的长为,宽为,根据图形中大长方形的长和宽列二元一次方程组,求出和的值,即可解决问题.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设小长方形的长为,宽为,根据题意,得:,解得:,每个小长方形的面积为,阴影部分的面积.21. 阅读下列材料:小明同学在学习二元一次方程组时遇到了这样一个问题:解方程组.小明发现,如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的看成一个整体,把看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令,.原方程组化为,解得,把代入,,得,解得,236cm xcm ycm x y xcm ycm 3128x y x y +=⎧⎨+=⎩62x y =⎧⎨=⎩∴()22612cm ⨯=∴()281251236cm =⨯-⨯=23237432323832x y x yx y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩()23x y +()23x y -23m x y =+23n x y =-743832m nm n ⎧+=⎪⎪⎨⎪+=⎪⎩6024m n =⎧⎨=-⎩6024m n =⎧⎨=-⎩23m x y =+23n x y =-23602324x y x y +=⎧⎨-=-⎩914x y =⎧⎨=⎩原方程组的解为.(1)学以致用:运用上述方法解方程组:(2)拓展提升:已知关于x ,y 的方程组的解为,请直接写出关于m 、n 的方程组的解是______.【答案】(1) (2)【解析】【分析】本题主要考查了换元法解二元一次方程组:(1)结合题意,利用整体代入法求解,令,得,解得即即可求解;(2)结合题意,利用整体代入法求解,令,,则可化为,且解为则有,求解即可.【小问1详解】解:令,,原方程组化为,解得,∴914x y =⎧⎨=⎩()()()()213211224x y x y ⎧++-=⎪⎨+--=⎪⎩111222a xb yc a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩()()1112222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩11x y =⎧⎨=⎩143m n =⎧⎪⎨=-⎪⎩1m x =+2n y =-23124m n m n +=⎧⎨-=⎩21m n =⎧⎨=-⎩1221x y +=⎧⎨-=-⎩2x m =+3y n =-()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩121222a x b y c a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩2334m n +=⎧⎨-=⎩1m x =+2n y =-23124m n m n +=⎧⎨-=⎩21m n =⎧⎨=-⎩,解得:,∴原方程组的解为 ;【小问2详解】解:在中,令,,则可化为,∵方程组解为,∴,,故答案为:.22. “粮食生产根本在耕地、出路在科技”.为提高农田耕种效率,今年开春某农村合作社计划投入资金购进甲、乙两种农耕设备,已知购进2台甲种农耕设备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元.(1)求甲种农耕设备和乙种农耕设备单价各是多少万元;(2)若该合作社决定购买甲、乙两种农耕设备共7台,且购进甲、乙两种农耕设备总资金不超过10万元,求最多可以购进甲种农耕设备多少台.【答案】(1)1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元; (2)5台【解析】【分析】(1)设购进1台甲种农耕设备需万元,1台乙种农耕设备需万元,根据“购进2台甲种农耕设1221x y +=⎧∴⎨-=-⎩11x y =⎧⎨=⎩11x y =⎧⎨=⎩()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩2x m =+3y n =-()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩121222a x b y c a x b y c +=⎧⎨+=⎩121222a x b y c a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩2334m n +=⎧⎨-=⎩143m n =⎧⎪∴⎨=-⎪⎩143m n =⎧⎪⎨=-⎪⎩x y备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元”,可得出关于,的二元一次方程组,解之即可得出结论;(2)设购进甲种农耕设备台,则购进乙种农耕设备台,利用总价单价数量,结合总价不超过10万元,可得出关于的一元一次不等式,解之可得出的取值范围,再取其中的最大整数值,即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.【小问1详解】解:设购进1台甲种农耕设备需万元,1台乙种农耕设备需万元,根据题意得:,解得:.答:购进1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元;【小问2详解】解:设购进甲种农耕设备台,则购进乙种农耕设备台,根据题意得:,解得:,又为正整数,的最大值为5.答:最多可以购进甲种农耕设备5台.23. 【探究】如图①,在中,点D 是延长线上一点,的平分线与的平分线相交于点P .则有,请补全下面证明过程:证明:平分,平分,,______(______).______(三角形的一个外角等于与它不相邻的两个内角的和),.x y m ()7m -=⨯m m x y 2 4.23 5.1x y x y +=⎧⎨+=⎩1.51.2x y =⎧⎨=⎩m ()7m -()1.5 1.2710m m +-≤153m ≤m m ∴ABC BC ABC ∠BP ACD ∠CP 12P A ∠=∠BP ABC ∠CP ACD ∠2ABC PBC ∴∠=∠2ACD ∠=∠ACD A ∠=∠+∠ 22PCD A PBC ∴∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角的和),.【应用】如图②,在四边形中,设,,若,四边形的内角与外角的角平分线相交于点P .为了探究的度数与和的关系,小明同学想到将这个问题转化图①的模型,因此,延长了边与交于点A .如图③,若,,则,因此.【拓展】如图④,在四边形中,设,,若,四边形的内角与外角的角平分线所在的直线相交于点P ,请直接写出______.(用含有和的代数式表示)【答案】探究:;角平分线的定义;;;应用:;;拓展:【解析】【分析】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义:探究:根据三角形外角的性质和角平分线的定义结合已给推理过程求解即可;应用:先利用平角的定义和三角形内角和定理求出的度数,再有探究的结论即可得到答案;拓展:延长交的延长线于A ,则由三角形内角和定理可得;再由题意可得分别平分,则.【详解】解:探究:证明:平分,平分,,(角平分线的定义).(三角形的一个外角等于与它不相邻的两个内角的和),._____PCD PBC ∠=∠+∠ 12P A ∴∠=∠MNCB M α∠=N β∠=180αβ+>︒MBC ∠NCD ∠BP CP ,P ∠αβBM CN 106BMN∠=︒124MNC ∠=︒______A ∠=︒______P ∠=︒MNCB M α∠=N β∠=180αβ+<︒MBC ∠NCD ∠P ∠=αβPCD PBC P 50︒25︒121902αβ︒--A ∠MB NC 180A αβ=︒--∠PB PC ,ABH ACB ∠,∠11190222P A αβ==︒--∠BP ABC ∠CP ACD ∠2ABC PBC ∴∠=∠2ACD PCD ∠=∠ACD A ABC ∠=∠+∠Q 22PCD A PBC ∴∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角的和),,故答案为:;角平分线的定义;;;应用:延长了边与交于点A .如图③,∵,,∴,∴,∴,故答案:;.拓展:如图,延长交的延长线于A ,∵,,∴;∵四边形的内角与外角的角平分线所在的直线相交于点P ,∴分别平分,∴,故答案为:.24. 如图①,点O 为数轴原点,,正方形的边长为6,点P 从点O 出发,沿射线方向运动,速度为每秒2个单位长度,设运动时间为t 秒,请回答下列问题.为PCD P PBC ∠=∠+∠ 12P A ∴∠=∠PCD PBC P BM CN 106BMN∠=︒124MNC ∠=︒1807418056AMN BMN ANM MNC =︒-=︒=︒-=︒∠∠,∠∠18050A AMN ANM =︒--=︒∠∠∠1252P A ∠=∠=︒50︒25︒MB NC M α∠=N β∠=180180A M N αβ=︒--=︒--∠∠∠MBC ∠NCD ∠PB PC ,ABH ACB ∠,∠11190222P A αβ==︒--∠121902αβ︒--3OA =ABCD OA(1)点A 表示的数为______,点D 表示的数为______.(2)的面积为6时,求t 的值.(3)如图②,当点P 运动至D 点时,立即以原速返回,到O 点后停止.在点P 运动过程中,作线段,点E 在数轴上点P 右侧,以为边向上作正方形,当与面积和为16时,直接写出t 的值.【答案】(1)3,9(2)t的值为秒或秒 (3)或或或.【解析】【分析】(1)根据线段的长和正方形的边长可以求解.(2)根据点的运动速度与运动时间得出运动路程,对应数数轴得出结论.(3)根据点运动确定正方形的位置再去讨论与面积和为16时的值.本题考查了数轴与动点的结合,表示出点的运动距离是本题的解题关键.【小问1详解】解: ,且为数轴原点,在的右侧,表示的数为3,正方形的边长为6,,表示的数为9.故答案是3,9;【小问2详解】解:∵的面积为6,∴,解得,点从点开始运动且速度为每秒2个单位长度,,APC △3PE =PE PEFG DPF ABG 12521318t =23631614918OA P P DPF ABG t P 3OA = O O A ∴ 639OD ∴=+=D ∴APC △116622APC S AP CD AP =⨯=⨯⨯=△2AP =P O 2OP t ∴=∵,∴当点在之间时,则,解得,∴当点在的延长线上时,则,解得,∴的面积为6时,t 的值为秒或秒;【小问3详解】解:①当P 点在A 点左侧时,,由题意得:连接,如图所示:∵,∴,∵速度为每秒2个单位长度,设运动时间为t 秒,∴,∴,∴,,∵与面积和为16,∴,解得,当P 点在A 点右侧时,连接,如图所示:3OA =P AO 3322AP OP t =-=-=12t =P OA 3232AP OP t =-=-=52t =APC △12522OP t =BG AG PF FD ,,,36OA AD ==,9OD =902t ≤≤32PA OA OP t =-=-()11279233222DPF S PD EF t t =⨯⨯=-⨯=- ()116329622ABGS AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 27396162DPF ABG S S t t +=-+-= 1318t =BG AG PF FD ,,,同理得,,∵与面积和为16,∴,解得,②点从向运动时,则,连接,如图所示:∴此时,,∵与面积和为16,∴,()11279233222DPF S PD EF t t =⨯⨯=-⨯=- ()116236922ABGS AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 27369162DPF ABG S S t t +=-+-= 236t =P D O 9999222t <≤+=BG AG PF FD ,,,9926222PD t AP AD PD t ⎛⎫⎛⎫=⨯-=-=-- ⎪ ⎪⎝⎭⎝⎭,119272332222DPF S PD EF t t ⎛⎫=⨯⨯=⨯-⨯=- ⎪⎝⎭ 119662456222ABG S AB AP t t ⎡⎤⎛⎫=⨯⨯=⨯⨯--=- ⎪⎢⎥⎝⎭⎣⎦ DPF ABG 273456162DPF ABG S S t t +=-+-=解得,当P 点在A 点左侧时,由题意得:连接,如图所示:∴,此时,,∵与面积和为16,∴,解得,综上:或或或.316t =BG AG PF FD ,,,92292962152PD t t AP PD AD t t ⎛⎫=⨯-=-=-=--=- ⎪⎝⎭,119272332222DPF S PD EF t t ⎛⎫=⨯⨯=⨯-⨯=- ⎪⎝⎭ ()11621564522ABG S AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 273645162DPF ABG S S t t +=-+-= 14918t =1318t =23631614918。
上海市杨浦区部分学校2023-2024学年七年级下学期期中数学试题(解析版)

2023学年第二学期七年级数学期中质量调研卷七年级数学(时间:100分钟分值 基础100分 附加50分)一、填空题(本大题共14题,每题2分,共28分)1. 下列各数:,0,0.3030030003,中,无理数的个数为______个.【答案】2【解析】,无理数有,,共2个.故答案为:2.【点睛】此题主要考查了算术平方根,无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽得到的数;以及像0.1010010001…(两个1之间依次多一个0),等有这样规律的数.2. 的算术平方根是______.【答案】【解析】【分析】首先将化为假分数;然后根据算术平方根的含义求解即可.详解】,∴.故答案为:.【点睛】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a 是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.3. 比较大小:___________(填“”,“”或“”)【答案】【π22271-3=π21-π2π911654911692511616=251654=54-7->=<>【解析】【分析】根据实数大小的比较方法比较大小即可.【详解】解:,,∵,,又∵,∴,∴.故答案为:.【点睛】本题主要考查了实数大小的比较,解题的关键是熟练掌握实数大小的比较方法.4.化为幂的形式:____________.【答案】【解析】【分析】根据分数指数幂定义求解可得.,,故答案为:.,正确掌握分数指数幂的定义是解题的关键.5. 计算:_________.【答案】7【解析】【分析】先利用平方差公式计算,再利用分数指数幂计算即可求解.【详解】解:,故答案为:7.的4-77-=(248=2749=4849<7<7->->342n m a =342=342n m a =()12222524-=()12222524-()()1225242524+-⎡⎤=⎣⎦1249=7=【点睛】本题考查了分数指数幂,平方差公式,掌握相关运算法则是解题的关键.6. 海洋面积用科学记数法可记作_________.(保留2个有效数字)【答案】【解析】【分析】本题考查了用科学记数法表示较大的数﹒考查科学记数法即考查应用数学的能力.有效数字是从左边第一个不是0的数字起,后面所有的数字都是有效数字,根据定义即可求解.【详解】解:根据题意故答案∶.7. 如图,面积为3的正方形的顶点A 在数轴上,且表示的数为,若,则数轴上点E 所表示的数为____.【答案】【解析】【分析】本题考查了实数与数轴,算术平方根的求解,先求出的长,再求出点E 的坐标即可.【详解】正方形的面积为3,.的坐标为,E 在点A 的右侧,的坐标为.故答案为:8. 两条相交直线所形成的一个角为150°,则它们的夹角是______.【答案】30°【解析】【分析】根据已知两条相交直线所形成的一个角为150°,那么它们的夹角是就是150°角的邻补角,从而求出它们的夹角.为2361000000km 2km 83.610⨯8361000000 3.6110=⨯83.610≈⨯83.610⨯ABCD 1-AB AE =1-+1-AB AB ∴=AE AB ∴==A 1-E ∴1-1-【详解】解:∵两条相交直线所形成的一个角为150°,∴它们的夹角是150°角的邻补角即180°-150°=30°,故答案为:30°.【点睛】此题考查的知识点是对顶角、邻补角,解答此题的关键是要明确要求的角是150°角的邻补角.9. 如图..直线交于点E ,交于点F ,平分,交于点G ,,则等于________.【答案】##度【解析】【分析】本题主要考查了平行线的性质,角平分线的定义,先由平行线的性质得到,,再由角平分线的定义可得.【详解】解;∵,,∴,,∵平分,∴,故答案为:.10. 如图,,已知直角三角形中,B ,C 在直线a 上,A 在直线b 上,,,,则点A 到直线a 的距离为________.【答案】【解析】【分析】设点A 到直线a 的距离为h ,根据,即可求解.【详解】解:设点A 到直线a 的距离为h ,AB CD EF AB CD EG BEF ∠CD 150∠=︒2∠65︒651801130BEF ∠=︒-∠=︒2BEG ∠=∠12652BEG BEF ===︒∠∠AB CD 150∠=︒1801130BEF ∠=︒-∠=︒2BEG ∠=∠EG BEF ∠12652BEG BEF ===︒∠∠∠65︒a b ∥ABC 3AB =4AC =5BC =1251122ABC S AB AC BC h =⨯=⨯∵直角三角形中,,,,∴,即,解得:.故答案为:【点睛】本题主要考查了点到直线的距离,根据题意得到是解题的关键.11. 如图,有一条直的宽纸带,按图折叠,已知,则______度.【答案】##76度【解析】【分析】本题主要考查平行线的性质,掌握平行线的性质是解题关键.根据平行线的性质可得,,再结合折线的性质可得,即可得到的度数.【详解】解:如图由折叠的性质可得∶故答案为∶.12. 若一个正数的两个平方根分别是a +3和2﹣2a ,则这个正数的立方根是_____.【答案】4ABC 3AB =4AC =5BC =1122ABC S AB AC BC h =⨯=⨯ 1134522h ⨯⨯=⨯⨯125h =1251122ABC S AB AC BC h =⨯=⨯ 128∠=︒2∠=76︒1528∠=∠=︒23∠∠=()3418052∠=∠=︒-∠÷2∠,AB CD ∥1528,23,∴∠=∠=︒∠=∠()3418052∠=∠=︒-∠÷()18028276=︒-︒÷=︒276∴∠=︒76︒【解析】【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出正数的立方根.【详解】根据题意得:a+3+2-2a=0,解得:a=5,则这个正数为(5+3)2=64,则这个正数的立方根是4.故答案为4.【点睛】本题考查了立方根以及平方根的定义,熟练掌握各自的定义是解本题的关键.13. 如图,直线,点E ,F 分别在直线和直线上,点P 在两条平行线之间,和的角平分线交于点H ,已知,则的度数为__________.【答案】##度【解析】【分析】本题主要考查了平行线的性质与判定,过点作,过点作.根据平行线的性质得到,结合角平分线的定义得到,同理可得.【详解】解:如图所示,过点作,过点作,∵,∴,,∴,∵,∴,∵,AB CD AB CD AEP ∠CFP ∠78P ∠=︒H ∠141︒141P PQ AB ∥H HG AB 78EPF BEP DFP ∠=∠+∠=︒AEH CFH ∠+∠EHF AEH CFH ∠=∠+∠P PQ AB ∥H HG AB AB CD PQ CD ∥HG CD ∥BEP QPE DFP QPF ∠=∠∠=∠,78EPF QPE QPF ∠=∠+∠=︒78BEP DFP ∠+∠=︒180180AEP BEP CFP DFP +=︒+=︒∠∠,∠∠∴,∵平分,平分,∴.∵,∴,∴故答案为:.14. 消防云梯的示意图如图1所示,其由救援台、延展臂(B 在C 的左侧)、伸展主臂、支撑臂构成,在作业过程中,救援台、车身及地面三者始终保持水平平行.为了参与一项高空救援工作,需要进行作业调整,如图2.使得延展臂与支撑臂所在直线互相垂直,且,这时展角_________.【答案】##度【解析】【分析】本题主要考查平行线的性质,三角形的外角性质,解答的关键是作出正确的辅助线.延长,,相交于点P ,延长交的延长线于点Q ,利用平行线的性质可求得,再利用三角形的外角等于与它不相邻的两个内角之和,即可求得答案.【详解】如图,延长,,相交于点P ,延长交的延长线于点Q ,,,,延展臂与支撑臂所在直线互相垂直,36078282AEP CFP ∠+∠=︒-︒=︒EH AEP ∠HF CFP ∠2822141AEH CFH ∠+∠=︒÷=︒HG CD AB ∥∥EHG AEH FHG CFH ==∠∠,∠∠141EHF EHG FHG AEH CFH =+=+=︒∠∠∠∠∠141︒AB BC CD EF AB GH MN BC EF 70EFH ∠=︒ABC ∠=160︒160BC FE AB FE 70Q ∠=︒BC FE AB FE AB FH ∥ 70EFH ∠=︒70Q EFH ∴∠=∠=︒,.故答案为:.二、选择题(本大题共4题,每题3分,共12分)15. 下列计算正确的是( )A.B. C. D. 【答案】D【解析】【分析】本题考查了立方根,平方根,算术平方根.根据立方根,平方根,算术平方根的性质求解即可.【详解】解:A,本选项不符合题意;B,本选项不符合题意;C,本选项不符合题意;D,本选项符合题意;故选:D .16. 圆圆要用一根笔直的铁丝从两处弯曲后围成一个三角形.如图,铁丝的长度为1m ,圆圆从M ,N 两处弯曲,其中,她不能成功的是( )A. B. C. D. 90BPQ ∴∠=︒ABC BPQ Q∴∠=∠+∠9070=︒+︒160=︒160︒18=4=-a =a=618=≠44==≠-a a =≠a =AB AM AN <20cm 30cmAM <<30cm 40cm AM <<40cm 50cm AM <<50cm 60cmAM <<【答案】D【解析】【分析】本题考查三角形的三边关系,根据“两边之和大于第三边,两边之差小于第三边”解答即可.【详解】解:∵能构成三角形,∴,即,∴,∴选项D 不符合要求,故选D .17. 如图所示,在下列四组条件中,不能判定的是( )A. B. C. D. 【答案】D【解析】【分析】根据平行线的判定方法分别对四个选项进行判断.【详解】解:A 、当∠1=∠2时,AD BC ,本选项不符合题意;B 、当∠3=∠4时,AD BC ,本选项不符合题意;C 、当∠BAD +∠ABC =180°时,AD BC ,本选项不符合题意;D 、当∠BAC =∠ACD 时,AB CD ,本选项符合题意.故选:D .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.18. 如图,下列说法错误的是()AM MN BN MB <+=100AM AM <-050cm AM <<AD BC ∥12∠=∠3=4∠∠180BAD ABC ∠+∠=︒BAC ACD∠=∠∥∥∥∥A. ∠A 与∠AEF 是同旁内角B. ∠BED 与∠CFG 是同位角C. ∠AFE 与∠BEF 是内错角D. ∠A 与∠CFE 是同位角【答案】B【解析】【分析】本题考查的是两直线相交所成角的问题,根据同位角、同旁内角、内错角定义解答即可【详解】A. ∠A 与∠AEF 是同旁内角,正确B. ∠BED 与∠CFG 是同位角,错误C. ∠AFE 与∠BEF 是内错角,正确D. ∠A 与∠CFE 是同位角,正确【点睛】本题的关键是掌握同位角、同旁内角、内错角的定义三、简答题(本大题共7题,每题6分,共42分)19. 计算:.【答案】6【解析】【分析】本题主要考查实数的混合运算,原式分别化简算术平方根,零次幂,绝对值和负整数指数幂,然后再进行加减运算即可.【详解】解:.20. 计算:【答案】0216(3)1|()2π--++-0216(3)|1|()2π--+-+-161|21|43=⨯-+-+2114=-++6=÷59【解析】【分析】利用二次根式的乘除运算法则计算即可.【详解】解:原式【点睛】本题考查了二次根式乘除法,解题的关键是掌握运算顺序和运算法则.21. 计算:.【答案】【解析】【分析】根据乘法公式,二次根式的运算法则即可求解.【详解】解:.【点睛】本题主要考查运用乘法公式计算二次根式,掌握乘法公式,二次根式的加减混合运算法则是解题的关键.22.(结果用幕的形式来表示)【答案】【解析】【分析】根据分数指数幂可进行求解.【详解】解:原式.【点睛】本题主要考查分数指数幂,熟练掌握分数指数幂的运算是解题的关键.23. 作图并写出结论:如图,直线CD 与直线AB 相交于点C ,根据下列语句画图.的2==59=2(1(3-+4--2(1(3--12(92)=+---37=-4=--3421513641622=⨯÷451364222=⨯÷4153462+-=342=(1)过点P 作PQ CD ,交AB 上于点Q ;(2)过点P 作PR ⊥CD ,垂足为R ;(3)若∠DCB =135º,则∠PQC 是多少度?请说明理由.解:∵PQ CD (已作)∴∠DCB +∠PQC =180º( )∵∠DCB =135º∴∠PQC =【答案】(1)见解析(2)见解析 (3)45º,理由见解析【解析】【分析】(1)平移DR 使它过点P ,此时交AB 于Q ,则PQ CD ;(2)过点P 作CD 的垂线,垂足为R ;(3)利用平行线的性质解决问题即可.【小问1详解】直线PQ 如图所示.【小问2详解】直线PR 如图所示. 【小问3详解】∠PQC =45°;理由:解:∵PQ CD (已作)∴∠DCB +∠PQC =180º(两直线平行,同旁内角互补)∵∠DCB =135º∴∠PQC =45 º【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.24. 已知,猜想与的关系如何?并说明理由.解:因为(已知)所以(______)所以;同理,;所以______(______).【答案】平行于同一条直线的两直线平行;∠B ;两直线平行,同旁内角互补;∠A =∠C ;同角的补角相等或等式性质【解析】【分析】根据平行线的判定和性质以及同角的补角相等求解即可.【详解】解:因为,(已知)所以(平行于同一条直线的两直线平行);所以∠A +∠B =180°(两直线平行,同旁内角互补);同理,∠C +∠B =180°;∴∠A =∠C (同角的补角相等或等式的性质).故答案为:平行于同一条直线的两直线平行;∠B ;两直线平行,同旁内角互补;∠A =∠C ;同角的补角相等或等式的性质.【点睛】本题主要考查了平行线的性质与判定,同角的补角相等,熟知平行线的性质与判定是解题的关键.25. 阅读、填空并将说理过程补充完整:如图,已知直线,点A 、B 在直线上,点C 、D 在直线上,与交于点E .与的面积相等吗?为什么?,,,AE GF BC GF EF DC EF AB ∥∥∥∥A ∠C ∠,AE GF BC GF ∥∥AE BC ∥______180(______)A ∠+=︒______180C ∠+=︒AE GF ∥BC GF ∥AE BC ∥12l l ∥1l 2l AD BC ACE △BDE解:作,垂足为,作,垂足为.又因为(已知),所以______(平行线间距离的意义).(完成以下说理过程)【答案】相等,理由见解析.【解析】【分析】作,垂足为,作,垂足为,根据平行线间间距相等得到,再根据三角形面积公式得到,进而可得.【详解】解:相等,理由如下:作,垂足为,作,垂足为.又因为(已知),所以(平行线间距离的意义)因为,,所以,所以,所以,所以与的面积相等.【点睛】本题主要考查了平行线的性质,熟知平行线间间距相等是解题的关键.四、解答题(本大题共3题,每题6分,共18分)26. 如图,AB 、CD 是两条直线,,.请说明的理由.12AH l ⊥1H 22BH l ⊥2H 12l l ∥12AH l ⊥1H 22BH l ⊥2H 12AH BH =ACD CBD S S = ACE BDE S S =△△12AH l ⊥1H 22BH l ⊥2H 12l l ∥12AH BH =112ACD S CD AH =⨯⨯△212CBD S CD BH =⨯⨯△ACD CBD S S = ACD CDE CBD CDE S S S S -=-△△△△ACE BDE S S =△△ACE △BDE BMN CNM ∠=∠12∠=∠E F ∠=∠【答案】见解析【解析】【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠AMN =∠MND ,求出∠EMN =∠MNF ,根据平行线的判定得出ME ∥NF ,根据平行线的性质得出即可.【详解】∵∠BMN =∠CNM (已知),∴(内错角相等,两直线平行).∴∠AMN =∠MND (两直线平行,内错角相等).∵∠1=∠2(已知),∴∠EMN =∠MNF (等式性质).∴(内错角相等,两直线平行).∴∠E =∠F (两直线平行,内错角相等),【点睛】本题考查了平行线性质和判定的应用,能灵活运用定理进行推理是解此题的关键.27. 观察下列一组等式,然后解答后面的问题:,(1)观察上面的规律,计算下列式子的值.;(2【答案】(1)2012;(2【解析】【分析】(1)根据分母乘以分母中这两个数的差,可分母有理化,根据实数的运算,可得答案;(2)根据平方差公式,可化成分子相同的数,根据相同的分子,分母越大的数越小,可得答案.【详解】解:(1)由,则=的ABCD ME NF∥)111,1,1,1+-=-=-==)1++⋅+ -)111,1,1,1+-=-=-==1)n =≥)1++⋅+ 1)⋅==2012(2,,【点睛】本题考查了分母有理化和分子有理化在二次根式混合运算和实数大小比较中的应用,熟练掌握相关的运算法则是解题的关键.28. (1)【问题情境】如图1,已知三角形,试说明的理由.解:过A点作(过直线外一点有且只有一条直线与已知直线平行)(请按照上述思路继续完成说理过程)(2)【尝试运用】如图2,若且经过A点,,求的度数(用含n的代数式表示).(3)【拓展探索】如图3,在三角形中,点D是延长线上的一点,过点D作,平分,平分,与交于点G.若,求的度数.【答案】(1)过程见详解;(2);(3)【解析】【分析】本题考查了平行线的判定及性质、角平分线的性质以及三角形外角的性质,解决该题型题目时,利用平行线的性质找出相等(或互补)的角是关键.(1)过A点作,根据平行线的性质得到,,根据平角的定义得到结论;1)⋅+-ABC180BAC B C∠+∠+∠=︒DE BC∥80,BAC DE BC∠=︒∥,EAC n EAF ABC n FBC∠=∠∠=∠AFB∠ABC AC DE BC∥DG ADE∠BG ABC∠DG BG40A∠=︒G∠100n︒20︒DE BC∥DAB B∠=∠EAC C∠=∠(2)如图2,过F 作,根据三角形的内角和定理得到,根据平行线的性质即可得到结论;(3)由结合外角的性质可得出,再根据角平分线的定义可得出,由此可得出,从而得出,根据的度数即可得出结论.【详解】(1)证明:过A 点作(过直线外一点有且只有一条直线与已知直线平行),,,,;(2)解:如图2,过F 作,,,,,,,,,,,,,;FH BC ∥180100ABC C BAC ∠+∠=︒-∠=︒DE BC ∥ADE A ABC ∠=∠+∠()12GDE A ABC ∠=∠+∠()12GFM A ABC GBF G ∠=∠+∠=∠+∠12G A ∠=∠A ∠DE BC ∥DAB B ∴∠=∠EAC C ∠=∠180DAB BAC EAC ∠+∠+∠=︒ 180BAC B C ∴∠+∠+∠=︒FH BC ∥80BAC ∠=︒ 180100ABC C BAC ∴∠+∠=︒-∠=︒DE BC ∥FH DE ∴ EAF HFA ∴∠=∠FH BC ∥CBF HFB ∴∠=∠AFB AFH BFH EAF CBF ∴∠=∠+∠=∠+∠DE BC ∥EAC C ∴∠=∠,EAC n EAF ABC n FBC ∠=∠∠=∠ 1,1EAF EAC CBF ABC n n∴∠=∠∠=∠()111100AFB EAF CBF EAC ABC C ABC n n n n︒∴∠=∠+∠=∠+∠=∠+∠=(3)解:,平分,平分,,,五、附加题29. 如图,直线,一副三角尺()按如图①放置,其中点在直线上,点,均在直线上,且平分.(1)求的度数.(2)如图②,若将三角形绕点以每秒度的速度逆时针方向旋转(的对应点分别为,),设旋转时间为(s )();①在旋转过程中,若边,求的值;②若在三角形绕点旋转的同时,三角形绕点以每秒度的速度顺时针方向旋转(的对应点为,)请求出当边时的值.【答案】(1);(2)①;②或.【解析】【分析】利用平行线的性质角平分线的定义即可解决问题.首先证明,由此构建方程即可解决问题.DE BC ∥,.ADE ACF A ABC GFM GDE ∴∠=∠=∠+∠∠=∠DG ADE ∠BG ABC ∠()111,222GDE ACF A ABC GBF ABC ∴∠=∠=∠+∠∠=∠()12GFM A ABC GBF G ∴∠=∠+∠=∠+∠114020.22G A ∴∠=∠=⨯︒=︒PQ MN ∥90,30,ABC CDE ACB BAC ∠∠∠∠==︒=︒=60,45DCE DEC ∠∠︒==︒E PQ B C MN CE ACN ∠DEQ ∠ABC B 4,A C F G t 045≤≤t ∥BG CD t ABC B CDE E 3,C D H K BG HK ∥t 60︒7.5s 4.5s 180s 7()1()2①30GBC DCN ∠=∠=︒分两种情形:如图中,当时,延长交于根据构建方程即可解决问题.如图中,当时,延长交于根据构建方程即可解决问题.【小问1详解】解:如图中,,,平分,,,,,;【小问2详解】解:如图中,,,,②③//BG HK KH MN .R GBN KRN ∠=∠1-③//BG HK HK MN .R 180GBN KRM ∠+∠=︒①30ACB ∠=︒ 180150ACN ACB ∴∠=︒-∠=︒CE ACN ∠1752ECN ACN =∠=∴∠︒PQ MN ∥180QEC ECN ∴∠+∠=︒105QEC ∠∴=︒1054560DEQ QEC CED ∴∠=∠-∠=︒-︒=︒①②//BG CD GBC DCN ∠=∠∴30DCN ECN ECD ∠∠∠=-=︒∵,,,在旋转过程中,若边,的值为;如图中,当时,延长交于,,,,,,;如图中,当时,延长交于,,,,,30GBC ∴∠=︒430t ∴=7.5t s ∴=∴∥BG CD t 7.5s ②③//BG HK KH MN R //BG HK ∵GBN KRN ∠∠∴=603,QEK t K QEK KRN ∠∠∠∠=︒+=+ 90(603)303KRN t t ∠∴=︒-︒+=︒-4303t t ∴=︒-4.5t s ∴=1-③//BG HK HK MN R //BG KR 180GBN KRM ∴∠+∠=︒603,QEK t EKR PEK KRM ∠∠∠∠∴=︒+=+120(180603)3KRM t t ∠∴=︒-︒-︒-=,综上所述,满足条件的的值为或.【点睛】本题考查了平行线的性质,掌握平行线的性质,旋转变换,角平分线的定义是解题的关键.30. 对于平面内的∠M 和∠N ,若存在一个常数k >0,使得∠M +k ∠N =360°,则称∠N 为∠M 的k 系补周角.如若∠M =90°,∠N =45°,则∠N 为∠M 的6系补周角.(1)若∠H =120°,则∠H 的4系补周角的度数为 °;(2)在平面内AB ∥CD ,点E 是平面内一点,连接BE ,DE ;①如图1,∠D =60°,若∠B 是∠E 的3系补周角,求∠B 的度数;②如图2,∠ABE 和∠CDE 均为钝角,点F 在点E 的右侧,且满足∠ABF =n ∠ABE ,∠CDF =n ∠CDE (其中n 为常数且n >1),点P 是∠ABE 角平分线BG 上的一个动点,在P 点运动过程中,请你确定一个点P 的位置,使得∠BPD 是∠F 的k 系补周角,并直接写出此时的k 值(用含n 的式子表示).【答案】(1)60 (2)①∠B =75°,②当BG 上的动点P 为∠CDE 的角平分线与BG 的交点时,满足∠BPD 是∠F 的k 系补周角,此时k =2n .【解析】【分析】(1)设∠H 的4系补周角的度数为x °,根据新定义列出方程求解便可;(2)①过E 作EF ∥AB ,得∠B +∠D =∠BED ,再由已知∠D =60°,∠B 是∠E 的3系补周角,列出∠B 的方程,求得∠B 便可;②根据k 系补周角的定义先确定P 点的位置,再结合∠ABF =n ∠ABE ,∠CDF =n ∠CDE 求解k 与n 的关系即可求解.【小问1详解】解:设∠H 的4系补周角的度数为x °,根据新定义得,120+4x =360,解得,x =60,43180t t ∴+=︒1807t s ∴=t 4.5s 180s 7∠H的4系补周角的度数为60°,故答案为:60;【小问2详解】解:①过E作EF∥AB,如图1,∴∠B=∠BEF,∵AB∥CD,∴EF∥CD,∠D=60°,∴∠D=∠DEF=60°,∵∠B+60°=∠BEF+∠DEF,即∠B+60°=∠BED,∵∠B是∠BED的3系补周角,∴∠BED=360°-3∠B,∴∠B+60°=360°-3∠B,∴∠B=75°;②当BG上的动点P为∠CDE的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,理解题意是解题的关键.。
2021北师大版七年级下册数学《期中考试卷》(附答案)

【答案】B
【解析】
【分析】
根据余角 定义即可求出∠B,然后根据补角的定义即可求出结论.
【详解】解:∵∠A与∠B互为余角,∠A=30°,
∴∠B=90°-∠A=60°
∴∠B的补角为180°-60°=120°
故选B.
【点睛】此题考查的是求一个角的余角和补角,掌握余角的定义和补角的定义是解决此题的关键.
考点:完全平方式.
6.若 , ,则 ()
A. B. C. D.
【答案】A
【解析】
【分析】
根据完全平方公式的变形解答即可.
【详解】∵ , ,
∴
即4=10+2xy
xy=-3
故选:A
【点睛】本题考查的是完全平方公式,掌握完全平方公式的各种变形是关键.
7.若a=( )﹣2,b=2﹣1,c=(﹣ )0,则a、b、c的大小关系是( )
9.如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()
A.a2+2ab+b2=(a+b)2
B.a2﹣2ab+b2=(a﹣b)2
C.4ab=(a+b)2﹣(a﹣b)2
D.(a+b)(a﹣b)=a2﹣b2
【答案】C
【解析】
【分析】
根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.
14.已知:2a=3,2b=2,22a﹣3b的值为________________
【答案】
【解析】
【分析】
直接利用同底数幂的除法运算法则将原式变形得出答案.
【详解】∴22a﹣3b= .故答案为 .
七年级数学下学期期中模拟试卷(一)(含解析) 苏科版-苏科版初中七年级全册数学试题

2015-2016学年某某省某某市丰县宋楼中学七年级(下)期中数学模拟试卷(一)一、精心选一选:(每题3分,共30分)1.计算2x3•3x2的结果是()A.5x5B.6x6C.5x6D.6x52.下列运算正确的是()A.(2a3﹣2a2)÷(2a2)=a B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣13.如图,已知AB∥CD,∠B=120°,∠D=150°,则∠O等于()A.50° B.60° C.80° D.90°4.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3 B.2,2,4 C.1,2,4 D.3,4,55.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.6.如图所示,直线a∥b,∠B=16°,∠C=50°,则∠A的度数为()A.24° B.26° C.34° D.36°7.已知关于x的二次三项式4x2﹣mx+25是完全平方式,则常数m的值为()A.10 B.±10 C.﹣20 D.±208.下列不是二元一次方程的是()①3m﹣2n=5 ②③④2x+z=3 ⑤3m+2n ⑥p+7=2.A.1个B.2个C.3个D.4个9.甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x千元,乙分得y千元,由题意得()A.B.C.D.10.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40° B.35° C.30° D.20°二、耐心填一填:(每空3分,共33分)11.把方程2x﹣y﹣3=0化成含y的式子表示x的形式:x=______.12.一种细菌的半径是0.000039m,用科学记数法表示这个数是______m.13.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2=______度.14.已知x2+y2=10,xy=2,则(x﹣y)2=______.15.已知x m=4,x2n=6,则x m+2n=______.16.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,则线段______是△ABC中AC边上的高.17.一个多边形的内角和是它外角和的2倍,则它的边数是______.18.方程2x n﹣3﹣y3m+n﹣2+3=0是二元一次方程,则m=______n=______.19.已知是方程组的解,则a﹣b=______.20.若(4x2+2x)(x+a)的运算结果中不含x2的项,则a的值为______.三、细心算一算:(本题共8题,共57分)21.计算题:(1)(﹣2015)0+22×|﹣1|×(﹣)﹣2(2)(x+y﹣2z)(x﹣y+2z)22.先化简,后求值:[(x﹣y)2+2y(y﹣x)﹣(x+y)(x﹣y)]÷(2y),其中x﹣y=2.23.分解因式:(1)2x2﹣8y2;(2)2x3y﹣4x2y2+2xy3.24.解下列方程组:(1)(2).25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是______.26.如图,已知AE平分∠BAC,过AE延长线一点F作FD⊥BC于D,若∠F=6°,∠C=30°,求∠B的度数.27.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?28.阅读下文,寻找规律:已知x≠1时,(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4…(1)(1﹣x)(______)=1﹣x8(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)=______.②(x﹣1)(x10+x9+…+x+1)=______.(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)=______.②1+2+22+23+24+…+22007=______.2015-2016学年某某省某某市丰县宋楼中学七年级(下)期中数学模拟试卷(一)参考答案与试题解析一、精心选一选:(每题3分,共30分)1.计算2x3•3x2的结果是()A.5x5B.6x6C.5x6D.6x5【考点】单项式乘单项式.【分析】原式利用单项式乘以单项式法则计算即可得到结果.【解答】解:2x3•3x2=6x5.故选D.2.下列运算正确的是()A.(2a3﹣2a2)÷(2a2)=a B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣1【考点】整式的除法;合并同类项;完全平方公式;平方差公式.【分析】分别利用整式的除法运算法则以及合并同类项法则和完全平方公式、平方差公式计算得出即可.【解答】解:A、(2a3﹣2a2)÷(2a2)=a﹣1,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(a+b)2=a2+b2+2ab,正确;D、(2a+1)(2a﹣1)=4a2﹣1,故此选项错误;故选:C.3.如图,已知AB∥CD,∠B=120°,∠D=150°,则∠O等于()A.50° B.60° C.80° D.90°【考点】平行线的性质.【分析】根据邻补角的定义求出∠B+∠O+∠D=360°,再根据已知角的度数即可求出答案.【解答】解:作OE∥AB,由AB∥CD,则OE∥CD,∴∠B+∠1=180°,∠D+∠2=180°;∴∠B+∠BOD+∠D=360°.又∵∠B=120°,∠D=150°,∴∠BOD=360°﹣∠B﹣∠D=90°.故选:D.4.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3 B.2,2,4 C.1,2,4 D.3,4,5【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+2=3,不能组成三角形,故A选项错误;B、2+2=4,不能组成三角形,故B选项错误;C、1+2<4,不能组成三角形,故C选项错误;D、3+4>5,能组成三角形,故D选项正确;故选:D.5.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据两角互余和题目所给的关系,列出方程组.【解答】解:设∠ABD和∠DBC的度数分别为x°、y°,由题意得,.故选B.6.如图所示,直线a∥b,∠B=16°,∠C=50°,则∠A的度数为()A.24° B.26° C.34° D.36°【考点】平行线的性质.【分析】先根据平行线的性质得∠1=∠C=50°,然后根据三角形外角性质计算∠A的度数.【解答】解:∵直线a∥b,∴∠1=∠C=50°,∵∠1=∠A+∠B,∴∠A=50°﹣16°=34°.故选C.7.已知关于x的二次三项式4x2﹣mx+25是完全平方式,则常数m的值为()A.10 B.±10 C.﹣20 D.±20【考点】完全平方式.【分析】符和a2+2ab+b2形式的式子叫完全平方式,要明确,常数项是一次项系数一半的平方,进而求出即可.【解答】解:∵关于x的二次三项式4x2﹣mx+25是完全平方式,∴﹣m=±20,即m=±20.故选:D.8.下列不是二元一次方程的是()①3m﹣2n=5 ②③④2x+z=3 ⑤3m+2n ⑥p+7=2.A.1个B.2个C.3个D.4个【考点】二元一次方程的定义.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:①3m﹣2n=5是二元一次方程;②是二元一次方程;③是分式方程;④2x+z=3是二元一次方程;⑤3m+2n是多项式;⑥p+7=2是一元一次方程;故选:C.9.甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x千元,乙分得y千元,由题意得()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设甲分得x千元,乙分得y千元,根据甲、乙二人的比例为3:2,甲分得的利润比乙分得的利润的2倍少3千元,列方程组即可.【解答】解:设甲分得x千元,乙分得y千元,由题意得,,故选C.10.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40° B.35° C.30° D.20°【考点】对顶角、邻补角;角平分线的定义.【分析】根据角平分线的定义求出∠AOC,再根据对顶角相等解答即可.【解答】解:∵OA平分∠EOC,∠EOC=70°,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°.故选B.二、耐心填一填:(每空3分,共33分)11.把方程2x﹣y﹣3=0化成含y的式子表示x的形式:x=.【考点】解二元一次方程.【分析】把方程2x﹣y﹣3=0写成用含y的式子表示x的形式,需要把含有x的项移到等号一边,其他的项移到另一边,然后合并同类项,系数化1就可用含y的式子表示x的形式:x=【解答】解:移项得2x=y+3系数化为1得:x=12.一种细菌的半径是0.000039m,用科学记数法表示这个数是×10﹣5m.【考点】科学记数法—表示较小的数.【分析】小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】×10﹣5m.×10﹣5m.13.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= 54 度.【考点】平行线的性质;角平分线的定义.【分析】两直线平行,同旁内角互补,可求出∠FEB,再根据角平分线的性质,可得到∠BEG,然后用两直线平行,内错角相等求出∠2.【解答】解:∵AB∥CD,∴∠BEF=180°﹣∠1=180°﹣72°=108°,∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.故答案为:54.14.已知x2+y2=10,xy=2,则(x﹣y)2= 6 .【考点】完全平方公式.【分析】利用(x﹣y)2=x2+y2﹣2xy求解即可.【解答】解:∵x2+y2=10,xy=2,∴(x﹣y)2=x2+y2﹣2xy=10﹣4=6.故答案为:6.15.已知x m=4,x2n=6,则x m+2n= 24 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,即可解答.【解答】解:x m+2n=x m•x2n=4×6=24,故答案为:24.16.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,则线段BE 是△ABC中AC边上的高.【考点】三角形的角平分线、中线和高.【分析】根据过三角形的一个顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:∵BE⊥AC,∴△ABC中AC边上的高是BE.故答案为:BE17.一个多边形的内角和是它外角和的2倍,则它的边数是 6 .【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及外角和定理列出方程,然后求解即可.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.故答案为:6.18.方程2x n﹣3﹣y3m+n﹣2+3=0是二元一次方程,则m= ﹣n= 4 .【考点】二元一次方程的定义.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求常数m、n的值.【解答】解:根据二元一次方程的定义,得,解得,故答案为:﹣,4.19.已知是方程组的解,则a﹣b= ﹣1 .【考点】二元一次方程组的解.【分析】根据方程组解的定义,把解代入方程组得到关于a、b的方程,然后求解得到a、b 的值,再代入代数式进行计算即可得解.【解答】解:根据题意得,,解得,所以a﹣b=2﹣3=﹣1.故答案为:﹣1.20.若(4x2+2x)(x+a)的运算结果中不含x2的项,则a的值为﹣.【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算,根据结果不含x2的项,求出a的值即可.【解答】解:原式=4x3+(4a+2)x2+2ax,由结果中不含x2的项,得到4a+2=0,解得:a=﹣.故答案为:﹣.三、细心算一算:(本题共8题,共57分)21.计算题:(1)(﹣2015)0+22×|﹣1|×(﹣)﹣2(2)(x+y﹣2z)(x﹣y+2z)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零次幂、乘方定义、绝对值性质、负整数指数幂计算,再计算乘法可得;(2)将原式变形运用平方差公式计算,再根据完全平方公式计算即可.【解答】解:(1)原式=1+4×1×9=1+36=37;(2)原式=[x+(y﹣2z)][x﹣(y﹣2z)]=x2﹣(y﹣2z)2=x2﹣y2+4yz﹣4z2;22.先化简,后求值:[(x﹣y)2+2y(y﹣x)﹣(x+y)(x﹣y)]÷(2y),其中x﹣y=2.【考点】整式的混合运算—化简求值.【分析】原式中括号中利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式乘以单项式法则计算得到最简结果,把x﹣y=2代入计算即可求出值.【解答】解:∵x﹣y=2,∴原式=(x2﹣2xy+y2+2y2﹣2xy﹣x2+y2)÷2y=(﹣4xy+4y2)÷2y=﹣2x+2y=﹣2(x﹣y)=﹣4.23.分解因式:(1)2x2﹣8y2;(2)2x3y﹣4x2y2+2xy3.【考点】提公因式法与公式法的综合运用.【分析】(1)原式提取2,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=2(x2﹣4y2)=2(x+2y)(x﹣2y);(2)原式=2xy(x2﹣2xy+y2)=2xy(x﹣y)2.24.解下列方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)利用①×3﹣②可解出y,再把y的值代入①可求出x,从而得到方程组的解;(2)利用①×3+②×2得9x+10x=48+66,可求出x,再把x的值代入①可求出y,从而得到方程组的解.【解答】解:(1),①×3﹣②得5y=﹣5,解得y=﹣1,把y=﹣1代入①得x+1=3,解得x=2,所以方程组的解为;(2),①×3+②×2得9x+10x=48+66,解得x=6,把x=6代入①得18+4y=16,解得y=﹣,所以方程组的解为.25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是平行且相等.【考点】作图-平移变换.【分析】(1)利用平移规律得出平移后对应点位置进而求出即可;(2)利用平移的性质得出两条线段之间的关系.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)连接AA′,CC′,则这两条线段之间的关系是:平行且相等.故答案为:平行且相等.26.如图,已知AE平分∠BAC,过AE延长线一点F作FD⊥BC于D,若∠F=6°,∠C=30°,求∠B的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】由FD⊥BC以及∠F=6°利用三角形内角和定理即可求出∠DEF的度数,再利用三角形的外角性质即可求出∠CAE的度数,结合角平分线的性质以及三角形内角和定理即可得出∠B的度数.【解答】解:∵FD⊥BC,∠F=6°,∴∠DEF=90°﹣6°=84°,∴∠CAE=∠DEF﹣∠C=84°﹣30°=54°,∵AE平分∠BAC,∴∠BAC=2∠CAD=108°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣108°﹣30°=52°.27.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?【考点】二元一次方程组的应用.【分析】本题可以通过看图找出两个等量关系:长方形的长+宽=50cm,长方形的长×2=长+宽×4,据此可以设未知数列方程组求解.【解答】解:设每块长方形的长是xcm,宽是ycm,根据题意得解得答:长是40cm,宽是10cm.28.阅读下文,寻找规律:已知x≠1时,(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4…(1)(1﹣x)(1+x+x2+x3+x4+x5+x6+x7)=1﹣x8(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)= 1﹣x n+1.②(x﹣1)(x10+x9+…+x+1)= x11﹣1 .(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)= ﹣63 .②1+2+22+23+24+…+22007= 22008﹣1 .【考点】平方差公式.【分析】(1)仿照已知等式得到一般性规律,写出即可;(2)利用得出的规律化简两式即可;(3)利用得出的规律化简两式即可.【解答】解:(1)(1﹣x)(1+x+x2+x3+x4+x5+x6+x7)=1﹣x8;(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)=1﹣x n+1;②(x﹣1)(x10+x9+…+x+1)=x11﹣1;(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)=1﹣26=﹣63;②1+2+22+23+24+…+22007=﹣(1﹣2)(1+2+22+23+24+…+22007)=22008﹣1.故答案为:(1)1+x+x2+x3+x4+x5+x6+x7;(2)①1﹣x n+1;②x11﹣1;(3)①﹣63;②22008﹣1.。
重庆市第八中学校2023-2024学年七年级下学期期中考试数学试题 (解析版)

重庆八中2023-2024学年度(下)半期考试初一年级数学试题A 卷(100分)一、选择题(本大题共10小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应选项的代号除黑.1.的倒数是( )A. B. C. 2 D. 【答案】C【解析】【分析】本题主要考查了倒数,根据倒数得定义求解即可.【详解】解:的倒数是2,故选:C .2. 下列运算正确的是( )A. B. C. D. 【答案】C【解析】【分析】本题考查了单项式乘以单项式,同底数幂的乘法,根据以上运算法则进行计算即可求解.【详解】解:A. ,故该选项不正确,不符合题意;B. ,故该选项不正确,不符合题意;C. ,故该选项正确,符合题意;D. ,故该选项不正确,不符合题意;故选:C .3. 已知球的表面积与它的半径之间的关系式是,其中随的变化而变化,则在这个公式中变量是( )A. , B. , C. D. ,,【答案】B【解析】121212-2-12325a b ab-⋅=428a a a ⋅=224326b b b ⋅=222222a b ab a b ⋅=326a b ab -⋅=426a a a ⋅=224326b b b ⋅=322322a b ab a b ⋅=()2cm S ()cm R 24S Rπ=S R πR S R S S πR【分析】此题主要考查了常量和变量,关键是掌握定义.根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可直接得到答案.【详解】解:中,常量是4,,变量是、,故选:B .4. 已知一个三角形的两边长分别为4cm ,7cm ,则它的第三边的长可能是( )A. 3cmB. 8cmC. 11cmD. 12cm【答案】B【解析】【分析】本题考查三角形的三边关系,熟练掌握三角形两边之和大于第三边,角形的两边差小于第三边是解题的关键.根据三角形两边之和大于第三边,角形的两边差小于第三边,结合选项求解即可.【详解】解:设三角形的第三条边为,,三角形的第三条边长可能是,故选:B .5. 如图是雨伞在开合过程中某时刻的截面图,伞骨,点D ,E 分别是,的中点,,是连接弹簧和伞骨的支架,且,已知弹簧M 在向上滑动的过程中,总有,其判定依据是( )A.B. C. D. 【答案】C【解析】【分析】根据全等三角形判定的“”定理即可证得.【详解】解:∵,点D ,E 分别是,的中点,∴,在和中,24S R π=πS R cm x 311x << ∴8cm AB AC =AB AC DM EM =DM EM ADM AEM △△≌ASA AAS SSS SASSSS ADM AEM △△≌AB AC =AB AC AD AE =ADM △AEM △,∴,故选:C .【点睛】此题主要考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题关键.6. 如图是将一个小长方体铁块固定一个大长方体容器的底部的截面图,现均匀地向这个容器中注水,最后把容器注满,在注水的过程中大长方体水面的高度随时间变化的函数图像大致是( )A. B.C. D.【答案】B【解析】【分析】本题考查了函数的图像,解题的关键数形结合,容器下面一段横截面积小,水位上升快,上面一段横截面积大,水位上升慢,即图像为两段线段,先陡后平.【详解】解:在注水过程中,容器下面一段横截面积小,水位上升快,上面一段横截面积大,水位上升慢,即图像为两段线段,先陡后平,故选:B .7. 若关于的二次三项式是一个完全平方式,那么的值是( )A. B. C. D. 或【答案】D AD AE AM AM DM EM =⎧⎪=⎨⎪=⎩()SSS ADM AEM ≌ h t x ()2216x k x +-+k 6-66±106-【解析】【分析】本题主要考查了完全平方公式,熟练掌握完全平方式是解题的关键.根据和都是一个完全平方式解答即可.【详解】解:和它们都是完全平方式,或,解得:或,故选:D .8. 某校社团课28名学生制作长方体礼品盒,每人每小时可做60个侧面或90个底面,一个礼品盒要一个侧面和两个底面组成,为了使每小时制作的成品刚好配套,应该分配多少名学生做侧面,多少名学生做底面设分配x 名学生做侧面,则可列方程为( )A. B. C.D. 【答案】D【解析】【分析】本题考查了一元一次方程的应用,设分配x 名学生做侧面,根据配套问题, 一个礼品盒要一个侧面和两个底面组成,列出方程,即可求解.【详解】解:设分配x 名学生做侧面,则可列方程为故选:D .9. 如果关于x 的多项式的结果不含项,则m 的值为( )A. 0B. 4C.D. 1【答案】C【解析】【分析】本题主要考查了多项式乘法中的无关型问题,根据多项式乘以多项式的计算法则求出的结果,再根据不含项,即含项的系数为0进行求解即可.【详解】解:2816x x ++2816x x -+ ()224816x x x +=++()226481x x x =-+-∴k -=2828k -=-10k =6k=-()6029028x x =⨯-()609028x x =-()906028x x =-()2609028x x ⨯=-()2609028x x ⨯=-()()2144x x mx +-+2x 14()()2144x x mx +-+2x 2x ()()2144x x mx +-+3224444x mx x x mx =-++-+,∵关于x 的多项式的结果不含项,∴,∴,故选:C .10. 如图,在和中,再添两个条件不能使和全等的是( )A. ,B. ,C. ,D. ,【答案】B【解析】【分析】本题考查了三角形全等的判定方法,根据全等三角形的判定方法分别进行判定即可.【详解】解:A 、∵,∴,又∵,∴,故A 选项不符合题意;B 、 ∵,,,不能根据判定两三角形全等,故B 选项符合题意;C 、∵,,又,∴,故C 选项不符合题意;D 、 ∵,∴,又∵,,∴,故D 选项不符合题意;故选:B .()()3241444x m x m x =--+-+()()2144x x mx +-+2x ()410m --=14m =ABC BDE ABC BDE AB BD =AE DC=AB BD =DE AC =BE BC =E C∠=∠EAF CDF ∠=∠DE AC=AB BD =AE DC=BE BC =B B ∠=∠ABC DBE ≌△△()SAS AB BD =DE AC =B B ∠=∠SSA BE BC =E C ∠=∠B B ∠=∠ABC DBE ≌△△()ASA EAF CDF ∠=∠BAC BDE ∠=∠DE AC =B B ∠=∠()AAS ABC DBE ≌二、填空题(本大题共4小题,每小题4分,共16分)请将每小题的答案直接填写在答题卡中对应的横线上.11. 国家统计局最新数据显示,2024年一季度我国国内生产总值(GDP )为亿元.数用科学记数法可以表示为______.【答案】【解析】【分析】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.科学记数法的表现形式为的形式,其中,为整数,确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同,当原数绝对值大于等于时,是正整数,当原数绝对值小于时是负整数;由此进行求解即可得到答案.【详解】解:,故答案为:.12. 已知,,则______.【答案】【解析】【分析】本题考查同底数幂除法,同底数幂的除法法则:底数不变,指数相减.根据同底数幂的除法法则求解.【详解】解:∵,,∴.故答案为:.13. 如图所示的网格是正方形网格,点,,,均落在格点上,则的度数为______.【答案】【解析】的28499728499752.8499710⨯10n a ⨯110a ≤<n n a n 10n 1n =⨯52.824994997810752.8499710⨯56m =53n =5m n -=256m =53n =5632m n -=÷=2A B C D DCB ACB ∠+∠90︒【分析】本题网格型问题,考查了三角形全等的性质和判定,本题构建全等三角形是关键.证明,得,根据同角的余角相等可得结论.【详解】解:,,,,,,故答案为:.14. 已知一个长方形的周长为,长与宽的平方和为,则该长方形的面积为______.【答案】####【解析】【分析】本题考查了完全平方公式的应用,解题的关键是熟练掌握完全平方公式.设长方形的长、宽分别为、,则,,根据完全平方公式即可求解.【详解】解:设长方形的长、宽分别为、,则,,,,即,解得;,该长方形的面积为,故答案为:.三、解答题(15题共16分每小题4分,16题8分,17题10分,18题10分,共44分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.15. 计算:()SAS DCE ACB ≌DCE ACB ∠=∠ 3AB DE ==5BC EC ==90E ABC ∠=∠=︒∴()SAS DCE ACB ≌∴DCE ACB ∠=∠∴90DCB ACB DCB DCE BCE ∠+∠=∠+∠=∠=︒90︒12251121525.5a b 2225a b +=()212a b +=a b 2225a b +=()212a b +=∴6a b +=∴()a b a b ab +=++=222226ab +=25236112ab =∴112112(1)(2)(3) (4)【答案】(1)(2)(3)(4)【解析】【分析】本题考查了有理数的混合运算,整式的混合运算,解题的关键是熟练的掌握整式的混合运算法则.(1)根据有理数的混合运算法则计算即可;(2)根据平方差公式简算即可;(3)根据整式的乘法法则计算即可;(4)根据积的乘方,平方差和完全平方公式即可求解.【小问1详解】解:小问2详解】【小问3详解】【()2031220263π-⎛⎫++- ⎪⎝⎭2202620252027-⨯()2223a b a b-()()22m n m n -+0132362a b a b -42242m m n n -+()2031220263π-⎛⎫++- ⎪⎝⎭819=+-0=2202620252027-⨯()()220262026120261=--⨯+()22202620261=--1=()2223a b a b -【小问4详解】16. 先化简,再求值:,其中.【答案】,【解析】【分析】本题考查了整式的化简,代数式求值,绝对值的非负性.解题的关键在于对知识的熟练掌握与正确的运算.先利用平方差公式和完全平方公式计算,然后合并同类项,然后计算除法,利用非负数的性质求得a 、b 的值,最后代入数值求解即可.【详解】解:原式∵,且,∴,∴,∴,将,代入上式得222232a b a a b b =⋅-⋅32362a b a b =-()()22m n m n -+()()2m n m n ⎡⎤=-+⎣⎦()222m n =-42242m m n n -=+()()()()223363a b a b a b b ⎡⎤+--+÷-⎣⎦()2120a b +++=533a b +233-()()()()223363a b a b a b b ⎡⎤=+--+÷-⎣⎦()()()2222673623a ab b a ab b b ⎡⎤=+--++÷-⎣⎦()()2593ab b b =--÷-533a b =+()2120a b +++=10a +≥()220b +≥10a +=()220b +=10a +=20b +=1a =-2b =-1a =-2b =-原式.17. 如图,在中,,,过点C 作,连接.(1)基本尺规作图:作,交线段于点F (保留作图痕迹);(2)求证:.解:∵∴___①___(___②___)∵∴在和中∴∴(___④___)【答案】(1)见解析 (2)①;②两直线平行,同帝内角互补;③;④全等三角形的对应边相等【解析】【分析】(1)根据运用作相等角的作图方法画图即可;(2)根据平行线的性质可推出①及②,再根据全等三角形的判定定理和性质可得③④.【小问1详解】()()51323=⨯-+⨯-563=--233=-ABC AB AC =90BAC ∠=︒CE AB ∥AE ABF EAC ∠=∠AC BF AE =CE AB∥90BAC ∠=︒18090ACE BAC BAF∠=︒-∠=︒=∠BAF △ACE △()______BA ACBAF ACE ⎧⎪=⎨⎪∠=∠⎩③()ASA BAF ACE ≌BF AE =180BAC ACE ∠+∠=︒ABF EAC ∠=∠解:如图:即为所求【小问2详解】解:∵∴(两直线平行,同帝内角互补)∵∴在和中∴∴(全等三角形的对应边相等)18. 在中,D 是的中点,;(1)证明:;(2)若,平分,求的度数.【答案】(1)证明见解析(2)【解析】【分析】本题考查了全等三角形的性质与判定,平行线的性质,角平分线的定义,(1)根据平行线的性质可得,,结合,证明,根据全等三角形的性质,即可得证;BAF ∠CE AB∥180BAC ACE ∠+∠=︒90BAC ∠=︒18090ACE BAC BAF∠=︒-∠=︒=∠BAF △ACE △ABF EACBA ACBAF ACE∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BAF ACE ≌BF AE =ABC BC AC BF ∥DE DF ==110BAC ∠︒DB ABF ∠C ∠35︒C FBD ∠=∠F CED ∠=∠CD BD =()AAS CDE BDF ≌(2)根据平行线的性质得出,进而根据平分,即可求解.【小问1详解】证明:∵∴,∵D 是中点∴在和中∴∴【小问2详解】解:∵∴,∵∴∵平分∴B 卷(50分)四、选择题(本大题共2小题,每小题4分,共8分)请将每小题的答案填涂在答题卡中对应的位置.19. 定义新运算:,例如:,若,,,则,的大小关系为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了整式的混合运算,解答的关键是熟练掌握相应的运算法则.先根据新定义的运算求出的值,再比较即可.【详解】解:18070ABF BAC ∠=-∠=︒︒DB ABF ∠AC BF∥C FBD ∠=∠F CED∠=∠BC CD BD=CDE BDF V CED F C FBDCD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS CDE BDF ≌DE DF=AC BF∥C FBD ∠=∠180BAC ABF ∠+∠=︒=110BAC ∠︒18070ABF BAC ∠=-∠=︒︒DB ABF ∠1352C FBD ABF ∠=∠=∠=︒()*a b a a b =+()1*21122=⨯+=1n >*A m mn =*B mn m =A B A B>A B <A B ≤A B ≥A B -()22*A m mn m m mn m m n ==+=+,故选:C .20. (多选)如图,的两条角平分线、相交于点D ,且,过点A 作交的延长线于点M .则下列结论中正确的有( )A. 若,则B.C.D. 【答案】ACD【解析】【分析】本题考查了角平分线的定义,三角形内角和定理,三角形的外角性质.根据角平分线的定义,三角形内角和定理,三角形的外角性质即可求解.【详解】解:A.∵∴∵是的平分线,是的平分线,∴∴又∴()222*B mn m mn mn m m n m n==+=+∴()222221A B m m n m n -=-=- 1n >∴210n -< 20m ≥∴()2210A B m n -=-≤∴A B ≤ABC CF AE 90BAC ∠=︒AM AE ⊥CF =60B ∠︒BFD AEC∠=∠AC AF EC =+2180ADC B ∠-∠=︒12M B ∠=∠90,60BAC B ∠=︒∠=︒30ACB ∠=︒CF ACB ∠AE BAC ∠1115,4522BCF ACB BAE BAC ∠=∠=︒∠=∠=︒6045105AEC B BAE ∠=∠+∠=︒+︒=︒180B BFC BCF ∠+∠+∠=︒1801801560105BFC BCF B ∠=︒-∠-∠=︒-︒-︒=︒∴故选项A 正确;B.无法找出三者关系,故选项B 错误;C.∵是的平分线,是的平分线,∴∴∴∴,故选项C 正确;D.∵∴∵∴,故D 正确;故选:ACD五、填空题(本大题共3小题,每小题4分,共12分)请将每小题的答案直接填写在答题卡中对应的横线上.21. 关于的一元一次方程的解为整数,则所有整数的和为______.【答案】【解析】【分析】此题考查了一元一次方程的解,方程去分母,去括号,移项合并,把的系数化为1,表示出方程的解,由方程的解为整数,确定出整数的值即可.【详解】解:BFC AEC ∠=∠AC AF EC 、、CF ACB ∠AE BAC ∠11,22DAC BAC DCA BCA ∠=∠∠=∠()111222DAC DCA BAC BCA BAC BCA ∠+∠=∠+∠=∠+∠()()11801802ADC DAC DCA BAC BCA ∠=︒-∠+∠=︒-∠+∠()11801802B =︒-︒-∠1902B =︒+∠2180ADC B ∠-∠=︒AM AE⊥90ADC M∠=︒+∠1902ADC B ∠=︒+∠12M B ∠=∠x 132kx x -+=k 8x k 132kx x -+=kx x-+=162kx x -=-25()k x -=-25x k =--52解为整数,或或或,则所有整数的和为,故答案为:.22. 若,,则______.【答案】3【解析】【分析】本题主要考查了完全平方公式的应用、非负数的性质、乘方等知识点,根据题意推出,求得a 、c 的值成为解题的关键.由可得,再代入可得,根据非负数的性质可得,最后代入即可解答.【详解】解:∵,∴,∴,∴,即,∴.故答案为3.23. 在中,于E ,于D ,交于F ,平分交延长线于M ,连接,.若,,,则______.∴3k =7k =3k =-1k =k ++-=3713886a b -=22100ab c c +-+=c a =()()22310a c -+-=6a b -=6b a =-22100ab c c +-+=()()22310a c -+-=3,1a c ==c a 6a b -=6b a =-()262100a a c c -+-+=2262100a a c c -+-+=2269210a a c c -++-+=()()22310a c -+-=3010a c -=-=,31a c ==,133c a ==ABC CE AB ⊥AD BC ⊥CE AD EM BEC ∠AD BM CM 180DFC ABM ∠+∠=︒52BE AE =5AEF S =△EMC S =【答案】【解析】【分析】本题考查了全等三角形的判定和性质,根据题意证明,,,得出,.进而根据得出,,根据得出,根据,即可求解.【详解】解:∵,∴,∵平分∴,又∵∴,∴∵于E ,于D ,∴,,∴又∵∴∵,,∴,.∵,253BEM EFM △≌△AEF CEB ≌BE EF =AE EC =5AEF S =△5AE =103BEM EFM S S ==△△23FFM FMC S EF S FC ==△△352MFC EFM S S ==△△EMC EFM FMC S S S =+△△△180DFC ABM ∠+∠=︒180DFC DFE ∠+∠=︒MFE MBE ∠=∠EM BEC∠BME FME ∠=∠ME ME=BEM EFM △≌△()SAS EB EF=CE AB ⊥AD BC ⊥EAF ABC ECB ABC ∠+∠=∠+∠90AEF CEB ∠=∠=︒EAF ECB∠=∠EB EF=()AAS AEF CEB ≌BEM EFM △≌△AEF CEB ≌BE EF =AE EC =52BE AE =∴.∴.∴.∴,.∴.∵,∴.∵,∴,∴.故答案为:.六、解答题(24题10分,25题10分,26题10分,共30分)解答应写出必要的文字说明、证明过程或演算步骤,请将解答过程书写在答题卡中对应的位置上.24. 已知甲、乙两地相距10千米,小诚从乙地出发,匀速骑行至甲地,在甲地休息一段时间后,便以原速度的匀速返回乙地.小诚从乙地出发10分钟后,小勤从甲地出发至乙地,小勤先匀速步行至两地中点,再从中点匀速慢跑至乙地,最后两人同时到达乙地.在运动过程中,小诚和小勤距甲地的距离y (千米)与小勤出发的时间x (小时)的关系如图所示,请结合图象信息解答下列问题:(1)小勤出发时,小诚骑行路程为______千米,小勤出发______小时后步行至甲、乙中点,小诚从乙地25BE AE EF ==1125225AEF S AE EF AE AE =⋅=⋅=△5AE =2BE EF ==5AE EC ==523FC EC EF =-=-=52AEM AEF FFM BEM BEM S AE S S S BE S +===△△△△△103BEM EFM S S ==△△23FFM FMC S EF S FC ==△△352MFC EFM S S ==△△1025533EMC EFM FMC S S S =+=+=△△△25345到甲地的骑行速度为______千米/小时,小勤的步行速度为______千米/小时;(2)写出小勤距甲地的距离y (千米)和x (小时)的关系式;(3)小勤出发多少小时后,两人在小勤未到达甲、乙中点前相距500米.【答案】(1);1;;(2) (3)或【解析】【分析】本题考查了根据函数图象获取信息,一元一次方程的应用;(1)根据函数图象小诚骑行路程为 千米,小勤先匀速步行至两地中点,再从中点匀速慢跑至乙地,小诚从乙地出发10分钟后,小勤从甲地出发至乙地,可得小诚的速度,小勤1小时步行千米,可得小勤的步行速度,即可求解;(2)根据(1)的分析,根据路程等于速度乘以时间,分段写出关系式,即可求解;(3)设小勤出发t 小时后,两人在小勤未到达甲、乙中点前相距米.分量种情况讨论,结合题意列出一元一次方程,即可求解.【小问1详解】解:小勤出发时,小诚骑行路程为 千米,小勤先匀速步行至两地中点,再从中点匀速慢跑至乙地,根据函数图象可得,小勤出发小时后步行至甲、乙中点,小诚从乙地出发10分钟后,小勤从甲地出发至乙地,千米/小时,小勤1小时步行千米,则千米/小时;∴小诚从乙地到甲地的骑行速度为千米/小时,小勤的步行速度为千米/小时;故答案为:;1;;.【小问2详解】解:小诚从乙地出发,匀速骑行至甲地,在甲地休息一段时间后,便以原速度的匀速返回乙地.由(1)可得返回的速度为千米/小时,2.5155()501116116x x y x x ⎧≤≤⎪=⎨⎛⎫-<≤ ⎪⎪⎝⎭⎩720252.55500107.5 2.5-= 2.51107.5151060-=5551=1552.515545415125⨯=则所用时间为/小时,∵两人同时到达乙地.∴所用时间为∴当时,;当时,小勤的速度为:千米/小时,∴∴【小问3详解】设小勤出发t 小时后,两人在小勤未到达甲、乙中点前相距米.或解得:或答:小诚出发或小时后,两人在小勤未到达甲、乙中点前相距米.25. 我国南宋时期有一位杰出的数学家杨辉,如图所示的图表是他在《详解九章算术》中记载的“杨辉三角”.第一行第二行 各项系数和为第三行 各项系数和为第四行 各项系数和为……………………此图揭示了(n 为非负整数)的展开式的项数及各项系数的有关规律,请根据上述规律,解决以下问题:(1)多项式展开式共有______项,第二项的系数为______,各项系数和为______;105126=511166+=01x ≤≤5y x =1116x <≤510266÷÷=()56161y x x =+-=-()501116116x x y x x ⎧≤≤⎪=⎨⎛⎫-<≤ ⎪⎪⎝⎭⎩5002.5150.5510t t +++= 2.5150.5510t t +-+=720t =25t =720255001()01a b +=11()1a b a b +=+112+=121()2222a b a ab b +=++1214++=1331()3322333a b a a b ab b +=+++13318+++=()n a b +()7a b +(2)如图,在“杨辉三角”中,选取部分数1,3,6,……,记,,……请完成下列问题:①计算;②计算;③请直接写出的值.【答案】(1)8,7,128(2)①357;②;③4051【解析】【分析】本题考查数字变化类,多项式的乘法;(1)根据“杨辉三角”中第三行中的数据,将展开后,各项的系数和所呈现的规律进行计算即可.(2)①根据规律得出,进而将代入进行计算即可求解;②将已知式子裂项为,即可求解;③根据进行计算即可求解.【小问1详解】根据“杨辉三角”可知,第2行,展开后,各项系数和为,第3行,展开后,各项的系数和为,第4行,展开后,各项的系数和为,的11a =23a =36a =326a a +1250111a a a ++⋅⋅⋅+20262024a a -10051()n a b +()12n n n a +=3,26n =125011122212235051a a a ++⋅⋅⋅+=++⋅⋅⋅+⨯⨯⨯()()2026202412026202612024202412a a -=⨯+-⨯+⎡⎤⎣⎦1()a b +122()a b +212142++==3()a b +3133182+++==第5行,展开后,各项系数和为,第6行,展开后,各项的系数和为,第7行,展开后,各项的系数依次为、、、、、、,各项的系数和为第8行, 展开后,各项的系数依次为、、、、、、、各项的系数和为展开后,各项的系数和为,∴多项式展开式共有项,第二项的系数为,各项系数和为128;故答案为:8,7,128.【小问2详解】①由题意得:、、∴∴②由题意得:、、∴∴的4()a b +414641162++++==5()a b +515101051322+++++==6()a b +161520156161615201561642++++++==()7a b +17213535217171721353521711282+++++++==()n a b +2n ()7a b +8711a =2123a =+=31236a =++=()1122n n n a n +=++⋅⋅⋅+=()()32633126261635135722a a ⨯+⨯++=+=+=11a =2123a =+=31236a =++=()1122n n n a n +=++⋅⋅⋅+=125011122212235051a a a ++⋅⋅⋅+=++⋅⋅⋅+⨯⨯⨯111212235051⎛⎫=++⋅⋅⋅+ ⎪⨯⨯⨯⎝⎭111111212235051⎛⎫=-+-+⋅⋅⋅+- ⎪⎝⎭12151⎛⎫=- ⎪⎝⎭③26. 已知,,.(1)如图1,求证:;(2)如图2,若,点,分别在,上,连接,过点作于点,过点作交的延长线于点,连接,求证:;(3)如图3,若,延长和相交于点,过点作于点,若,,求的长.【答案】(1)证明见解析(2)证明见解析(3)【解析】【分析】(1)根据题意证明,根据全等三角形性质即可解答;(2)过点作于点,延长交于点,证明,得到,,再证明得到,即可求解;(3)过点作于点,证明得到,,,推出,再证明,得到,,推出的50251=⨯10051=()()2026202412026202612024202412a a -=⨯+-⨯+⎡⎤⎣⎦()22120262026202420242=+--()120262024222=+⨯+⎡⎤⎣⎦4051=AB AC =AD AE =BAC DAE ∠=∠BD CE =90BAC ∠=︒D E AB AC BE D DH BE ⊥H A AF BC ∥HD F BF BF DF BE +=90BAC ∠=︒BD EC F A AQ BD ⊥Q 2.4FC =7.6BF =BQ 2.6BQ =BAD CAE ≌△△A AM DE ⊥M AM BE N AEN ADF ≌ EN DF =AN AF =BAN BAF ≌ BN BF =A AG EF ⊥G ABD ACE △△≌BD CE =ABD ACE ∠=∠ABD ACE S S = AQ AG =AQB AGC ≌ BQ CG =BAQ CAG ∠=∠,可证明四边形为正方形,得到,设,则,根据列方程,即可求解.【小问1详解】证明:,,,,,,;【小问2详解】如图2,过点作于点,延长交于点,,,,,,,,,,,,,,∵,即,在和中,90QAG ∠=︒AGFQ FG FQ =BQ CG x ==2.4FQ FG CF CG x ==+=+BF BQ FQ =+ BAC DAE ∠=∠∴BAD DAC CAE DAC ∠+∠=∠+∠∴BAD CAE ∠=∠ AB AC =AD AE =∴()SAS BAD CAE ≌∴BD CE =A AM DE ⊥M AM BE N 90BAC ∠=︒AB AC =∴45ABC ACB ∠=∠=︒ 90BAC DAE ∠=∠=︒AD AE =AM DE ⊥∴45DAN EAN ∠=∠=︒ AF BC ∥∴45DAF ABC ∠=∠=︒∴45EAN DAF ∠=∠=︒ 90DHB BAE ∠=∠=︒DBH EBA ∠=∠∴BDH BEA ∠=∠BDH ADF∠=∠∴ADF BEA ∠=∠ADF AEN ∠=∠AEN △ADF △,,,,在和中,,,,,,,,即;【小问3详解】如图3,过点作于点,,,,在和中,,,,,,,EAN DAF AE ADAEN ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AEN ADF ≌∴EN DF =AN AF =BAN BAF △45AN AF BAN BAF AB AB =⎧⎪∠=∠=︒⎨⎪=⎩∴()SAS BAN BAF ≌∴BN BF = BE BN EN =+BN BF =EN DF =∴BE BF DF =+BF DF BE +=A AG EF ⊥G 90BAD DAC ∠+∠=︒90CAE DAC ∠+∠=︒∴BAD EAC ∠=∠ABD △ACE △AB AC BAD EAC AD AE =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABD ACE ≌∴BD CE =ABD ACE ∠=∠ABD ACE S S = ∴1122BD AQ CE AG =,在和中,,,,,,,即,,,四边形为矩形,,四边形为正方形,,设,则,,,,.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,正方形的判定与性质,平行线的性质,解题的关键是灵活运用这些知识.∴AQ AG =AQB AGC AQ AG AB AC =⎧⎨=⎩∴()HL AQB AGC ≌∴BQ CG =BAQ CAG ∠=∠ 90BAQ QAC ∠+∠=︒∴90CAG QAC ∠+∠=︒90QAG ∠=︒ AQ BF ⊥AG EF ⊥∴AGFQ AQ AG =∴AGFQ ∴FG FQ =BQ CG x == 2.4FQ FG CF CG x ==+=+ BF BQ FQ =+∴7.6 2.4x x =++∴ 2.6x =∴ 2.6BQ =。
天津市河西区2023-2024学年七年级下学期期中数学试题(含答案)

七年级数学(一)试卷满分100分,考试时间90分钟一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在平面直角坐标系中,点()3,7-所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 如果一个正方形的面积等于2,则这个正方形的边长为( )A. 1B. 1.5C.D.3. 的值在( )A. 1和2 之间B. 2和3之间C. 3和4之间D. 4和5之间4. 如图,街道AB 与CD 平行,拐角0137ABC ∠=,则拐角BCD ∠的度数为()A. 43°B. 53°C. 107°D. 137°5. 如果点A 的坐标为()4,5-,则点A 到x 轴的距离为( )A. 3B. 4C. 5D. 6. 下列命题是真命题的为( )A. 分数都是有理数 B. 最小的正实数是1 C. 无限小数都是无理数 D. 最小的整数是07. 下列说法正确的是( )A.B.3.14π-的绝对值是3.14π-C. 若26x =,则x =D. 若36x =,则x =8. 已知250a b c +-=,且1a =,则用含有b 的式子来表示c ,正确的为( )A. 251b c -=-B. 251b c -=C. 512c b -=D. 125b c +=9. 把一副三角板放在同一水平桌面上,摆放成如图所示的形状使两个直角顶点重合,两条斜边平行,则1∠的度数是()A. 110°B. 90°C. 75°D. 45°10. 三角形ABC 三个顶点的坐标分别为()()()2,1,1,3,4,5A B C ---,则三角形ABC 的面积为( )A. 3B. 4C. 6D. 8二、填空题:本大题共6小题,每小题3分,共18分.请将答案直接填在题中横线上.11. 计算___________.12. 若制作一个体积为318m 的正方体形状的包装箱,则这个包装箱的棱长应为____________m .13. 请你任意写出一个点(),x y ,使得,x y 满足二元一次方程5x y -=,这个点可以为____________.14. 如图,已知0180A B ∠+∠=,ABDC ⎪⎪,056C ∠=,则A ∠的度数为____________°.15. 如图,在三角形ABC 中,6BC cm =,将三角形ABC 以每秒2cm 的速度沿BC 所在直线向右平移,所得对应图形为三角形DEF ,设平移时间为t 秒,若要使2AD CE =成立,则t 的值为____________.16. 如图,点,,A B C 在数轴上,点A 表示的数是-1,将点A 个单位长度得到点B ,且点B 是AC 的中点,则点C 表示的数为________________;BC 的中点表示的数为____________.三、解答题:本大题共7小题,共52分.解答应写出文字说明、演算步骤或证明过程.17.(本小题6分)比较下列各组数的大小:(1(2)1;(3)3_________2-18.(本小题6分)解方程组503744x y x y -=⎧⎨+=⎩19.(本小题8分)为了解天津市的地铁线路图,某班同学将网上查到的部分线路示意图(如图1),并利用网格画出如图2所示的示意图.现在根据图2建立了平面直角坐标系,表示“直沽站”的点E 的坐标为()3,3-,且测得点A B C O 、、、站恰好在格线的交点上(允许有测量误差).(1)你找一找“周邓纪念馆站”(点F )的位置,在图2的坐标系中在哪个象限?“小白楼站”(点G )的位置在哪个象限?(2)在这个平面直角坐标系中,图中表示“远洋国际中心站”的点A 的坐标为____________;表示“津湾广场站”的点B 的坐标为____________;表示“东南角站”的点C 的坐标为____________;表示“天津站”的点O 的坐标为______________;20.(本小题8分)已知:如图,直线,AB CD 被直线EF 所截,12,34∠=∠∠=∠.求证:EGFH ⎪⎪.证明:∵12∠=∠(已知),且1AEF ∠=∠( ),∴2AEF ∠=∠(),∴ABCD ⎪⎪( ),∴BEF CFE ∠=∠( ),∵34∠=∠(已知)∴43BEF CFE ∠-∠=∠-∠( )即GEF HFE ∠=∠,∴EGFH ⎪⎪( )21.(本小题8分)如图,三角形ABC ,点D 是的边BC 上的一点,点E 是的边BC 上的一点,且DE AB ⎪⎪,0070,66A B ∠=∠=.(1)EDC ∠等于多少度?为什么?(2)①请你利用三角板和直尺,过点D 画出AC 的平行线DF ,交AB 于点F ;②画图后,FDE ∠的度数是多少度?说明理由.(3)通过这道题,能说明三角形ABC 的内角和是180°吗?说明理由.22.(本小题8分)养牛场原有30只大牛和15只小牛,1天约需用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天约需用饲料940kg .饲养员李大叔估计平均每只大牛1天约需饲料1820kg ,每只小牛1天约需饲料78kg .你能否通过计算检验他的估计是否准确?23.(本小题8分)如图1,在平面直角坐标系中,O 为原点,OAB ∆是等腰直角三角形,090B ∠=,点()4.2,0A ,点B 在第一象限,长方形OCDE 的顶点()()3,0,0,1.2E C -,点D 在第二象限.(1)点D 的坐标为____________;长方形OCDE 的面积为_______________;(2)将长方形OCDE 沿x 轴向右平移,得到长方形O C D E '''',点,,,O C D E 的对应点分别为,,,O C D E ''''.长方形O C D E ''''与OAB ∆重叠部分的面积为S .小王同学猜想:当点D '恰好落在OB 边上时(如图2)S 最大;小张同学猜想:当长方形恰好平移到等腰直角三角形OAB ∆的中央位置(如图3),即O E ''的中点与OA 的中点恰好重合时S 最大.请你探究一下这两种位置中,哪一种位置的S 比较大,并说明理由.(提示:设BA 与长方形的边D C C O ''''、分别交于M N 、两点,可令图2中的MC a '=)参考答案一、选择题题号12345678910答案BCBDCAADCB二、填空题11. 12. 1213. ()6,1(答案不唯一) 14. 56 15. 2或6 16. 1;1-+三、解答题17. 解:略18. 解:由①得:5x y =③,将③代入②解得:2y =,将2y =代入③,解得:10x =,∴方程组的解为102x y =⎧⎨=⎩.19. 解:(1)F 在第三象限;G 在第四象限;(2)()()()()1,0;2,0;0,3;0,0--20. 证明:∵12∠=∠(已知),且1AEF ∠=∠(对顶角相等),∴2AEF ∠=∠(等量代换),∴AB CD ⎪⎪(同位角相等,两直线平行),∴BEF CFE ∠=∠(两直线平行,内错角相等),∵34∠=∠(已知),∴43BEF CFE ∠-∠=∠-∠(等式性质)即GEF HFE ∠=∠,∴EGFH ⎪⎪(内错角相等,两直线平行).21. 解:(1)66°,∵DE AB ⎪⎪,∴066B EDC ∠=∠=;(2)70°,∵AC DF ⎪⎪,∴070A BFD ∠=∠=,∵ABDE ⎪⎪,∴070BFD FDE ∠=∠=;(3)能,∵DF AC ⎪⎪,∴C BDF ∠=∠,又由(2)知,A FDE B EDC ∠=∠∠=∠,∴0180A B C FDE EDC BDF BDC ∠+∠+∠=∠+∠+∠=∠=.即ABC ∆的内角和是180°.22. 解:设每只大牛1天约需饲料xkg ,每只小牛1天约需饲料ykg .根据题意,得30156754220940x y x y +=⎧⎨+=⎩,解得205x y =⎧⎨=⎩∴每只大牛1天约需饲料20kg ,每只小牛1天约需饲料5kg .答:李大叔对于大牛的估计正确,对于小牛的估计不对.23. 解:(1)()3,1.2D -;3.6;(2)小王同学猜想:当点D '恰好落在OB 边上时,如图2,∵OAB ∆是等腰直角三角形,可知004545BOA BAO ∠==∠=,再由平移长方形可知,C D OA ⎪⎪'',∴045BMD BAO '∠=∠=,∴C MN '∆是等腰直角三角形.∴MC C N a ''==,∴C MN '∆的面积22a =.∴长方形O C D E ''''与OAB ∆重叠部分的面积为22a S -长方形.小张同学猜想:当长方形恰好平移到等腰直角三角形OAB ∆的中央位置时,如图3,可知此时的2a MC C N ''==,∴C MN '∆的面积212228a a a == .∴长方形O C D E ''''与OAB ∆重叠部分的面积为222884a a a S S --=-长方形长方形.而2242a a <,∴2224a a S S -<-长方形长方形,∴小张同学的方法使得重叠部分的面积更大.(注:以上为参考答案,其他解法相应给分).。
第二学期七年级期中数学试题附答案

(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式与横式两种无盖礼品盒。
①两种裁法共产生A型板材张,B型板材张;
②设做成的竖式无盖礼品盒x个,横式无盖礼品盒的y个,根据题意完成表格:
二、专心填一填(本题有10个小题,每小题3分,共30分)
11.钝角12.2x+3 13. 18.10 19.5 20.1
三、耐心做一做(本题有6个小题,共40分)
(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY、XZ仍然分别经过点B、C,若∠A=x°,则∠ABX+∠ACX=度;(用x的代数式表示)
26.(10分)我县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产。他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材。如图所示,(单位:cm)
∴AB = AC()
又∵AD = AE
∴AB-AD=AC-AE,
即DB = EC.
23.(本题6分)如图,在正方形格上有一个△DEF。
(1)作△DEF关于直线HG的轴对称图形(不写作法);
(2)作EF边上的高(不写作法);
(3)若格上的最小正方形边长为1,求△DEF的面积为__________。
24.(本题6分)今年清明节,小明和爸爸决定用游戏的方式确定两个城市作为旅游目的地。他们把3张分别写着“上海”、“杭州”、“宁波”的卡片放入不透明的A口袋,把2张分别写着“苏州”、“南京”的卡片放入不透明的B口袋。小明从A口袋中随机抽取一张卡片,爸爸从B口袋中随机抽取一张卡片,以抽到的两张卡片上写着的城市为旅游目的地。
山西省运城市2023-2024学年七年级下学期期中数学试题(含答案)

运城市2023~2024学年第二学期七年级期中学业诊断数学(考试时间:120分钟)注意事项:1.本试卷分第I 卷和第Ⅱ卷两部分.全卷共6页,满分120分,考试时间120分钟。
2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。
3.答案全部在答题卡上完成,答在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该选项涂黑)1.计算的结果是( )A .3B .6C .9D .272.下列说法正确的有()A .若直线,则直线B .同旁内角相等,两直线平行C .相等的角是对顶角D .在同一平面内,若直线,则直线3.下列运算正确的是( )A .B .C .D .4.细胞壁是细胞外层的结构,包裹在细胞膜外部,存在于许多生物细胞中,如细菌、真菌、植物细胞等.研究表明,细胞壁的厚度一般为.数据,用科学记数法表示为()A .B .C .D .5.在狭义相对论中,爱因斯坦用质能方程描述了物体能量与质量之间的关系,能量E (单位:焦耳)与物体质量m (单位:千克)之间的关系可以用来表示,其中c 是真空中的光速,(单位:米秒).若一个物体的质量为0.3千克时,则该物体的能量为( )A .焦耳B .焦耳C .焦耳D .焦耳6.下列各式中,可以用平方差公式进行计算的是()33a b b c ∥,∥a c ∥a b b c ⊥⊥,a c⊥2a a a ÷=32a aa -+=()3236aba b -=222()a b a b -=-()91530nm 1nm 10m --=15nm 91510m -⨯91.510m -⨯81.510m -⨯101.510m-⨯2E mc =8310c =⨯16910⨯162.710⨯64910⨯642.710⨯A .B .C .D .7.如图,,点B 在AO 的延长线上,则以下说法正确的是()A .的余角只有B .与互余C .与互补D .与互补8.如图,已知直线,则下列条件不能判定直线的是()A .B .C .D .9.随着社会的发展,越来越多的人开始注重养宠物带来的精神享受,他们将宠物视为家庭成员,注重宠物带来的幸福感,也越来越注重宠物的饮食健康、医疗保健等等.下图为某平台最近7周的“宠物零食”周销量y (个)随时间t (周)变化的图象,则下列说法错误的是()A .第4周到第5周,周销量y (个)随时间t (周)的增大而减小B .第3周和第5周的销量相同C .在这7周中,第1周到第2周与第3周到第4周的周销量增长速度相同D .第1周到第7周的平均销售量是2000个/周10.如图所示,叫做C 型积木,叫做H 型积木,若C 型积木的个数为x ,H 型积木的个数为y ,按照此规律连接两种积木,则y 与x 之间的关系式为()(2)(2)a a --(2)(2)a a +-(3)(3)a a ++()()a b a b --+90AOE COD ∠=∠=︒AOE ∠EOB ∠COE ∠DOB ∠AOC ∠DOE ∠AOD ∠COE ∠a b ∥c d ∥12∠=∠35180∠+∠=︒45∠=∠25∠=∠A .B .C .D .第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.比较大小:__________.12.若一个角的补角是它的4倍,则这个角的度数为__________.13.为了探究某种植物种子萌发的最适宜条件,晓峰同学通过试验记录了相关数据,种子萌发率Y 与温度T ()的关系如表:温度T ()10152025303540种子萌发率Y/61524334251■若晓峰不慎将实验数据污染,根据表格中两者的对应关系,被污染的实验数据(表中■)为__________.14.求图中阴影部分的面积__________(用代数式表示).15.学习整式乘法时,老师拿出三种型号卡片,如图:选取4张A 型卡片,12张B 型卡片及一些C 型卡片拼成了一个新的正方形,则需__________张C 型卡片.三、解答题(本大题共8个小题,共75分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石板学区2016-2017年七年级下期中检测试卷
数学
试卷总分:100分考试时间:120分钟
姓名:得分:
一、选择题(每小题3分,共30分)
1.(3分)下列各式是一元一次方程的是()
A.3x﹣1=5 B.x﹣y=3 C.x+3 D.3x+y=5
2.(3分)下列方程的解是x=2的方程是()
A.4x+8=0 B.﹣x+=0 C.x=2 D.1﹣3x=5
3.(3分)解方程﹣=1,去分母正确的是()
A.2(2x+1)﹣3(5x﹣3)=1 B.2x+1﹣5x﹣3=6
C.2(2x+1)﹣3(5x﹣3)=6 D.2x+1﹣3(5x﹣3)=6
4.(3分)某商品的标价为150元,若以8折降价出售.相对于进价仍获利20%,则该商品的进价为()
A.120元B.110元C.100元D.90元
5.(3分)用加减法将方程组中的未知数x消去后,得到的方程是()
A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=16
6.(3分)已知某个不等式组的解集在数轴上表示如图,则此不等式组的解集为()
A.x>﹣1 B.x≤4C.﹣1<x<4 D.﹣1<x≤4
7.(3分)某校初一年级到礼堂开会,若每条长凳坐5人,则少10条长凳;若每条长凳坐6人,则又多余2条长凳.如果设学生数为x人,长凳为y条,根据题意可列方程组()A.B.
C.D.
8.(3分)已知a>b,则下列不等式中不正确的是()
A.4a>4b B.﹣a+4>﹣b+4 C.﹣4a<﹣4b D.a﹣4>b﹣4
9.(3分)二元一次方程3x+y=7的正整数解有()组.
A.0 B.1 C.2 D.无数
10.(3分)如果不等式ax>1的解集是,则()
A.a≥0B.a≤0C.a>0 D.a<0
二、填空题(每小题3分,共18分)
11.(3分)如果x=1是方程3x﹣m﹣1=0的解,那么m的值是.12.(3分)把方程3x﹣y=5,改成用含x的代数式表示y,则y=.13.(3分)已知2x a y b与﹣7x b﹣3y4是同类项,则a b=.
14.(3分)若a>b,则(用“>“或“<“填空)
15.(3分)不等式﹣2x≤6的负整数解为.
16.(3分)方程组的解是.
三、解答题(共52分)
17.(8分)(1)解方程:7x﹣4=3(x+2)(2)解方程:﹣4=.
18.(8分)(1)解方程组(2)解方程组.
19.(8分)(1)解不等式3(x+2)﹣1≥5﹣2(x﹣2),并把解集在数轴上表示出来;
(2)解不等式组.
20.(5分)当m取何值时,关于x的方程3x+2m=x﹣5的解为正数?
21.(5分)从甲地到乙地的长途汽车原行驶7小时,开通高速公路后,路程减少了30千米,而车速平均每小时增加了30千米,只需4小时即可到达.求甲、乙两地之间高速公路的路程?
22.(5分)某同学用8块相同的长方形地砖拼成一个矩形,如图,求每块地砖的面积是多少?
23.(8分)商场销售甲、乙两种商品,它们的进价和售价如表,
(1)若该商场购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?
(2)该商场为使销售甲、乙两种商品共100件的总利润(利润=售价﹣进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案.
24.(5分)先阅读第(1)小题的解答,然后解答第(2)小题.
(1)解方程组
解:由①得x﹣y=1③
将③代入②得4×1﹣y=5,即y=﹣1,
将y=﹣1代入③得,x=0
所以.
(2)解方程组
参考答案
一、选择题(每小题3分,共30分)
1.A;2.B;3.C;4.C;5.D;6.D;7.A;8.B;9.C;10.D;
二、填空题(每小题3分,共18分)
11.2;12.3x-5;13.1;14.<;15.-3,-2,-1;16.;
三、解答题(共72分)
17.(1)x=2.5 (2) x=5
18. (1)x=2,y=-1/2 (2) x=-6,y=-1
19. (1) x≥4/5 (图略) (2)-6<x≤13
20. m<-5/2
21. X=320
22.
23.(1)该商场购进甲种商品40件,乙种商品60件
24。