测评网学习资料-高二上期末考试模拟试题十四
2024版高二上册英语模拟试卷

2024版高二上册英语模拟试卷专业课试题部分一、选择题(每题1分,共5分)1. Which of the following words is an adjective?A. runB. happyC. eatD. jump2. What is the past tense of "do"?A. didB. doC. doneD. does3. Which sentence is in the passive voice?A. The cat chased the mouse.B. The mouse was chased the cat.C. The cat is chasing the mouse.D. The mouse chased the cat.4. Choose the correct relative pronoun in the following sentence: "This is the book _______ I bought yesterday."A. whichB. thatC. whoD. where5. What is the main idea of a paragraph?A. The first sentenceB. The last sentenceC. The topic sentenceD. The concluding sentence二、判断题(每题1分,共5分)1. "Run" and "running" are the same tense. ( )2. "They are going to the park" indicates a future plan. ( )3. "I have eaten" is in the present perfect tense. ( )4. An adjective describes a noun or a pronoun. ( )5. A verb shows an action or a state. ( )三、填空题(每题1分,共5分)1. The _______ of the story was very interesting.2. I _______ to the store yesterday and bought some groceries.3. She is _______ than her sister.4. _______ you like to go to the movies tonight?5. If it _______ tomorrow, we will stay at home.四、简答题(每题2分,共10分)1. What is the difference between "I do" and "I am doing"?2. What is a gerund and how is it used in a sentence?3. What is the difference between "its" and "it's"?4. Explain the past perfect tense and give an example.5. What is a conjunction and give two examples.五、应用题(每题2分,共10分)1. Rewrite the following sentence in the passive voice: "The teacher teaches the students every day."2. Combine the following sentences using a relative pronoun: "This is the book. I bought it yesterday."3. Change the following sentence into a question: "She goes to school bus."4. Fill in the blanks with the correct form of the verb: "They _______ (watch) a movie last night."5. Correct the following sentence: "He don't like to eat vegetables."六、分析题(每题5分,共10分)1. Read the following paragraph and answer the questions:Yesterday, Sarah went to the library to return some books. She also wanted to find some information for her project.After spending an hour searching, she finally found the necessary materials. Sarah was happy because she could finish her project on time.a. What did Sarah do yesterday?b. Why did she go to the library?c. How long did she spend searching for the materials?2. Read the following conversation and answer the questions:A: Would you like some tea?B: No, thanks. I'm not thirsty.A: How about a cup of coffee?B: That sounds good. I'd love one.a. What does A offer to B first?b. Why does B refuse the tea?c. What does B accept in the end?七、实践操作题(每题5分,共10分)1. Write a short paragraph about your favorite holiday, including at least three reasons why you enjoy it.2. Imagine you are planning a trip to a foreign country. Write a dialogue between you and a travel agent, discussing your travel plans and asking for advice.八、专业设计题(每题2分,共10分)1. Design a lesson plan for teaching the past continuous tense to beginners, including warmup, main activity, and cooldown.2. Create a vocabulary quiz on adjectives related to emotions, with definitions and example sentences.4. Construct a dialogue practice activity focusing on making appointments and arrangements.九、概念解释题(每题2分,共10分)1. Explain the difference between "affect" and "effect" with examples.2. Define the term "phrasal verb" and give three examples with their meanings.3. Describe what a "colloquialism" is and provide two examples used in everyday conversation.4. Explain the concept of "subjectverb agreement" and illustrate with a correct and incorrect sentence.5. Define "homophones" and give a pair of homophones with their meanings.十、思考题(每题2分,共10分)1. How can you encourage students to practice speaking English outside of the classroom?2. What strategies can be used to help students remember new vocabulary?3. Why is it important to teach different aspects of culture when teaching a foreign language?4. How can technology be integrated into an English language classroom effectively?5. Discuss the benefits of using authentic materials in language teaching.十一、社会扩展题(每题3分,共15分)1. Analyze how social media has influenced the way English is used and evolved in recent years.2. Discuss the role of English as a global lingua franca and its impact on cultural diversity.3. Evaluate the effectiveness of bilingual education in promoting language proficiency and cultural understanding.4. How does the English language reflect and shape social attitudes and biases?5. Propose ways in which English language learners can contribute to and benefit from multicultural societies.一、选择题答案1. B2. A3. B4. A5. C二、判断题答案1. ×2. √3. √4. √5. √三、填空题答案1. plot2. went3. taller4. Would5. rains四、简答题答案1. "I do" is in the simple present tense and is used for general truths or habits. "I am doing" is in the present continuous tense and is used for actions happening now. Example: I do my homework every day. vs. I am doing my homework right now.3. "Its" is a possessive adjective, showing ownership. "It's" is a contraction of "it is" or "it has". Example: Its color is beautiful. vs. It's time to go.5. A conjunction is a word used to connect clauses or sentences. Examples: and, but, because.五、应用题答案1. The students are taught the teacher every day.2. This is the book that I bought yesterday.3. Does she go to school bus?4. They watched5. He doesn't like to eat vegetables.六、分析题答案1. a. Sarah went to the library. b. She wanted to return books and find information for her project. c. She spent an hour searching.2. a. A offers tea. b. B is not thirsty. c. B accepts a cup of coffee.七、实践操作题答案(答案省略,因题目要求为书写内容,不适宜在此以文字形式回答)1. 语法知识:考察了动词时态(选择题第3题、简答题第1题)、被动语态(应用题第1题)、相对代词(应用题第2题)、主谓一致(简答题第4题)等基础语法知识点。
北京市顺义区、通州区2024年高二物理第一学期期末经典模拟试题含解析

北京市顺义区、通州区2024年高二物理第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、随着集成电路的广泛应用,对集成度的要求越来越高,集成度越高,各种电子元件越微型化,图中R1和R2是材料相同、厚度相同、表面为正方形的导体,但R1的边长是R2的100倍,通过两导体电流方向如图所示,则下列说法中正确的是()A.R1=100R2B.R1=10000R2C.在同一坐标系画出的I--U图像中,R1电阻对应的图像斜率大D.将它们并联在电路中流过R1和R2的电流大小相同2、一个理想变压器,原、副线圈的匝数比为4︰1,当这台变压器的原线圈接入电压为880V的交流电时,副线圈两端的电压为A.880VB.3520VC.220VD.03、关于两个点电荷间相互作用的电场力,下列说法正确的是A.电量大的点电荷受力大,电量小的点电荷受力小B.他们一定大小相等,方向相反C.当两个点电荷间距离增大而电量保持不变时,这两个电场力的大小可能增大D.当两个点电荷间距离不变而其中一个电荷的电量增大时,两电荷间的相互作用力减小4、空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直横截面.一质量为m、电荷量为q(q >0)的粒子以速率v0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为A.033mv RqB.0mv RqC.03mv qRD.03mv qR 5、如图所示,一有限范围的匀强磁场的宽度为d ,将一边长为l 的正方形导线框由磁场边缘以速度v 匀速地通过磁场区域,若d >l ,则在线框通过磁场区域的过程中,不产生感应电流的时间为( )A.d vB.d l v - C.l v D.2d l v - 6、如图所示电路中,A 、B 是相同的两小灯泡。
2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:沪教版2020必修第三册第十~十一章。
5.难度系数:0.72。
一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.不重合的两个平面最多有条公共直线【答案】1【解析】根据平面的位置关系可知,不重合两平面平行或相交,当相交时,有且只有一条公共直线.故答案为:12.已知球的表面积是16π,则该球的体积为.3.空间中一个角∠A的两边和另一个角∠B的两边分别平行,若∠A=,则∠B=;【答案】【解析】如图,若角∠A 的两边和角∠B 的两边分别平行,且方向相同,则∠A 与∠B 相等此时70B A ∠=∠=︒;②当角∠A 的两边和角∠B 的两边分别平行,且一边方向相同另一边方向相反,则∠A 与∠B 互补,此时180110B A ∠=︒-∠=︒.故答案为70︒或110︒.4.如图,正三棱柱的底面边长为2,高为1,则直线1B C 与底面ABC 所成的角的大小为(结果用反三角函数值表示).5.在空间中,给出下面四个命题,其中真命题为.(填序号)①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则αβ∥;③若直线l 与平面α内的任意一条直线垂直,则l α⊥;④两条异面直线在同一平面内的射影一定是两条相交直线.【答案】③【解析】①过平面α外两点可确定一条直线,当这条直线垂直于平面α时,有无数个平面垂直于平面α,故①错误;②若三点在平面α同侧,则αβ∥;若三点在平面α两侧,则α与β相交,故②错误;③直线l 与平面α内的任意一条直线垂直,则l 垂直于平面α内两条相交直线,由线面垂直的判定定理可得l α⊥,故③正确;④两条异面直线在同一个平面内的射影有可能是两条相交直线,也可能是两条平行直线,还可能是一个点和一条直线,故④错误;故答案为:③6.正四棱锥P -ABCD 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与P A 所成角的余弦值为.连接AC 交BD 于O 点,连接OE ,则OE 因为⊥PO 面ABCD ,所以PO DB ⊥,又因为所以直在角三角形EOB 中,设PA a =,则故答案为:33.7.如图,有一圆锥形粮堆,其轴截面是边长为6m 的正ABC V ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是m .【答案】35【解析】解:由题意得:圆锥的底面周长是6π,则66180n ππ=,解得:180n ︒=可知圆锥侧面展开图的圆心角是180︒,如图所示:则圆锥的侧面展开图中:()3m AP =,6(m)AB =,90BAP ︒∠=所以在圆锥侧面展开图中:()223635m BP =+=故答案为:358.已知一球体刚好和圆台的上、下底面及侧面都相切,且圆台上底面的半径为2,下底面的半径为1,则该圆台的侧面积为.【答案】9π【解析】圆台的轴截面如下图示:截面中圆为内切球的最大圆,且2AF DF AG DH ====,1BE CE BG CH ====,所以3AB CD ==,而上下底面周长分别为4π、2π,故该圆台的侧面积为13(2π4π)9π2⨯⨯+=.故答案为:9π9.如图,已知三棱柱111ABC A B C -的体积为3,P ,Q ,R 分别为侧棱1AA ,1BB ,1CC 上的点,且1AP CR AA +=,则Q ACRP V -=.则111332Q ACRP V d S d -=⋅⋅=⋅⋅⋅设三棱柱111ABC A B C -的体积故答案为:1.10.已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为.11.正方形ABCD 中,E ,F 分别为线段AB ,BC 的中点,连接DE ,DF ,EF ,将ADE V ,CDF V ,BEF △分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合,得到三棱锥O DEF -,则该三棱锥外接球半径R 与内切球半径r 的比值为.【答案】26【解析】在正方形ABCD 中,,AD AE CD ⊥12.空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:A,B,C,D中有三个点到的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,这样的平面α的个数是___________个【答案】32【解析】首先取3个点相等,不相等的那个点由4种取法;然后分3分个点到平面α的距离相等,有以下两种可能性:(1)全同侧,这样的平面有2个;(2)不同侧,必然2个点在一侧,另一个点在一侧,1个点的取法有3种,并且平面过三角形两个点边上的中位线,考虑不相等的点与单侧点是否同侧有两种可能,每种情况下都唯一确定一个平面,故共有6个,⨯=个,所有这两种情况共有8个,综上满足条件的这样的平面共有4832故答案为:32二、选择题(本题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分;每题有且只有一个正确选项)13.下列几何体中,多面体是()A.B.C.D.【答案】B【解析】A选项中的几何体是球,是旋转体;B选项中的几何体是三棱柱,是多面体;C 选项中的几何体是圆柱,旋转体;D 选项中的几何体是圆锥,是旋转体.故选B.14.已知两个平面α、β,在下列条件下,可以判定平面α与平面β平行的是().A .α、β都垂直于一个平面γB .平面α内有无数条直线与平面β平行C .l 、m 是α内两条直线,且l ∥β,m ∥βD .l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β【答案】D【解析】对于A ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B 都与平面ABCD 垂直,但这两个平面不平行,所以A 错误,对于B ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,平面11AAC C 中所有平行于交线1AA 的直线都与平面11AA B B 平行,但这两个平面不平行,所以B 错误,对于C ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,,M N 分别为11,A B AB 的中点,则1,MN BB 在平面11AA B B 内,且都与平面11AAC C 平行,但这两个平面不平行,所以C 错误.对于D ,因为l 、m 是两条异面直线,所以将这两条直线平移到共面α时,一定在α内形成两条相交直线,由面面平行的判定定理可知,该结论正确.故选:D15.将3个1212⨯的正方形沿邻边的中点剪开分成两部分(如图1);将这6部分接于一个边长为六边形边上(如图2),若拼接后的图形是一个多面体的表面展开图,则该多面体的体积是()A .17282B .864C .576D .2【答案】B【解析】折成的多面体如图①所示,将其补形为正方体,如图②,所求多面体体积为正方体的一半,又依题易求得正方体的边长为12,故3112864,2V =⨯=故选:B.16.如图,在正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1A F ∥平面1AD E .设1A F 与平面11BCC B 所成的角为1,A F α与1AD 所成的角为β,那么下列结论正确的是()A .α的最小值为arctan2,β的最小值为arctan3B .α的最小值为arctan3,β的最大值为2πC .α的最小值大于arctan2,β的最小值大于arctan3D .α的最大值小于arctan3,β的最大值小于2π设正方体的棱长为2,因为MN GE ∥,且MN ⊄MN ∴∥平面1AEGD ;同理1A N ∥平面1AEGD ,且∴平面1A MN ∥平面AEGD ∵11A B ⊥面11BB C C ,所以又1AD MN ,所以1A F 与1AD 所成的角为111tan A B B Fα∴=;当F 为MN 中点时,此时当F 与M 或N 重合时,此时2tan 22α∴≤≤,arctan2对于β,当F 为MN 中点时,当F 与M 或N 重合时,β()221252A F ⎛⎫∴=-= ⎪ ⎪⎝⎭tan 3β∴=,tan 3β∴≥,arctan 3β≤≤又arctan3 1.4≈,arctan2故选:A.三、解答题(本大题共有5题,满分78分,第17-19题每题14分,第20、21题每题18分.)17.如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD //平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.【解析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,(1分)∵P 是1DD 的中点,∴1//PO BD ,(3分)又∵PO ⊂平面PAC ,1⊄BD 平面PAC ,∴直线1BD //平面PAC ;(6分)(2)由(1)知,1//PO BD ,∴APO ∠即为异面直线1BD 与AP 所成的角,(8分)∵PA PC =12AO AC ==且PO AO ⊥,∴1sin2AO APO AP ∠==.又(0,90]APO ∠∈︒︒,∴30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30︒.(14分)18.如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF D E ⊥,F 是垂足.(1)求证:AF DB ⊥;(2)若圆柱与三棱锥D ABE -的体积的比等于3π,求直线DE 与平面ABD 所成角的大小.【解析】(1)证明:根据圆柱性质,DA ⊥平面ABE ,因为EB ⊂平面ABE ,所以DA EB ⊥,又因为AB 是圆柱底面的直径,点E 在圆周上,所以AE EB ⊥,因为AE DA A ⋂=且,AE DA ⊂平面DAE ,所以EB ⊥平面DAE ,(2分)又因为AF ⊂平面DAE ,所以EB AF ⊥,因为AF D E ⊥,且EB DE E =I ,且,EB DE ⊂平面DEB ,所以AF ⊥平面DEB ,又因为DB ⊂平面DEB ,所以AF DB ⊥.(6分)(2)解:过点E 作EH AB ⊥,H 是垂足,连接DH ,根据圆柱性质,平面ABD ⊥平面ABE ,且平面ABD ⋂平面ABE AB =,且EH ⊂平面ABE ,所以EH ⊥平面ABD ,因为DH ⊂平面ABD ,所以DH 是ED 在平面ABD 上的射影,从而EDH ∠是DE 与平面ABD 所成的角,(8分)设圆柱的底面半径为R ,则2DA AB R ==,所以圆柱的体积为32πV R =,且21233D ABEABE R V AD S EH -=⋅=⋅ ,由:3πD ABE V V -=,可得EH R =,可知H 是圆柱底面的圆心,且AH R =,且DH =,在直角EDH 中,可得tan EH EDH DH ∠==EDH ∠=(14分)19.如图,将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE(1)求证:直线EC 与平面ABD 没有公共点;(2)求点C 到平面BED 的距离.【解析】(1)取BD 的中点F ,连接CF 、AF ,如图,依题意,在BCD △中,,BC CD BC CD =⊥,则CF BD ⊥,而平面ABD ⊥平面CBD ,平面ABD ⋂平面CBD BD =,CF ⊂平面CBD ,于是得CF ⊥平面ABD ,且2CF =因为AE ⊥平面ABD ,且2AE =//AE CF ,且AE CF =,从而得四边形AFCE 为平行四边形,//EC AF ,(4分)又AF ⊂平面ABD ,EC ⊂/平面ABD ,则//EC 平面ABD ,所以直线EC 与平面ABD 没有公共点;(6分)(2)因为CF ⊥平面ABD ,AF ⊂平面ABD ,所以CF AF ⊥,因为BD AF ⊥,BD CF F = ,,BD CF ⊂平面,CBD 所以AF ⊥平面,CBD 因为//,EC AF ,于是得EC ⊥平面CBD ,因为AE ⊥平面ABD ,,AB AD ⊂平面ABD ,所以,AE AB AE AD ⊥⊥,(8分)因为EC AF ==EB ED =,则等腰BED 底边BD 上的高2h ==,12BED S BD h =⋅= ,而2BCD S =,设点C 到平面BED 的距离为d ,由C BED E BCD V V --=得1133BED BCD S d S EC ⋅=⋅ ,即2=,解得1d =,所以点C 到平面BED 的距离为1(14分)20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,底面,AC BD O PAC = △是边长为2的等边三角形,PB =PD ,AP =4AF(1)求证:PO ⊥底面ABCD (2)求直线CP 与OF 所成角的大小.(3)在线段PB 上是否存在点M ,使得//CM 平面BDF ?如果存在,求BMBP的值;如果不存在,请说明理由.【解析】(1)因为底面ABCD 是菱形,且AC BD O = ,所以O 为AC ,BD 中点,在PBD △中,PB =PD ,可得PO ⊥BD ,因为在PAC 中,PA =PC ,O 为AC ,BD 中点,所以PO ⊥AC ,(3分)又因为AC ⋂BD =O ,所以PO ⊥底面ABCD .(4分)(2)连接OF ,取AP 中点为E ,连接OE ,因为底面ABCD 是菱形,AC ⋂BD =O ,由O 为AC 中点,且E 为AP 中点,AP =4AF ,所以F 为AE 中点,所以CP //OE .,故∠EOF 为直线CP 与OF 所成的角,(8分)又由PAC 为等边三角形,且E 为中点,所以∠EOF =30o .(10分)(3)存在,13BM BP =,连接CE ,ME ,因为AP =4AF ,E 为AP 中点,所以13EF FP =,又因为13BM BP =,所以在PFB △中,EF BMFP BP =,即EM //BF ,(12分)因为EM ⊄平面BDF ,BF ⊂平面BDF ,所以EM //平面BDF ,由(2)知EC //OF ,因为EC ⊄平面BDF ,OF ⊂平面BDF ,所以EC //平面BDF ,因为EC ⋂EM =E ,所以平面EMC //平面BDF ,因为CM ⊂平面EMC ,所以CM //平面BDF .(18分)21.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱111,BB AC 分别交于点F ,G.(1)若F 为1BB 的中点,试确定点G 的位置,并说明理由;(2)在(1)的条件下,求截面AGEF 与底面ABC 所成锐二面角的正切值;(3)设截面AFEG 的面积为0S ,AEG △面积为1S ,AEF △面积为2S ,当点F 在棱1BB 上变动时,求2012S S S 的取值范围.【解析】(1)在平面11BCC B 内延长1CC ,FE 相交于点P ,则P ∈平面AGEF ,又1P CC ∈⊂平面11ACC A ,则有平面AGEF 平面11ACC A AG =,P AG ∈,即A ,G ,P 三点共线.(2分)因为E 为11B C 的中点,F 为1BB 的中点,所以11112PC B F CC ==,所以113PC PC =,又因为1//GC AC ,所以1113GC PC AC PC ==,所以111112333GC AC A C ===,即点G 为棱11AC 上靠近点1C 的三等分点.(4分)(2)在平面11BCC B 内延长CB ,EF 相交于点Q ,连接AQ ,则平面AGEF 平面ABC AQ =,在平面11ACC A 内作GM AC ⊥于点M ,则GM ⊥平面ABC ,又AQ ⊂平面ABC ,所以G M AQ ⊥,在平面ABC 内作MN AQ ⊥于点N ,连接GN ,又,GM MN ⊂平面GMN ,GM MN M ⋂=,所以AQ ⊥平面GMN ,GN ⊂平面GMN ,所以AQ GN ⊥,所以GNM ∠为截面AGEF 与底面ABC 所成锐二面角的平面角.(6分)在AQC 中,作CH AQ ⊥于点H ,11BQ C E ==,2AC =,3CQ =,60AC B ∠= ,12222ABC S =⨯⨯⨯=△AQC S =由余弦定理2222cos 4967AQ AC CQ AC CQ ACQ =+-⋅⋅∠=+-=,则AQ122AQC S AQ CH ==⋅ ,可得3217CH =,所以237MN CH ==,又22G M AA ==,所以21tan 3GM GNM MN ∠==,故截面AGEF 与底面ABC (10分)(3)设1GC m =,则[]0,1m ∈,2PG mGA m=-.设PGE 的面积为S ,所以12S m S m=-,又因为21S S S =+,所以1222S m S -=,且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦,故()22120121212212S S S S SS S S S S S +==++,令12S t S =,则1,12t ⎡⎤∈⎢⎥⎣⎦,(11分)设()112,12g t t t t ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎣⎦⎝⎭,当12112t t ≤<≤时,()()()()121212121212111t t g t g t t t t t t t t t --=+--=-,120t t -<,120t t >,1210t t -<,则()()120g t g t ->,即()()12g t g t >,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪,所以()94,2g t ⎡⎤∈⎢⎥,。
2023-2024学年河南省漯河市漯河实验高中生物高二上期末教学质量检测模拟试题含解析

2023-2024学年河南省漯河市漯河实验高中生物高二上期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:(共6小题,每小题6分,共36分。
每小题只有一个选项符合题目要求)1.下图是种群数量特征的概念模型,有关叙述不.正确..的是()A.种群密度是种群最基本的数量特征B.春运期间大城市人口数量变化主要取决于①②C.性引诱剂诱杀某种害虫的雄性个体会影响③D.预测未来种群数量变化的主要依据是④2.内环境稳态是机体进行正常生命活动的必要条件。
下列关于内环境稳态的叙述,错误的是()A.稳态的维持依赖于各种器官和系统之间相互协调B.机体组织细胞的代谢不会引起内环境的稳态失衡C.外界环境变化过于剧烈可能会破坏内环境的稳态D.内环境的温度会通过影响酶的活性影响细胞代谢3.突触小泡与突触前膜的融合需要Ca2+参与,下列有关突触传递的叙述正确的是()A.若瞬间增大突触前膜对组织液中Ca2+的通透性,可使突触后膜持续兴奋B.突触前膜释放递质的过程体现了细胞膜的选择透过性C.递质与突触后膜上的受体结合,引起突触后膜兴奋或抑制D.若突触小泡释放的是抑制性递质,则突触后膜无膜电位变化4.丝瓜为雌雄同株异花植物,将刚萌发的丝瓜种子浸泡在下列5种溶液中24小时,然后种植。
比较雄花与雌花平均数,求出性别比如下表:分析上表数据,不能得到的推论是()A.甲液对丝瓜花性别分化影响不大B.丙液对丝瓜花性别分化影响不大C.丁液最有利于雄花的形成D.甲液、乙液等体积混合较利于雌花的形成5.有关肺炎双球菌体外转化实验和噬菌体侵染细菌实验的异同点的叙述,正确的是A.两者都设法把蛋白质和DNA分开,单独地直接地观察蛋白质或DNA的作用B.两者的实验对象都是原核生物C.两者都利用放射性同位素标记法D.两者都能证明DNA是主要的遗传物质6.下列有关植物生长素的叙述中,不正确的是A.超过生长素最适浓度后,随着浓度升高,抑制作用逐渐增强B.燕麦胚芽鞘中,生长素的横向运输与光照方向有关C.促进芽生长的生长素浓度可能会抑制根的生长D.缺乏氧气会影响植物体内生长素的极性运输二、综合题:本大题共4小题7.(9分)已知SHH基因与角化囊肿的发生有关。
浙江省台州市2023-2024学年高二上学期1月期末质量评估数学试题含答案

台州市2023学年第一学期高二年级期末质量评估试题数学2024.01(答案在最后)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.直线21y x =-的斜率等于()A.1-B.1C.2D.2-【答案】C 【解析】【分析】由斜截式判定直线斜率即可.【详解】由直线的斜截式y kx b =+可知21y x =-的斜率为2k =.故选:C2.若双曲线()2221012x y m m -=>的离心率为2,则实数m =()A.2B.C.4D.16【答案】A 【解析】【分析】根据离心率表示出方程22124m m +=,计算即可求解.【详解】由题意得,22222124c m e a m+===,解得24m =.又0m >,则2m =.故选:A.3.若空间向量()()1,0,1,2,1,2a b == ,则a 与b的夹角的余弦值为()A.23B.3C.3D.13-【答案】C 【解析】【分析】利用空间向量夹角的坐标表示即可求解.【详解】由题意,得cos,3a ba ba b⋅==.故选:C.4.已知等差数列{}()*na n∈N的前n项和为nS.若541353S a a==,,则其公差d为()A.2- B.1- C.1 D.2【答案】D【解析】【分析】根据等差数列前n项和公式,通项公式列式计算求解.【详解】由()155355352a aS a+===,所以37a=,又413a a=,1112733a da d a+=⎧∴⎨+=⎩,解得132ad=⎧⎨=⎩.故选:D.5.如图,在平行六面体1111ABCD A B C D-中,记1AB a AD b AD c===uu u r uuu r uur r rur,,,则1D C=()A.a b c+-r r rB.a b c-++C.a b c-++D.a b c--+【答案】A【解析】【分析】根据题意结合空间向量的线性运算求解.【详解】由题意可得:111D C D D DC DC AD AD a b c=+=+-=+-uuur uuu r uuu r uuu r uuu r ruu ru r r.故选:A.6.人们发现,任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述运算,必会得到1.这就是数学史上著名的“冰雹猜想”现给出冰雹猜想的递推关系如下:对于数列{}()*1N n a n a m m ∈=,(为正整数),1231.nn n n n a a a a a +⎧⎪=⎨⎪+⎩,为偶数,,为奇数若51a =,则m 所有可能的取值的和为()A.16B.18C.20D.41【答案】B 【解析】【分析】由已知数列的递推式倒推得到m 的值.【详解】若51a =,则由递推关系只能有42a =,34a =,有28a =或21a =,当28a =时,116a =;当21a =时,12a =,所以m 所有可能的取值为16或2,16218+=.故选:B7.已知抛物线()2:20C y px p =>的焦点为F ,,A B 两点在抛物线C 上,并满足3AF FB = ,过点A 作x 轴的垂线,垂足为M ,若1FM =,则p =()A.12B.1C.2D.4【答案】B 【解析】【分析】分过F 的直线斜率不存在和存在两种情况,设出直线方程,联立抛物线,得到两根之积,根据向量比例关系得到方程,求出112p x =+,2123p x =-,从而得到方程,求出答案.【详解】由题意得,02p F ⎛⎫⎪⎝⎭,当过F 的直线斜率不存在时,AF FB =,不合要求,舍去,当过F 的直线斜率存在时,设为2p y k x ⎛⎫=-⎪⎝⎭,联立2:2C y px =得,()222222204k p k x k p p x -++=,设()()1122,,,A x y B x y ,则2124p x x =,因为3AF FB = ,所以12322p p x x ⎛⎫-=- ⎪⎝⎭,又1FM =,故112p x -=,解得112p x =+,故2312p x ⎛⎫-= ⎪⎝⎭,解得2123p x =-,故2112234p p p ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,解得1p =.故选:B8.在空间四边形ABCD 中,AB BC BC CD CD DA DA AB ⋅=⋅=⋅=⋅,则下列结论中不一定正确.....的是()A.()AB BC CD DA+=-+ B.2222AB BC CD DA +=+C.ABD DCA ≅ D.AC BD ⊥【答案】D 【解析】【分析】利用向量线性运算判断A ;利用空间向量数量积的应用判断B ;利用给定等式结合垂直关系的向量表示推理判断CD.【详解】依题意,()AB BC AC CA CD DA +==-=-+,A 正确;显然22()()AB BC CD DA +=+ ,即222222AB BC AB BC CD DA CD DA ++⋅=++⋅ ,因此2222AB BC CD DA +=+ ,B 正确;由()BC CD BD DB DA AB +==-=-+ ,同理得2222BC CD DA AB +=+ ,于是||||,||||AD BC AB CD == ,由AB BC BC CD ⋅=⋅,得()0BC AB DC ⋅+= ,由CD DA DA AB ⋅=⋅,得()0DA AB DC ⋅+= ,取BD 中点O ,连接CO 并延长至E ,使OE CO =,连接,,BE DE AE ,取AE 中点F ,连接,BF DF ,显然四边形BCDE 为平行四边形,则||||||,||||||AD BC DE AB CD BE ====,//,//BC DE CD BE ,于是2AB DC AB EB FB +=+=,即有0,0BC FB DA FB ⋅=⋅=,则,BC BF AD BF ⊥⊥,DE BF ⊥,而,,AD DE D AD DE =⊂ 平面ADE ,则BF ⊥平面ADE ,又DF ⊂平面ADE ,因此BF DF ⊥,2BD OF AC ==,而,AB CD AD =为公共边,所以ABD △≌DCB △,C 正确;显然线段,BC CD 不一定相等,而BF ==,DF =,即直角三角形BFD 的两条直角边不一定相等,FO 与BD 不一定垂直,又//FO AC ,所以,AC BD 不一定垂直,D 错误.故选:D【点睛】结论点睛:首尾相接的若干个向量的和,等于由起始向量的起点指向末尾向量的终点的向量.所以在求若干向量的和,可以通过平移将其转化为首尾相接的向量求和.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知数列{}n a 和{}()*N n b n ∈是等比数列,则下列结论中正确的是()A.{}2na 是等比数列B.{}n n a b +一定不是等差数列C.{}n n a b ⋅是等比数列D.{}n n a b +一定不是等比数列【答案】AC 【解析】【分析】AC 可利用等比数列的定义进行判断,CD 选项,可举出反例.【详解】A 选项,设数列{}n a 的公比为q ,则1n na q a +=,故2212n na q a +=,所以{}2n a 是等比数列,A 正确;BD 选项,设1,2n n a b ==,满足数列{}n a 和{}()*Nn b n ∈是等比数列,所以123n n a b +=+=,故此时{}n n a b +是等差数列,也是等比数列,BD 错误;C 选项,设数列{}n a 的公比为q ,数列{}n b 的公比为1q ,则111n n n na b qq a b ++⋅=⋅,故{}n n a b ⋅是等比数列,C 正确;故选:AC10.已知4a >-且0a ≠,曲线22:14x y C a a+=+,则下列结论中正确的是()A.当0a >时,曲线C 是椭圆B.当40a -<<时,曲线C 是双曲线C.当0a >时,曲线C 的焦点坐标为()()0,20,2-,D.当40a -<<时,曲线C 的焦点坐标为()()2,0,2,0-【答案】ABD 【解析】【分析】对于AC ,若0a >,则40a a +>>,从而可判断;对于B ,若40a -<<,则40a +>,a<0,从而可判断;对于D ,40a -<<时,曲线C 是焦点在y 轴上的双曲线,求出焦点坐标即可判断.【详解】对于A ,若0a >,则40a a +>>,故曲线C 是焦点在x 轴上的椭圆,故A 正确;对于B ,若40a -<<,则40a +>,a<0,故曲线C 是焦点在y 轴上的双曲线,故B 正确;对于C ,0a >时,由A 可得曲线C 是焦点在x 轴上的椭圆,故C 错误;对于D ,40a -<<时,由B 可得曲线C 是焦点在y 轴上的双曲线,曲线22:14x y C a a +=+,可化为曲线22:14x y C a a-=+-,双曲线C2=,故焦点坐标为()()2020-,,,,故D 正确.故选:ABD.11.如图,在四面体ABCD 中,E F G H ,,,分别是AB BC CD DA ,,,的中点,EGFH ,相交于点M ,则下列结论中正确的是()A.//AC 平面EFGHB.AC BD⊥C.()14AM AB AC AD =++D.若S T ,分别为AC BD ,的中点,则M 为ST 的中点【答案】ACD 【解析】【分析】根据线面平行的判定定理即可判断A ;对于B ,将AC 与BD 的位置关系转化为EF 与FG 的关系进行判断;根据空间向量的线性运算即可判断C ;通过分析得到2AS AT AM +=,即可判断D.【详解】对于A ,因为,E F 分别是,AB BC 的中点,所以//EF AC .又因为EF ⊂平面EFGH ,AC ⊄平面EFGH ,所以//AC 平面EFGH ,故A 正确;由A 可得,//EF AC ,因为,F G 分别是,BC CD 的中点,所以//FG BD .由题中条件得不到EF 与FG 垂直,所以也得不到AC 与BD 垂直,故B 错误;对于C ,()11112222AM AE EM AB EG AB EF FG =+=+=++11112222AB AC BD ⎛⎫=++ ⎪⎝⎭()111244AB AC AD AB =++- ()14AB AC AD =++,故C 正确;对于D ,因为T 是BD 的中点,所以()12AT AB AD =+.又因为S 是AC 的中点,所以12AS AC =,所以()122AT AS AB AC AD AM +=++=,所以M 为ST 的中点,故D 正确.故选:ACD.12.已知()()(){}()()(){}2222,21,0,21,0S x y x y m y x y x y m y =-+-=≥⋃-++=≥,()1,|,2T x y y x P S T ⎧⎫===⎨⎬⎩⎭ ,则下列结论中正确的是()A.当12m =时,(){}33,0202022S x y y ⎧⎫⎛⎫⎛⎫⎪⎪⋂==-+ ⎪ ⎪⎨⎬ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎩⎭,B.当2m =时,P 有2个元素C.若P 有2个元素,则1122m -<<+D.当012m <<-时,P 有4个元素【答案】ABD 【解析】【分析】A 选项,画出S 表示的部分图形,求出与x 轴的交点坐标,得到A 正确;B 选项,得到此时S 为()()22221x y -+-=,由圆心()2,2到12y x =的距离小于半径得到有两个交点,求出答案;C 选项,举出反例;D 选项,画出S 表示的部分图形,结合点到直线距离,数形结合得到答案.【详解】A 选项,12m =时,()22121,02x y y ⎛⎫-+-=≥ ⎪⎝⎭表示圆心为12,2⎛⎫ ⎪⎝⎭,半径为1的圆位于x 轴上方的部分(包括x 轴上的两点),由()2212012x ⎛⎫-+-= ⎪⎝⎭得322=+x 或322x =-,故332,0,2,022A B ⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,()22121,02x y y ⎛⎫-++=≥ ⎪⎝⎭表示圆心为12,2⎛⎫- ⎪⎝⎭,半径为1的圆位于x 轴上方的部分(包括x 轴上的两点),由()2212012x ⎛⎫-++= ⎪⎝⎭,解得22=+x或22x =-,同理可得2,0,2,022A B ⎛⎫⎛⎫-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故S表示的部分如图所示,(){},0x y y =表示x 轴,故(){},0202022S x y y ⎧⎫⎛⎫⎛⎫⎪⎪⋂==-+ ⎪ ⎪⎨⎬ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎩⎭,,A 正确;B 选项,当2m =时,()()22221x y -+-=,由于圆心()2,2到x 轴的距离等于2,大于1,整个圆位于x 轴上方,()()22221x y -++=,由于圆心()2,2-到x 轴的距离等于2,大于1,整个圆位于x 轴下方,故S表示的部分如图所示,由于圆心()2,2到12y x =15=<,故直线12y x =与圆()()22221x y -+-=有两个交点,P 有2个元素,B 正确;C 选项,当0m =时,此时两圆圆心相同,半径相等,此时S 表示的部分如图所示,此时直线12y x =与S有两个交点,而102->,C 错误;D选项,当012m <<-时,()()2221x y m -+-=,由于圆心()2,m 到12y x =0,5⎛⎫= ⎪ ⎪⎝⎭,()()2221x y m -++=,由于圆心()2,m -到12y x =的距离为,15⎛⎫=⎪ ⎪⎝⎭,画出S表示的部分如图所示,此时直线12y x =分别与两圆交于两点,共4个交点,所以P 有4个元素,D 正确.故选:ABD【点睛】方法点睛:有关直线与圆的位置关系判断,可利用代数法或几何法进行求解,代数法即联立直线与圆的方程,根据根的判别式进行判断;几何法则使用点到直线距离,数形结合进行求解.三、填空题(本题共4小题,每小题5分,共20分)13.点()1,2P 到直线3460x y +-=的距离为______.【答案】1【解析】【分析】直接利用点到直线的距离公式计算可得.【详解】点()1,2P 到直线3460x y +-=的距离1d ==.故答案为:114.已知椭圆()222210x y a b a b+=>>的左右焦点分别为12,F F ,P 为椭圆上的点,若1260F PF ∠=︒,122PF PF =,则椭圆的离心率等于______.【答案】3【解析】【分析】根据椭圆定义求出1242,33a a PF PF ==,由余弦定理求出方程,求出离心率.【详解】由椭圆定义可得122PF PF a +=,又122PF PF =,故1242,33a a PF PF ==,由余弦定理得222222221212122121642044999cos 421622339a a a c c F P F P F F F PF a a a F P F P +--+-∠===⋅⋅⋅,故222204191629a c a -=,故2224016899a a c -=,解得3c a =,故离心率为3故答案为:315.已知数列()()()*121221n n n n n n +⎧⎫+⎪⎪∈⎨⎬+++⎪⎪⎩⎭N 的前n 项和为n S .当1760n S >时,n 的最小值是______.【答案】4【解析】【分析】将()()121221n n n n n +++++化为111221n n n n +-+++,利用裂项求和法求出n S ,再结合数列的单调性,求解不等式,即可得答案.【详解】由于()()112111221221n n n n n n n n n +++=-++++++,故111111111131122132166n n n n S n n n ++-+-++--==+++++ ,由1760n S >,可得1111732160n n +->++,即12120n n +++>,由于()1*21,n n n +++∈N 的值随n 的增大而增大,且3n =时,12120n n +++=,4n =时,1213720n n +++=>,故n 的最小值为:4,故答案为:416.已知抛物线21:4C x y =和22:8C x y =-.点P 在2C 上(点P 与原点不重合),过点P 作1C 的两条切线,切点分别为A B ,,直线AB 交2C 于C D ,两点,则ABCD 的值为______.【答案】2【解析】【分析】设出直线AB 方程y kx b =+,分别与抛物线1C ,2C 联立,结合判别式,韦达定理及弦长公式即可求解.【详解】依题知直线AB 的斜率存在且不为0,设直线:,(0)AB y kx b k =+≠,1122(,),(,)A x y B x y ,联立24=+⎧⎨=⎩y kx b x y,得2440x kx b --=,则216160k b ∆=+>,121244x x k x x b +=⎧⎨⋅=-⎩,设过A 点的切线方程为111()y y k x x -=-,则1112()4y y k x x x y-=-⎧⎨=⎩,得221111440-+-=x k x k x x ,由221111161640k k x x ∆=-+=,得112x k =,故过A 点的切线方程为111()2x y y x x -=-,即112x x y y =-,同理过B 点的切线方程为222x x y y =-,联立得1222x x x k y b+⎧==⎪⎨⎪=-⎩,则点(2,)p k b -,则2(2)8()k b =--,得22k b =,设3344(,),(,)C x y D x y ,联立28y kx b x y=+⎧⎨=-⎩,得2880x kx b ++=,264320k b ∆=->,343488x x k x x b +=-⎧⎨⋅=⎩,1234||||||||2x x AB CD x x -==-.故答案为:2.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知圆C 经过原点及点()(200A B ,,.(1)求圆C 的标准方程;(2)过原点的直线l 与圆C 相交于P Q ,两点,若2PQ =,求直线l 的方程.【答案】(1)()(2214x y -+-=(2)0y =或y =【解析】【分析】(1)由OA OB ⊥,可知线段AB 的中点为圆心,线段AB 的长为圆C 的直径,得解;(2)分直线l 的斜率是否存在进行讨论,在存在时,利用勾股定理求出弦心距,求解直线方程.【小问1详解】设原点为O ,易知OA OB ⊥,线段AB的中点为圆心,圆心坐标为(.线段AB 的长为圆C 的直径,AB 4=,半径2r =.圆C 的标准方程为()(2214x y -+-=【小问2详解】①当直线l 的斜率不存在时,直线l 的方程为0x =,令0x =,代入圆C 的标准方程,解得0y =或y =PQ =.②当直线l 的斜率存在时,设直线l 的方程为y kx =,将其转化为一般式方程0kx y -=,圆心到直线的距离为d,则d ===得(()2231k k =+,化简得0k =或k =l 的方程为0y =或y =.18.已知数列{}()*N n a n ∈是公比不为1的等比数列,其前n 项和为n S .已知1233,2,a a a 成等差数列,326S =.(1)求数列{}n a 的通项公式;(2)若12⎛⎫=+ ⎪⎝⎭n n b n a ,求数列{}n b 的前n 项和n T .【答案】(1)123n n a -=⋅;(2)3n n T n =⋅.【解析】【分析】(1)应用等比数列的基本量运算及等差中项即可;(2)应用错位相减法即可.【小问1详解】设等比数列{}n a 的公比为q ,由题意得:13234a a a +=,即211134a a q a q +=,10a ≠ ,得234q q +=,解得1q =或3q =.由于1q =不符合题意,因此3q =.由326S =得,12326a a a ++=,即1113262a a ==,.所以123n n a -=⋅.【小问2详解】由题意得,()1213n n b n -=+,则()()01221335373213213n n n T n n --=⨯+⨯+⨯++-++ ,则()()12313335373213213n n n T n n -=⨯+⨯+⨯++-++ ,则()()()()1012131323323332133221313n n n n nT n n ----=⨯+⨯+++-+=+-+- ,则()()12333121323n n n n T n n --=+--+=-⋅,3n n T n =⋅.19.在长方体1111ABCD A B C D -中,1AB AD ==.从①②这两个条件中任选一个解答该题.①直线AB 与平面1ACD 所成角的正弦值为23;②平面11ABB A 与平面1ACD 的夹角的余弦值为23.(1)求1AA 的长度;(2)E 是线段1BD (不含端点)上的一点,若平面11A C E ⊥平面ADE ,求1BE BD 的值.【答案】(1)12AA =;(2)116BE BD =.【解析】【分析】(1)以1BC BA BB ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,利用向量法求出平面1ACD 的法向量,借助二面角或线面角的向量法求解即可;(2)设()()1,,2,1BE BD λλλλλ==≠ ,求出平面11A C E 的法向量与平面ADE 的法向量,利用法向量垂直,即可求出1BE BD 的值.【小问1详解】在长方体1111ABCD A B C D -中,易知1BC BA BB ,,两两垂直,如图,以B 点为坐标原点,以1BC BA BB ,,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.则()()()0,0,00,1,01,0,0B A C ,,,设1AA a =,则()()()111,1,1,1,01,0,D a AC AD a =-= ,,,设平面1ACD 的法向量()111,,n x y z =.1111100n AC x y n AD x az ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,,取1111x a y a z ===-,,,则(),,1n a a =- .若选择条件①,()0,1,0AB =- ,设直线AB 与平面1ACD 所成角为θ,则2sin cos ,3n AB θ=== ,解得2a =,或2a =-(舍去),即12AA =.若选择条件②,易知平面11ABB A 的法向量为()1,0,0m = ,设平面11ABB A 与平面1ACD 的夹角为α,则2cos ·3m n m n α⋅=== ,解得2a =,或2a =-(舍去),即12AA =.【小问2详解】由题(1)得:()()()()()1111111,1,20,1,21,0,21,1,21,1,0D A C BD A C ==- ,,,,.设()()1,,2,1BE BD λλλλλ==≠ ,则()()1,,2,,1,22E A E λλλλλλ=-- .设平面11A C E 的法向量()222,,.s x y z =所以111s A C s A E ⎧⊥⎪⎨⊥⎪⎩ ,即()()1122122201220s AC x y s A E x y z λλλ⎧⋅=-=⎪⎨⋅=+-+-=⎪⎩ ,,取222121,22x y z λλ-===-,则121,1,22s λλ-⎛⎫= ⎪-⎝⎭,又()(),1,21,0,0AE AD λλλ=-= ,,设平面ADE 的法向量()333,,t x y z =.()33331200t AE x y z t AD x λλλ⎧⋅=+-+=⎪⎨⋅==⎪⎩,,令3321y z λλ=-=-,,则()0,2,1t λλ=-- . 平面11A C E ⊥平面0ADE s t ∴⋅=, ,即()()12112220222λλλλλλ----+=-+=-,解得16λ=,所以116BE BD =.20.如图,圆C 的半径为4,A 是圆内一个定点且2CA P =,是圆C 上任意一点,线段AP 的垂直平分线l 和半径CP 相交于点Q ,点P 在圆上运动.(1)求点Q 的轨迹;(2)当CP CA ⊥时,证明:直线l 与点Q 形成的轨迹相切.【答案】(1)Q 点的轨迹是以C A ,为焦点,长轴长等于4的椭圆(2)证明见解析【解析】【分析】(1)根据椭圆的定义可得答案;(2)以线段CA 的中点为坐标原点O ,以过点C A ,的直线为x 轴,以线段CA 的垂直平分线为y 轴,建立平面直角坐标系Oxy ,求出椭圆的标准方程,当CP CA ⊥时,P 点的坐标为()1,4-和()1,4--,求出直线l 的方程与椭圆方程联立利用判别式可得答案.【小问1详解】44CP QC QP QP QA QC QA =+==∴+= ,,,因为2QC QA CA +>=,所以Q 与两个定点C A ,的距离的和等于常数(大于CA ),由椭圆的定义得,Q 点的轨迹是以C A ,为焦点,长轴长等于4的椭圆;【小问2详解】以线段CA 的中点为坐标原点O ,以过点C A ,的直线为x 轴,以线段CA 的垂直平分线为y 轴,建立平面直角坐标系Oxy ,设椭圆的标准方程为()222210x y a b a b+=>>,由椭圆的定义得:24a =,即222a c ==;,即1c =,则椭圆的标准方程为22143x y +=,当CP CA ⊥时,P 点的坐标为()1,4-和()1,4--.当P 点的坐标为()1,4-时,已知A 点的坐标为()1,0,线段PA 的中点坐标为()0,2,直线AP 的斜率为40211-=---,直线l 的方程122y x =+,联立方程22122143y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得2213421202x x ⎛⎫++-= ⎪⎝⎭,整理得2210x x ++=,可得Δ440=-=,所以直线l 与点Q 形成的轨迹只有1个交点,即直线l 与点Q 形成的轨迹相切.当P 点的坐标为()1,4--时,已知A 点的坐标为()1,0,线段PA 的中点坐标为()0,2-,直线AP 的斜率为40211--=--,直线l 的方程122y x =--,联立方程22122143y x x y ⎧=--⎪⎪⎨⎪+=⎪⎩,得2213421202x x ⎛⎫+---= ⎪⎝⎭,整理得2210x x ++=,可得Δ440=-=,所以直线l 与点Q 形成的轨迹只有1个交点,即直线l 与点Q 形成的轨迹相切.综上,直线l 与点Q 形成的轨迹相切.21.某游乐园中有一座摩天轮.如图所示,摩天轮所在的平面与地面垂直,摩天轮为东西走向.地面上有一条北偏东为θ的笔直公路,其中2cos 7θ=.摩天轮近似为一个圆,其半径为35m ,圆心O 到地面的距离为40m ,其最高点为A A ,点正下方的地面B 点与公路的距离为70m .甲在摩天轮上,乙在公路上.(为了计算方便,甲乙两人的身高、摩天轮的座舱高度和公路宽度忽略不计)(1)如图所示,甲位于摩天轮的A 点处时,从甲看乙的最大俯角的正切值等于多少?(2)当甲随着摩天轮转动时,从乙看甲的最大仰角的正切值等于多少?【答案】(1)1514(2)1424【解析】【分析】(1)设公路所在直线为l ,过B 点作l 的垂线,垂直为D ,由tan AB ADB AD ∠=得答案;(2)设甲位于圆O 上的R 点处,直线OF 垂直于OA 且交圆O 于F 点,射线OR 可以看成是射线OF 绕着O 点按逆时针方向旋转α角度得到.过R 点正下方的地面T 点向l 作垂线,垂足为S .tan RST ∠取得最大值时,RST ∠即为从乙看甲的最大仰角,tan RST ∠8sin 7727cos αα--=-⋅-,其中,8sin 77cos αα---表示点()cos ,sin αα和点87,7⎛⎫ ⎪⎝⎭构成的直线a 的斜率,根据直线与圆的位置关系即可求解.【小问1详解】如图所示,设公路所在直线为l ,过B 点作l 的垂线,垂直为D ,70BD =m.因为圆的半径为35m ,圆心O 到地面的距离为40m ,所以75AB =m.从甲看乙的最大俯角与ADB ∠相等,由题意得AB BD ⊥,则7515tan 7014AB ADB AD ∠===.【小问2详解】如图所示,设甲位于圆O 上的R 点处,直线OF 垂直于OA 且交圆O 于F 点,射线OR 可以看成是射线OF 绕着O 点按逆时针方向旋转α角度得到.过R 点正下方的地面T 点向l 作垂线,垂足为S .当tan RST ∠取得最大值时,RST ∠即为从乙看甲的最大仰角.题意得:35sin 40tan 27035cos 7RST αα+∠=-⨯88sin sin 777727cos 27cos αααα+--=⋅=-⋅--,其中,8sin 77cos αα---表示点()cos ,sin αα和点87,7⎛⎫- ⎪⎝⎭构成的直线a 的斜率,当直线a 的斜率取得最小值时,tan RST ∠取最大值.因为点()cos ,sin αα在单位圆221x y +=上,所以当直线a 与单位圆相切时,斜率取得最大值或最小值.设过点87,7⎛⎫- ⎪⎝⎭的直线方程为:()877y k x +=-,1=,解得1484k -±=,则直线a 的斜率最小值为1415184--,代入可得tan RST ∠取最大值是1415124+.【点睛】方法点睛:求()sin cos x a f x x b+=+的最值时,可转化为求点()cos ,sin x x 与(),b a --连线斜率的最值,设出过点(),b a --的直线方程,由点()cos ,sin x x 在单位圆上,根据直线与圆相切即可求解.22.已知双曲线()2222:100x y C a b a b-=>>,的实轴长为,直线2x =交双曲线于A B ,两点,2AB =.(1)求双曲线C 的标准方程;(2)已知点()2,3M ,过点(),0T t 的直线l 与双曲线交于P Q ,两点,且直线MP 与直线MQ 的斜率存在,分别记为12k k ,.问:是否存在实数t ,使得12k k +为定值?若存在,则求出t 的值;若不存在,请说明理由.【答案】(1)2212x y -=;(2)存在,1t =.【解析】【分析】(1)由已知得2a =,将2x =代入方程可解得b ,故可得双曲线C 的标准方程;(2)设()()1122,,,P x y Q x y ,则1212123322y y k k x x --+=+--,再分直线l 的斜率不存在和直线l 的斜率存在讨论可得答案.【小问1详解】由已知得2a =,故a =将2x =代入方程22212x y b-=,得y b =±,由2AB =得,22,1b b ==.因此双曲线的标准方程为2212x y -=.【小问2详解】设()()1122,,P x y Q x y ,,则12121233,22y y k k x x --==--,则1212123322y y k k x x --+=+--.①当直线l 的斜率存在时,设直线l 的方程为()y k x t =-,则()11y k x t =-,()22y k x t =-,则()()1212123322k x t k x t k k x x ----+=+--()()()()()()122112323222k x t x k x t x x x ⎡⎤⎡⎤---+---⎣⎦⎣⎦=--()()()1212121222341224kx x k t x x kt x x x x ⎡⎤-+++++⎣⎦=-++.联立方程()2212y k x t x y ⎧=-⎪⎨-=⎪⎩可得()()22222124220k x k tx k t -+-+=,因为过点(),0T t 的直线l 与双曲线交于P Q ,两点,所以()()()222222120Δ4412220k k t k k t ⎧-≠⎪⎨=+-+>⎪⎩,即222212120k k t k ⎧≠⎪⎨⎪+->⎩.则222121222422,1212k t k t x x x x k k++=-=---.故22122222124244122882k t kt k k k k k t k t k +--++=-+-+()()()22212241122442k t k t k t t -+-+=-+-+.令()()()22212241122442k t k t k t t λ-+-+=-+-+,整理得()()()2212222411220t t k t k λλ⎡⎤-+-+-+-=⎣⎦.要使得对任意的k 上式恒成立,则()()()21222204101220t t t λλ⎧-+-=⎪-=⎨⎪-=⎩,解得1,6t λ==,所以,当1t =时,21221212622k k k k -++==-+.②当直线l 的斜率不存在时,由①得,12k k +为定值的必要条件是1t =,即直线l 过定点()1,0,此时直线l 的方程为1x =,易知直线l 与双曲线没有交点,不符合题意的要求.综上所述,当1t =时,12k k +为定值6.【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.。
2023-2024学年山东省滨州市高二上册期末数学模拟试题(含解析)

2023-2024学年山东省滨州市高二上册期末数学模拟试题一、单选题1.已知等比数列{}n a 的前n 项和为n S ,首项为1a ,公比为q ,则21S a =()A .2B .qC .2qD .1q+【正确答案】D 【分析】根据211111S a a q q a a +==+求解即可.【详解】因为{}n a 等比数列,10a ≠,所以212111111S a a a a q q a a a ++===+.故选:D2.下列关于抛物线2y x =的图象描述正确的是()A .开口向上,焦点为10,4⎛⎫ ⎪⎝⎭B .开口向右,焦点为1,04⎛⎫⎪⎝⎭C .开口向上,焦点为10,2⎛⎫⎪⎝⎭D .开口向右,焦点为1,02⎛⎫⎪⎝⎭【正确答案】A【分析】把2y x =化成抛物线标准方程2x y =,依据抛物线几何性质看开口方向,求其焦点坐标即可解决.【详解】2y x =,即2x y =.则21p =,即12p =故此抛物线开口向上,焦点为10,4⎛⎫⎪⎝⎭故选:A3.若直线20x ay ++=与直线230x y --=平行,则=a ()A .2-B .12-C .12D .2【正确答案】A【分析】根据给定条件列式计算,再进行验证即可作答.【详解】因直线20x ay ++=与直线230x y --=平行,则1(2)10a ⨯--⨯=,解得2a =-,当2a =-时,直线220x y -+=与直线230x y --=平行,所以2a =-.故选:A4.在空间直角坐标系中,已知点(3,0,4)A ,(1,4,2)B -,则线段AB 的中点坐标与向量AB的模长分别是()A .(1,2,3);5B .(1,2,3);6C .(2,2,1)--;5D .(2,2,1)--;6【正确答案】B【分析】根据给定条件利用中点坐标公式及空间向量模长的坐标表示计算作答.【详解】因点(3,0,4)A ,(1,4,2)B -,所以线段AB 的中点坐标为(1,2,3),||6AB =.故选:B5.已知公差为d 的等差数列{}n a 满足12200a a a ++⋅⋅⋅+=,则()A .0d =B .100a =C .12190a d +=D .5150a a +=【正确答案】C【分析】根据等差数列前n 项和,即可得到答案.【详解】∵数列{}n a 是公差为d 的等差数列,∴1220120192002a a a a d ⨯++⋅⋅⋅+=+=,∴12190a d +=.故选:C6.惊艳全世界的南非双曲线大教堂是由伦敦著名的建筑事务所steynstudio 完成的,建筑师的设计灵感源于想法:“你永无止境的爱是多么的珍贵,人们在你雄伟的翅膀下庇护”.若将如图所示的双曲线大教堂外形弧线的一段近似看成双曲线221x y m-=(0m >)下支的一部分,且此双曲线的一条渐近线方程为20x my -=,则此双曲线的离心率为()AB C .2D【正确答案】B【分析】首先根据双曲线的渐近线方程得到2m =1a =,2b =,c =,再求离心率即可.【详解】双曲线221x y m-=()0m >,1a =,b =因为双曲线的一条渐近线方程为20x my -=,即2y x m=,所以2m 4m =,所以1a =,2b =,c =,ce a==.故选:B7.已知直线+(0)y x t t =>与圆22:4O x y +=相交于,A B 两点,当AOB 的面积最大时,t 的值是()A .1B C .2D .【正确答案】C【分析】利用点到直线的距离公式和弦长公式可以求出AOB 的面积是关于t 的一个式子,即可求出答案.【详解】圆心(0,0)到直线+(0)y x t t =>的距离d =弦长AB 为.1122AOBSAB d =⋅⋅=⨯当24t =,即2t =时,AOBS 取得最大值.故选:C.8.已知(),0,ln ,0,x e x f x x x ⎧≤⎪=⎨>⎪⎩若函数()()g x f x a =+有两个零点,则实数a 的取值范围是A .1a >B .1a <-C .1a <-或0a =D .1a ≥【正确答案】B【分析】依题意画出函数()f x 的图象,将函数的零点转化为函数()y f x =与y a =-的交点,数形结合即可得到不等式,从而解得;【详解】解:因为(),0,ln ,0,x e x f x x x ⎧≤⎪=⎨>⎪⎩画出函数图象如下所示:函数()()g x f x a =+有两个零点,即函数()y f x =与y a =-有两个交点,所以1a ->所以1a <-故选:B本题考查函数方程的综合应用,数形结合思想的应用,属于中档题.二、多选题9.下列直线方程中斜率1k ≠的有()A .1x y +=B .1x y -=C .tan1y x =⋅D .4y xπ=【正确答案】ACD【分析】把所给直线方程化成斜截式直线方程,直接读取斜率k ,与1进行比较即可.【详解】选项A :1x y +=可化为1y x =-+,斜率1k =-,则有1k ≠.判断正确;选项B :1x y -=可化为1y x =-,斜率1k =.判断错误;选项C :tan1y x =⋅,斜率tan1tan 14k π=>=,则有1k ≠.判断正确;选项D :4y x π=,斜率14k π=<,则有1k ≠.判断正确.故选:ACD10.已知曲线E 的方程为22x y x y +=+,则()A .曲线E 关于直线y x =对称B .曲线E 围成的图形面积为2π+C .若点00(,)x y 在曲线E 上,则0x ≤≤D .若圆222(0)x y r r +=>能覆盖曲线E ,则r 的最小值为【正确答案】ABC【分析】根据给定条件逐一分析每一个选项,推理、计算判断作答.【详解】对于A ,曲线E 上任意点(,)x y 有:22x y x y +=+,该点关于直线y x =的对称点(,)y x 有22y x y x +=+,即曲线E 上任意点(,)x y 关于直线y x =的对称点仍在曲线E 上,A 正确;对于B ,因点(,)x y 在曲线E 上,点(,)x y -,(,)x y -也都在曲线E 上,则曲线E 关于x 轴,y 轴对称,当0,0x y ≥≥时,曲线E 的方程为22111()()222x y -+-=,表示以点11(,)22为圆心,2为半径的圆在直线1x y +=上方的半圆(含端点),因此,曲线E 是四个顶点为(1,0),(0,1),(1,0),(0,1)--的正方形各边为直径向正方形外所作半圆围成,如图,所以曲线E 围成的图形面积是211224()2222ππ⨯⨯+⨯⨯=+,B 正确;对于C ,点00(,)x y 在曲线E 上,则2200002200111(||)(||)222x y x y x y ⇔-+-+=+=,则有2011(||)22x -≤,即01||2x ≤,解得01122x +-≤≤,而[[⊆,C 正确;对于D ,曲线E 2=,圆222(0)x y r r +=>能覆盖曲线E ,则min r =,D 不正确.故选:ABC11.已知函数323f x ax ax b =-+(),其中实数0R a b >∈,,点2A a (,),则下列结论正确的是()A .f x ()必有两个极值点B .当2b a =时,点10(,)是曲线y f x =()的对称中心C .当3b a =时,过点A 可以作曲线y f x ='()的2条切线D .当56a b a <<时,过点A 可以作曲线y f x =()的3条切线【正确答案】ABD【分析】对f x ()求导,得到()f x 的单调性,判断f x ()的极值点个数可判断A ;当2b a =时,计算()()20f x f x +-=可判断B ;当3b a =时,设切点为()2000,36B x ax ax -,求出过点A 的切线方程,通过求∆可判断C ;设切点为()32000,3C x ax ax b -+,求出过点A 的切线方程,令()322912,g x ax ax ax a y b =-++=所以过点A 可以作曲线y f x =()的切线条数转化为()y g x =与y b =图象的交点个数即可判断D.【详解】对于A ,()()23632f x ax ax ax x '=-=-,令()0f x '=,解得:0x =或2x =,因为0a >,所以令()0f x ¢>,得0x <或2x >,令()0f x '<,得02x <<,所以()f x 在()(),0,2,-∞+∞上单调递增,在()0,2上单调递减,所以()f x 在0x =处取得极大值,在2x =处取得极小值.所以A 正确;对于B ,当2b a =时,()3232f x ax ax a =-+,()()()32322232232f x a x a x a ax ax a -=---+=-+-,()()20f x f x +-=,所以点10(,)是曲线y f x =()的对称中心,所以B 正确;对于C ,当3b a =时,()3233f x ax ax a =-+,令()()236f x g x ax ax '==-,()66g x ax a '=-,设切点为()2000,36B x ax ax -,所以在B 点处的切线方程为:()()()200003666y ax ax ax a x x --=--,又因为切线过点()2,A a ,所以()()()2000036662a ax ax ax a x --=--,化简得:200312130x x -+=,()21243130∆=-⨯⨯<,所以过点A 不可以作曲线y f x ='()的切线,所以C 不正确;对于D ,()236f x ax ax '=-,设切点为()32000,3C x ax ax b -+,所以在C 点处的切线方程为:()()()32200000336y ax ax b ax ax x x --+=--,又因为切线过点()2,A a ,所以()()()322000003362a ax ax b ax ax x --+=--,解得:320002912ax ax ax a b -++=,令()322912,g x ax ax ax a y b=-++=所以过点A 可以作曲线y f x =()的切线条数转化为()y g x =与y b =图象的交点个数.()()()()2261812632612g x ax ax a a x x a x x '=-+=-+=--,则()g x 在()(),1,2,-∞+∞上单调递增,在()1,2上单调递减,()()16,25g a g a ==,如下图所示,当56a b a <<时,过点A 可以作曲线y f x =()的3条切线.故D 正确.故选:ABD.12.如图所示,已知12,F F 分别为双曲线2213y x -=的左、右焦点,过2F 的直线与双曲线的右支交于,A B 两点,记12AF F △的内切圆1O 的面积为1S ,12BF F △的内切圆2O 的面积为2S ,则()A .圆1O 和圆2O 外切B .圆心1O 一定不在直线AO 上C .212⋅=S S πD .12S S +的取值范围是[]2,3ππ【正确答案】ABC【分析】由双曲线定义及圆的切线长定理,数形结合可以顺利求得1O 的横坐标,同样由数形结合可得到直线AB 的倾斜角取值范围为2,33ππ⎛⎫⎪⎝⎭,接下来再去求值、证明即可解决.【详解】双曲线2213y x -=的12a b c ===,,渐近线方程为y =、y =,两渐近线倾斜角分别为3π和23π,设圆1O 与x 轴切点为G过2F 的直线与双曲线的右支交于,A B 两点,可知直线AB 的倾斜角取值范围为2,33ππ⎛⎫⎪⎝⎭由双曲线定义和圆的切线长定理可知1O 、2O 的横坐标均为a ,即1O 2O 与x 轴垂直.故圆1O 和圆2O 均与x 轴相切于(1,0)G ,圆1O 和圆2O 两圆外切.选项A 判断正确;由双曲线定义知,12AF F △中,12AF AF >,则AO 只能是12AF F △的中线,不能成为12F AF ∠的角平分线,则圆心1O 一定不在直线AO 上.选项B 判断正确;在122O O F △中,12290O F O ∠= ,122O O F G ⊥,则由直角三角形的射影定理可知2212F G O G O G =⋅,即212()c a r r -=⋅则121r r ⋅=,故2221212S S r r πππ⋅=⋅=.选项C 判断正确;由直线AB 的倾斜角取值范围为2,33ππ⎛⎫ ⎪⎝⎭,可知21AF F ∠的取值范围为2,33ππ⎛⎫⎪⎝⎭,则121O F F ∠的取值范围为,63ππ⎛⎫⎪⎝⎭,故12121121tan tan r F G O F F O F F =⋅∠=∠∈⎝则22212121211()(),S S r r r r ππ+=+=+13r ⎛∈ ⎝令11(),,33f x x x x ⎛⎫=+∈ ⎪⎝⎭,则()f x 在1,13⎛⎫⎪⎝⎭单调递减,在()1,3单调递增.(1)2f =,110(33f =,10(3)3f =,11(),,33f x x x x ⎛⎫=+∈ ⎪⎝⎭值域为102,3⎡⎫⎪⎢⎣⎭故2121211(),S S r r π+=+13r ⎛∈ ⎝的值域为102,3ππ⎡⎫⎪⎢⎣⎭.选项D 判断错误.故选:ABC数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。
外研版英语高二上学期试卷及答案指导(2024年)

2024年外研版英语高二上学期模拟试卷及答案指导一、听力第一节(本大题有5小题,每小题1.5分,共7.5分)1、Question: What is the name of the author being discussed in the conversation?A) Jane AustenB) Charles DickensC) Mark TwainD) Emily BrontëAnswer: B) Charles DickensExplanation: The conversation mentions a famous novel by the author, which is “Great Expectations,” a novel by Charles Dickens. Therefore, the correct answer is B) Charles Dickens.2、Question: How does the woman describe her recent trip to the mountains?A) It was very hot.B) It was quite challenging.C) It was very relaxing.D) It was quite expensive.Answer: B) It was quite challenging.Explanation: The woman in the conversation mentions that the hike up the mountain was difficult and required a lot of effort, indicating that it was challenging. Thus, the correct answer is B) It was quite challenging.3、Question 3:Conversation:M: Hi, Sarah. Are you going to the library today?W: Yes, but I’ll be leaving a bit later because I have a class until 3 PM. Q: What does Sarah plan to do after her class?(A) Go home(B) Meet a friend(C) Go to the library(D) Attend a lectureAnswer: CExplanation: The woman indicates that she will go to the library, but only after her class ends at 3 PM.4、Question 4:Conversation:W: Excuse me, Professor White. Could you give me a brief overview of today’s lecture?M: Of course. We discussed the impact of technology on communication in the 21st century.Q: What topic did Professor White cover in his lecture?(A) The history of communication(B) The future of technology(C) The influence of technology on modern communication(D) The development of 21st-century educationAnswer: CExplanation: Professor White explicitly states that the lecture covered the impact of technology on communication in the current century, which aligns with option C.5、Listen to the conversation and answer the question.W: Hey, John, did you know that the average temperature in the city for the past week was 75 degrees Fahrenheit?M: Yeah, that’s quite hig h compared to last year. It was only 60 degrees Fahrenheit last week at this time.Q: What was the average temperature in the city last week at this time last year? A: 60 degrees Fahrenheit解析:This question tests your ability to understand numbers and compare information. The key phrase to listen for is “60 degrees Fahrenheit last year at this time,” which directly gives you the answer.二、听力第二节(本大题有15小题,每小题1.5分,共22.5分)1、Question: What is the name of the author who wrote the book “To Kill a Mockingbird”?Options:A. Jane AustenB. Mark TwainC. Harper LeeD. F. Scott FitzgeraldAnswer: C. Harper LeeExplanation: “To Kill a Mockingbird” is a novel written by Harper Lee. The other options listed are authors of different famous works, but they are not the author of this specific book.2、Question: What is the capital city of France?Options:A. RomeB. ParisC. LondonD. BerlinAnswer: B. ParisExplanation: Paris is the capital city of France. The other options listed are the capitals of Italy (Rome), the United Kingdom (London), and Germany (Berlin), respectively.3.You will hear a conversation between two students, Alice and Bob, discussing their weekend plans. Listen and answer the question.Question: What activity does Alice plan to do on Saturday afternoon?A. Visit a museumB. Go hikingC. Watch a movieD. Go shoppingAnswer: BExplanation: In the conversation, Alice says, “I’m planning to g o hiking with some friends on Saturday afternoon. It should be a lot of fun!” This indicates that her plan for Saturday afternoon is to go hiking.4.You will hear a news report about the upcoming climate change conferencein Paris. Listen and answer the question.Question: According to the report, what is the main goal of the conference?A. To discuss the history of climate changeB. To find a solution to the global financial crisisC. To create a global agreement on reducing carbon emissionsD. To promote tourism in ParisAnswer: CExplanation: The news report states, “The main goal of the conference is to reach a global agreement on reducing carbon emissions to combat climate change.” This directly answers the question about the main goal of the conference.5.You will hear a conversation between two students, Tom and Sarah, discussing their weekend plans. Listen to the conversation and answer the question.Question: What does Sarah plan to do on Saturday afternoon?A. Visit a museum.B. Go to a movie with Tom.C. Attend a sports event.D. Have a quiet day at home.Answer: A. Visit a museum.Explanation: In the conversation, Sarah mentions, “I’m thinking of visiting the art museum this Saturday afternoon.” This indicates that her plan is to visit a museum.6.You will hear a news report about a new study on climate change. Listen to the report and answer the question.Question: What is the main finding of the study according to the report?A. Climate change is slowing down.B. The effects of climate change are becoming less severe.C. The rate of global warming is increasing.D. The impact of climate change is minimal.Answer: C. The rate of global warming is increasing.Explanation: The news report states, “The study indicates that the rate of global warming is accelerating at an unprecedented pace, which is causing concern among scientists.” This statement supports option C as the correct answer.7.You hear a conversation between two students discussing their weekend plans. The first student mentions going to the beach, and the second student responds with enthusiasm. What does the second student say?A)“That sounds amazing, I wish I could go with you.”B)“I’m not a big fan of the beach, but I’ll consider it.”C)“I’ve never been to the beach, but I’ll give it a try.”D)“That’s a terrible idea, I prefer staying indoors.”Answer: A)Explanation: The second student expresses enthusiasm for the first student’s plan to go to the beach. The correct response is “That sounds amazing, I wish I could go with you.”8.You hear a conversation between a teacher and a student. The student is asking for advice on choosing a major. The teacher suggests that the student consider their interests and strengths. What does the teacher say?A)“You should choose a major that you’re passionate about.”B)“I think it’s best to choose a major that will make you a lot of money.”C)“You should choose a major that will make your parents happy.”D)“You should choose a major based on what your friends are studying.”Answer: A)Explanation: The teacher advises the student to consider their interests and strengths when choosing a major. The correct response is “You should choose a major that you’re passionate about.”9.You will hear a conversation between two students discussing their favorite subjects. Listen to the conversation and answer the question.Question: What subject does the girl prefer?A. MathB. EnglishC. HistoryD. ScienceAnswer: BExplanation: In the conversation, the girl says, “I really like E nglish because it’s both challenging and fun.” This indicates that her favorite subject is English.10.You will hear a dialogue between a teacher and a student about the student’s homework. Listen to the dialogue and answer the question.Question: Why is the student worried about the homework?A. The homework is too difficult.B. The homework is due the next day.C. The student has already completed the homework.D. The student doesn’t understand the instructions.Answer: DExplanation: The teacher asks, “Why don’t you understand the instructions for the homework?” The student responds, “I’m not sure what to do with the data analysis part.” This shows that the student is worried because they don’t understand the instructions.11.You hear a conversation between two students discussing their weekend plans.A)They plan to go hiking.B)They plan to stay at home and study.C)They plan to go to a concert.Answer: B) They plan to stay at home and study.Explanation: In the conversation, one student mentions having a lot of homework and the other agrees that it’s important to focus on studying,indicating that they plan to stay at home.12.You hear a news report about a recent scientific discovery.A) A new type of technology has been developed.B) A famous scientist has passed away.C) A major medical breakthrough has been achieved.Answer: A) A new type of technology has been developed.Explanation: The news report focuses on the introduction of a new technology that has the potential to impact various fields, which is why option A is the correct answer. The other options are not mentioned in the report.13.You will hear a short conversation between two students. Listen and answer the question.Question: What are the students discussing?A. The weather forecast for the weekend.B. The deadline for an upcoming assignment.C. The latest movie they watched together.D. The location of a new café in town.Answer: B解析:In the conversation, the students are talking about the deadline for an upcoming assignment. They discuss the importance of finishing it on time and how they need to manage their time effectively.14.You will hear a short lecture about the impact of social media on young adults. Listen and answer the question.Question: According to the lecture, what is one potential negative effectof social media on young adults?A. Improved communication skills.B. Increased self-confidence.C. Decreased face-to-face social interactions.D. Enhanced educational opportunities.Answer: C解析:In the lecture, the speaker mentions that one potential negative effect of social media on young adults is the decreased face-to-face social interactions. The speaker discusses how excessive time spent on social media can lead to less personal communication and a reliance on digital interactions.15.You will hear a conversation between two students, John and Emily, discussing their favorite subjects. Listen to the conversation and choose the best answer to the following question.Question: What is the main reason Emily chose her major?A. She is interested in mathematics.B. She wants to study computer science.C. She is passionate about literature.D. She is good at economics.Answer: C. She is passionate about literature.Explanation: In the conversation, Emily mentions that she has always loved reading books and writing stories, which is why she chose to major in literature. Therefore, the correct answer is C. She is passionate about literature.三、阅读第一节(第1题7.5分,其余每题10分,总37.5分)第一题Read the following passage carefully and then answer the questions below.In recent years, the importance of environmental protection has been increasingly recognized worldwide. As the global population continues to grow and urbanization expands, the negative impact of human activities on the environment has become more evident. One of the most pressing issues is climate change, which is caused by the excessive emission of greenhouse gases. The rising temperatures are leading to more frequent and severe natural disasters, such as hurricanes, floods, and droughts. In addition to climate change, pollution from factories and vehicles has also caused significant damage to ecosystems and human health.Many countries have started to take action to mitigate the environmental problems. Renewable energy sources, such as solar and wind power, are being developed to reduce reliance on fossil fuels. Public transportation systems are being improved to encourage people to use eco-friendly modes of transport. Moreover, governments are implementing stricter regulations on industries to reduce their emissions and promote sustainable practices.Despite these efforts, it is still crucial for individuals to take responsibility for their own actions. Simple lifestyle changes, such as reducing waste, conserving water, and using energy-efficient appliances, can make a significant difference. Education and awareness are also vital in promoting aculture of environmental responsibility.Questions:1、What is the main topic of the passage?A. The benefits of renewable energy sourcesB. The negative impact of climate changeC. The role of individuals in environmental protectionD. The importance of public transportation systems2、According to the passage, what are the main causes of environmental problems?A. Climate change and pollutionB. Urbanization and overpopulationC. Deforestation and overfishingD. Fossil fuel consumption and deforestation3、Which of the following is NOT mentioned as a measure to mitigate environmental problems?A. Developing renewable energy sourcesB. Improving public transportation systemsC. Encouraging people to use eco-friendly modes of transportD. Implementing stricter regulations on industries and promoting sustainable practices4、What is the author’s main point about the role of individuals in environmental protection?A. Individuals should not take responsibility for their actions.B. Simple lifestyle changes can make a significant difference.C. Education and awareness are not important in promoting a culture of environmental responsibility.D. Individuals should only rely on governments and industries to solve environmental problems.Answers:1、C2、A3、C4、B第二题Reading PassageIn the small town of Windermere, nestled between the majestic mountains of the Lake District, there’s a hidden gem known as the Windermere Lake Steamboat Museum. This museum, which opened its doors in 1969, is dedicated to the rich history of steam-powered boats and their impact on the development of the region.The museum’s centerpiece is the world’s last remaining paddle steamer, the MV Balmoral, which was built in 1894. The Balmoral was an engineering marvel of its time, capable of carrying passengers and goods across the waters of Lake Windermere. The museum’s exhibits also include photographs, artifacts, and interactive displays that tell the story of the steamboat era.One of the most fascinating aspects of the museum is the opportunity for visitors to take a short steamboat ride on the lake, just as the early travelers would have done. The experience is not only educational but also offers a unique perspective of the landscape that has changed little over the years.The museum’s founder, Mr.Harold Pegg, was a local historian who had a deep passion for preserving the town’s heritage. He believed that the story of the steamboats was integral to understanding the development of the region and the lives of its people.Questions:1、What is the main focus of the Windermere Lake Steamboat Museum?A. The history of the town of WindermereB. The impact of steamboats on the Lake DistrictC. The life of Mr. Harold PeggD. The history of steam-powered boats and their role in the region2、What year was the MV Balmoral built?A. 1869B. 1894C. 1969D. 19403、What is a unique opportunity offered to visitors at the museum?A. A guided tour of the townB. A talk by a local historianC. The chance to take a steamboat ride on Lake WindermereD. A tasting of local cuisine4、Why did Mr. Harold Pegg establish the museum?A. To attract tourists to the townB. To showcase his own steamboat collectionC. To preserve the history of steamboats in the regionD. To promote the sale of steamboat memorabiliaAnswers:1、D2、B3、C4、C第三题Reading PassageThe following is a passage about the history and impact of the internet on modern life. Read the passage carefully and answer the questions that follow.In the late 20th century, the internet began to transform the way people communicate, work, and live. This digital revolution has had a profound impact on various aspects of society, including education, business, and entertainment. The internet has become an indispensable part of our daily lives, connecting people from all corners of the globe.The birth of the internet can be traced back to the 1960s, when the UnitedStates government initiated a project called ARPANET (Advanced Research Projects Agency Network). The primary goal of ARPANET was to create a decentralized communication network that could withstand nuclear attacks. Over time, ARPANET evolved into the modern internet we know today.1、What was the original purpose of ARPANET?A. To provide entertainment to the public.B. To create a decentralized communication network that could withstand nuclear attacks.C. To develop advanced research projects.D. To improve the quality of education.2、According to the passage, how has the internet changed our lives?A. It has made people more isolated.B. It has reduced communication between people.C. It has had a profound impact on various aspects of society.D. It has increased unemployment.3、The passage mentions that the internet has become an indispensable part of our daily lives. What does this mean?A. The internet is no longer important.B. The internet is a necessary part of our lives.C. The internet is not necessary for our lives.D. The internet is only important for some people.4、What is the main idea of the passage?A. The history of the internet.B. The impact of the internet on education.C. The impact of the internet on business.D. The impact of the internet on modern life.Answers:1、B2、C3、B4、D第四题Read the following passage and answer the questions that follow.The rise of the Internet has revolutionized the way we communicate and access information. With just a few clicks, we can now connect with people from all over the world, access a vast array of information, and even purchase products online. This technological advancement has brought both benefits and challenges to our society.In the past, communication was limited to letters, phone calls, and face-to-face meetings. Now, with email, social media, and instant messaging, we can communicate instantly with anyone, regardless of their location. This has greatly increased efficiency and convenience in our daily lives. However, it has also led to a decline in face-to-face interactions and a decrease in written communication skills.Information accessibility has also been greatly enhanced by the Internet. Libraries, once the go-to source for research, are now just one of many options. With a simple online search, we can find articles, books, and other resources in seconds. This has made education and self-learning more accessible to a wider audience. On the other hand, it has raised concerns about the reliability and accuracy of online information.Online shopping has become increasingly popular, offering convenience and a wide variety of choices. Customers can compare prices, read reviews, and even have products delivered to their doorstep. This has changed the retail landscape and forced traditional brick-and-mortar stores to adapt. However, there are concerns about the environmental impact of online shopping and the potential for fraud.1、What is the main topic of the passage?A. The advantages of the InternetB. The disadvantages of the InternetC. The impact of the Internet on communicationD. The impact of the Internet on education2、According to the passage, what is one of the challenges brought by the Internet?A. Increased efficiencyB. Decreased face-to-face interactionsC. Enhanced information accessibilityD. Improved communication skills3、How has the Internet affected libraries?A. Libraries have become obsolete.B. Libraries are no longer used for research.C. Libraries are still a valuable resource for research.D. Libraries have been replaced by online searches.4、What is a concern regarding online shopping mentioned in the passage?A. The convenience of online shopping.B. The environmental impact of online shopping.C. The wide variety of choices available.D. The potential for fraud in online transactions.Answers:1、C2、B3、C4、B四、阅读第二节(12.5分)Reading Section IIPassage:In the small coastal town of Porthaven, the community has long cherished its annual summer festival. This year, however, the festival is facing a newchallenge. The local council has proposed a plan to expand the town’s marina, which many residents believe will overshadow the festival and damage the natural beauty of the town.The festival, which has been running for over 50 years, features traditional music, local crafts, and a grand parade. It’s a highlight of the summer for both tourists and residents al ike. However, the council’s proposal has sparked a heated debate among the townspeople.Proponents of the marina expansion argue that it will bring in more tourists, boost the local economy, and provide more docking space for boats. They believe that the additional revenue generated from the expanded marina will be used to improve the town’s infrastructure and public amenities.Opponents, on the other hand, are worried that the expansion will destroy the natural landscape and disrupt the tranquility of the town. They also fear that the increased tourist traffic and commercialization will detract from the festival’s charm and the community’s sense of identity.Questions:1.What is the main issue that the community of Porthaven is currently debating?A. The closing of the local schoolB. The expansion of the town’s marinaC. The relocation of the town’s libraryD. The cancellation of the annual summer festival2.What is the primary concern of the opponents of the marina expansion plan?A. The potential increase in tourismB. The possibility of improved infrastructureC. The potential damage to the natural landscapeD. The potential for increased revenue3.Which of the following is NOT mentioned as a feature of the Porthaven summer festival?A. Traditional musicB. Local craftsC. A grand paradeD. An art gallery exhibit4.How do the proponents of the marina expansion plan expect the additional revenue to be used?A. To fund the festival activitiesB. To improve the town’s infrastructureC. To increase the festival’s budgetD. To reduce the town’s taxes5.According to the passage, what is the outcome of the debate over the marina expansion plan?A. The council has decided to cancel the expansion project.B. The town has voted to proceed with the expansion.C. The residents have decided to ignore the council’s proposal.D. The debate is still ongoing, with no clear resolution yet.Answers:1.B2.C3.D4.B5.D五、语言运用第一节 _ 完形填空(15分)完形填空Passage:“Every morning, Tom would wake up early and go f or a run. It was his way of getting ready for the day (1)_____. One morning, he noticed an elderly man sitting on a bench in the park, feeding birds. The old man looked so peaceful and content that Tom decided to (2)_____ him. ‘Good morning, sir,’ Tom gree ted with a smile. ‘Good morning, young man,’ the elderly gentleman replied. ‘I see you’re a runner. It’s a good habit to keep fit.’ Tom nodded, appreciating the (3)_____. They started talking about running, life, and the beauty of (4)_____. The old man shared stories of his youth, (5)_____ Tom with wisdom and laughter. Before leaving, the old man said, ‘Remember, son, it’s not just the destination but the journey that (6)_____.’ Tom waved goodbye, feeling inspired by their conversation. He realized that sometimes, the most unexpected (7)_____ can lead to the most profound moments. From then on, Tom made it a point to(8)_____ and appreciate every step of his journey, knowing that there is always something new to learn and someone new to meet. His runs became more than just exercise; they were opportunities for (9)_____. As days passed, Tom visited the park (10)_____, hoping to meet the old man again. Though the old man didn’t reappear, Tom never forgot his words. He continued to greet each day with (11)_____, to meet people with kindness, and to live his life to the fullest. In his heart, Tom knew that this encounter had changed him for the better.”1.A) ahead B) behind C) forward D) backward2.A) interrupt B) approach C) avoid D) ignore3.A) compliment B) advice C) suggestion D) guidance4.A) nature B) city C) town D) countryside5.A) filling B) providing C) giving D) offering6.A) matters B) exists C) happens D) appears7.A) meetings B) destinations C) journeys D) encounters8.A) slow down B) speed up C) give up D) drop out9.A) discovery B) relaxation C) adventure D) exploration10.A) regularly B) rarely C) occasionally D) seldom11.A) excitement B) disappointment C) sadness D) frustration答案1.C) forward2.B) approach3.A) compliment4.A) nature5.A) filling6.A) matters7.D) encounters8.A) slow down9.A) discovery10.A) regularly11.A) excitement以上就是这次的完形填空练习题及答案。
(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)

(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)题号一二三四总分得分一、单选题(本大题共8小题,共40.0分)1.直线y=kx+b经过第二、三、四象限,则斜率k和在y轴上的截距b满足的条件为()A. k>0,b>0B. k<0,b<0C. k>0,b<0D. k<0,b>02.已知F为双曲线C:的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为()A. 11B. 22C. 33D. 443.“a=2”是“l1:ax+4y-1=0与l2:x+ay+3=0平行”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.已知抛物线x2=2py和-y2=1的公切线PQ(P是PQ与抛物线的切点,未必是PQ与双曲线的切点)与抛物线的准线交于Q,F(0,),若|PQ|=|PF|,则抛物线的方程是()A. x2=4yB. x2=2yC. x2=6yD. x2=2y5.已知m,n是两条不重合的直线,α,β是不重合的平面,则下列说法正确的是()A. 若m⊥α,n∥β,α⊥β,则m⊥nB. 若m⊥n,m⊥α,n∥β,则α⊥βC. 若m∥n,m∥α,n∥β,则α∥βD. 若m⊥α,n⊥α,则m∥n6.直线l:y=x与圆x2+y2-2x-6y=0相交于A,B两点,则|AB|=()A. 2B. 4C. 4D. 87.椭圆5x2+ky2=5的一个焦点为(0,2),那么k的值为()A. B. 2 C. D. 18.直线y=-2x-3与曲线的公共点的个数为()A. 1B. 2C. 3D. 4二、多选题(本大题共4小题,共20.0分)9.矩形ABCD中,AB=4,BC=3,将△ABD沿BD折起,使A到A′的位置,A′在平面BCD的射影E恰落在CD上,则()A. 三棱锥A′-BCD的外接球直径为5B. 平面A′BD⊥平面A′BCC. 平面A′BD⊥平面A′CDD. A′D与BC所成角为60°10.设O为坐标原点,F1,F2是双曲线-=1(a>0,b>0)的左、右焦点.在双曲线的右支上存在点P满足∠F1PF2=60°,且线段PF1的中点B在y轴上,则()A. 双曲线的离心率为B. 双曲线的方程可以是-y2=1C. |OP|=aD. △PF1F2的面积为11.在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,∠A1AB=∠A1AD,则有()A. A1M∥B1QB. AA1⊥PQC. A1M∥面D1PQB1D. PQ⊥面A1ACC112.已知抛物线C:y2=4x的焦点为F,准线为l,过点F的直线与抛物线交于两点P(x1,y1),Q(x2,y2),点P在l上的射影为P1,则()A. |PQ|的最小值为4B. 已知曲线C上的两点S,T到点F的距离之和为10,则线段ST的中点横坐标是(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)4C. 设M(0,1),则|PM|+|PP1|≥D. 过M(0,1)与抛物线C有且仅有一个公共点的直线至多有2条三、单空题(本大题共4小题,共20.0分)13.已知A(0,1),B(1,0),C(t,0),点D在直线AC上,若|AD|≤|BD|恒成立,则t的取值范围是______.14.直线2x+y-1=0的倾斜角是______.15.湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下一个直径为12cm,深为2cm的空穴,则该球的半径为______ cm,表面积是______ .16.已知双曲线C:的右焦点为F,O为坐标原点.过F的直线交双曲线右支于A,B两点,连结AO并延长交双曲线C于点P.若|AF|=2|BF|,且∠PFB=60°,则该双曲线的离心率为______ .四、解答题(本大题共6小题,共70.0分)17.已知圆的圆心在直线上,且与轴交于两点,.(I)求圆的方程;(II)过点的直线与圆交于两点,且,求直线的方程.18.已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).(1)证明:不论m为何值时,直线l恒过定点;(2)求直线l被圆C截得的弦长最小时的方程.19.如图,为圆的直径,点.在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且,.(1)设的中点为,求证:平面;(2)求四棱锥的体积.20.在平面直角坐标系中,直线l与抛物线y2=2x相交于A,B两点.求证:“如果直线l过(3,0),那么=3”是真命题.(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)21.如图,四棱锥中,底面是菱形,其对角线的交点为,且.(1)求证:平面;(2)设,,是侧棱上的一点,且∥平面,求三棱锥的体积.22.(本题满分16分)已知椭圆的两焦点分别为 , 是椭圆在第一象限内的一点,并满足,过作倾斜角互补的两条直线分别交椭圆于两点.(1)求点坐标;(2)当直线经过点时,求直线的方程;(3)求证直线的斜率为定值.(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)1.【答案】B【解析】解:要使直线y=kx+b经过第二、三、四象限,则斜率k和在y轴上的截距b 满足的条件,故选:B.由题意利用确定直线的位置的几何要素,得出结论.本题主要考查确定直线的位置的几何要素,属于基础题.2.【答案】D【解析】由双曲线C的方程,知a=3,b=4,c=5,∴点A(5,0)是双曲线C的右焦点,且|PQ|=|QA|+|PA|=4b=16,由双曲线定义,|PF|-|PA|=6,|QF|-|QA|=6.∴|PF|+|QF|=12+|PA|+|QA|=28,因此△PQF的周长为|PF|+|QF|+|PQ|=28+16=44,选D.3.【答案】A【解析】解:若a=2.则两条直线的方程为2x+4y-1=0与x+2y+3=0满足两直线平行,即充分性成立.当a=0时,两直线等价为4y-1=0与x+3=0不满足两直线平行,故a≠0,若“l1:ax+4y-1=0与l2:x+ay+3=0平行”,则,解得a=2或a=-2,即必要性不成立.故“a=2”是“l1:ax+4y-1=0与l2:x+ay+3=0平行”的充分不必要条件,故选:A(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)根据直线平行的等价条件,利用充分条件和必要条件的定义即可得到结论.本题主要考查充分条件和必要条件的判断,根据直线平行的等价条件是解决本题的关键.4.【答案】B【解析】解:如图过P作PE⊥抛物线的准线于E,根据抛物线的定义可知,PE=PF∵|PQ|=|PF|,在Rt△PQE中,sin,∴,即直线PQ的斜率为,故设PQ的方程为:y=x+m(m<0)由消去y得.则△1=8m2-24=0,解得m=-,即PQ:y=由得,△2=8p2-8p=0,得p=.则抛物线的方程是x2=2y.故选:B.如图过P作PE⊥抛物线的准线于E,根据抛物线的定义可知,PE=PF可得直线PQ的斜率为,故设PQ的方程为:y=x+m(m<0)再依据直线PQ与抛物线、双曲线相切求得p.本题考查了抛物线、双曲线的切线,充分利用圆锥曲线的定义及平面几何的知识是关键,属于中档题.5.【答案】D【解析】解:当m⊥α,n∥β,α⊥β时,直线m与n可能异面不垂直,故选项A错误;当m⊥n,m⊥α,n∥β时,比如n平行于α与β的交线,且满足m⊥n,m⊥α,但α与β可能不垂直,故选项B错误;当m∥n,m∥α,n∥β时,比如m与n都平行于α与β的交线,且满足m∥n,m∥α,但α与β不平行,故选项C错误;垂直于同一个平面的两条直线平行,故选项D正确.故选:D.直接利用空间中线、面之间的关系进行分析判断即可.本题考查了空间中线面位置关系的判断,此类问题一般都是从反例的角度进行考虑,属于基础题.6.【答案】C【解析】【分析】本题主要考查直线和圆的位置关系的应用,掌握直线和圆相交的弦长公式是解决本题的关键,属于基础题.根据直线和圆相交的弦长公式进行求解即可.【解答】解:圆的标准方程为(x-1)2+(y-3)2=10,圆心坐标为(1,3),半径R=,则圆心到直线x-y=0的距离d=,则|AB|===4.故选C.7.【答案】D【解析】【分析】本题考查椭圆的简单性质,是基础题.把椭圆化为标准方程后,找出a与b的值,然后根据a2=b2+c2,表示出c,并根据焦点坐标求出c的值,两者相等即可列出关于k的方程,求出方程的解即可得到k的值.【解答】解:把椭圆方程化为标准方程得:x2+=1,因为焦点坐标为(0,2),所以长半轴在y轴上,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)则c==2,解得k=1.故选D.8.【答案】B【解析】解:当x≥0时,曲线的方程为,一条渐近线方程为:y=-x,当x<0时,曲线的方程为,∴曲线的图象为右图,在同一坐标系中作出直线y=-2x-3的图象,可得直线与曲线交点个数为2个.故选:B.分x大于等于0,和x小于0两种情况去绝对值符号,可得当x≥0时,曲线为焦点在y轴上的双曲线,当x<0时,曲线为焦点在y轴上的椭圆,在同一坐标系中作出直线y=-2x-3与曲线的图象,就可找到交点个数.本题主要考查图象法求直线与曲线交点个数,关键是去绝对值符号,化简曲线方程.9.【答案】AB【解析】解:对于A,取BD中点E,连接A′E,CE,则A′E=BE=DE=CE==.∴三棱锥A′-BCD的外接球直径为5,故A正确;对于B,∵DA′⊥BA′,BC⊥CD,A′F⊥平面BCD,∴BC⊥A′F,又A′F∩CD=F,A′F、CD⊂平面A′CD,∴BC⊥平面A′CD,∵A′D⊂平面A′CD,∴DA′⊥BC,∵BC∩BA′=B,∴DA′⊥平面A′BC,∵DA′⊂平面A′BD,∴平面A′BD⊥平面A′BC,故B正确;对于C,BC⊥A′C,∴A′B与A′C不垂直,∴平面A′BD与平面A′CD不垂直,故C错误;对于D,∵DA∥BC,∴∠ADA′是A′D与BC所成角(或所成角的补角),∵A′C==,∴A′F=,DF==,AF==,AA′==3,∴cos∠ADA′==0,∴∠ADA′=90°,∴A′D与BC所成角为90°,故D错误.故选:AB.对于A,取BD中点E,连接A′E,CE,推导出A′E=BE=DE=CE=,从而三棱锥A′-BCD 的外接球直径为5;对于B,推导出DA′⊥BA′,BC⊥CD,A′F⊥平面BCD,BC⊥A′F,BC⊥平面A′CD,DA′⊥BC,DA′⊥平面A′BC,从而平面A′BD⊥平面A′BC;对于C,A′B与A′C不垂直,从而平面A′BD与平面A′CD不垂直;对于D,由DA∥BC,得∠ADA′是A′D与BC所成角(或所成角的补角),推导出A′D与BC所成角为90°.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力等数学核心素养,是中档题.10.【答案】AC【解析】解:如图,F1(-c,0),F2(c,0),∵B为线段PF1的中点,O为F1F2的中点,∴OB∥PF2,∴∠PF2F1=90°,由双曲线定义可得,|PF1|-|PF2|=2a,设|PF1|=2m(m>0),则|PF2|=m,,∴2m-m=2a,即a=,又,∴c=,则e=,故A正确;,则b=,双曲线的渐近线方程为y=,选项B的渐近线方程为y=,故B错误;对于C,∵O为F1F2的中点,∴,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)则,即=,即,①而|PF1|-|PF2|=2a,两边平方并整理得,,②联立①②可得,,,即|PO|=,故C正确;=,故D错误.故选:AC.由已知可得∠PF2F1=90°,设|PF1|=2m(m>0),再由已知结合双曲线定义可得a,b,c 与m的关系,即可求得双曲线的离心率及渐近线方程,从而判断A与B;由O为F1F2的中点,得,两边平方后结合双曲线定义联立求得|PO|判断C;进一步求出△PF1F2的面积判断D.本题考查双曲线的几何性质,考查运算求解能力,是中档题.11.【答案】BCD【解析】解:连接MP,可得MP AD A1D1,可得四边形MPA1D1是平行四边形∴A1M∥D1P,又A1M⊄平面DCC1D1,D1P⊂平面DCC1D1,A1M∥平面DCC1D1,连接DB,由三角形中位线定理可得:PQ DB,DB D1B1,可得四边形PQB1D1为梯形,QB1与PD1不平行,因此A1M与B1Q不平行,又A1M∥D1P,A1M⊄平面D1PQB1,D1P⊂平面D1PQB1,∴A1M∥平面D1PQB1.故A不正确,C正确;连接AC,由题意四边形ABCD是菱形,∴AC⊥BD,∵P,Q分别为棱CD,BC的中点,∴PQ∥BD,∴PQ⊥AC,∵平行六面体的所有棱长都相等,且∠A1AB=∠A1AD,∴直线AA1在平面ABCD内的射影是AC,且BD⊥AC,∴AA1⊥BD,∴AA1⊥PQ,故B正确;∵AA1∩AC=A,∴PQ⊥面A1ACC1,故D正确.故选:BCD.连接MP,推导出四边形MPA1D1是平行四边形,从而A1M∥D1P,连接DB,推导出四边形PQB1D1为梯形,A1M与B1Q不平行,推民出A1M∥平面D1PQB1;连接AC,推导出四边形ABCD是菱形,AC⊥BD,从而PQ⊥AC,由平行六面体的所有棱长都相等,且∠A1AB=∠A1AD,推志出AA1⊥PQ,从而PQ⊥面A1ACC1.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.【答案】ABC【解析】解:对于A,设直线PQ的方程为x=ty+1,联立解方程组,可得y2-4ty-4=0,x1x2==1,|PQ|=x1+x2+p=x1+x2+2+2=4,故A正确;对于B,根据抛物线的定义可得,|SF|+|TF'|=x S+x T+p=10,则x S+x T=8,则线段ST的中点横坐标是=4,故B成立;对于C,M(0,1),|PM|+|PP1|=|MP|+|PF|≥|MF|=,所以C正确;对于D,过M(0,1)相切的直线有2条,与x轴平行且与抛物线相交且有一个交点的直线有一条,所以最多有三条.所以D不正确;故选:ABC.设出直线方程与抛物线联立,利用弦长公式判断A,结合抛物线的定义,判断B;利用抛物线的性质判断C;直线与抛物线的切线情况判断D.考查抛物线的性质,抛物线与直线的位置关系的应用,是中档题.13.【答案】(-∞,0]【解析】解:设D(x,y),由D在AC上,得+y=1,即x+ty-t=0,由|AD|≤|BD|得≤•,化为(x-2)2+(y+1)2≥4,依题意,线段AD与圆(x-2)2+(y+1)2=4至多有一个公共点,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)∴≥2,解得:t≤0,则t的取值范围为(-∞,0],故答案为:(-∞,0].先设出D(x,y),得到AD的方程为:x+ty-t=0,由|AD|≤|BD|得到圆的方程,结合点到直线的距离公式,解不等式即可得到所求范围.本题考查直线与圆的方程,考查点到直线距离公式的运用,考查学生分析解决问题的能力,属于中档题.14.【答案】π-arctan【解析】解:直线2x+y-1=0的斜率为,设直线2x+y-1=0的倾斜角为θ(0≤θ<π),则tan,∴θ=.故答案为:π-arctan.由直线方程求直线的斜率,再由斜率等于倾斜角的正切值求解.本题考查由直线方程求直线的斜率,考查直线的斜率与倾斜角的关系,是基础题.15.【答案】10;400π【解析】解:设球的半径为r,依题意可知36+(r-2)2=r2,解得r=10,∴球的表面积为4πr2=400π故答案为10,400π先设出球的半径,进而根据球的半径,球面上的弦构成的直角三角形,根据勾股定理建立等式,求得r,最后根据球的表面积公式求得球的表面积.本题主要考查了球面上的勾股定理和球的面积公式.属基础题.16.【答案】【解析】【分析】本题考查双曲线的定义以及几何性质的应用,余弦定理的应用,考查转化思想以及计算能力.属于中档题.设双曲线C的左焦点为F',连结AF',BF',设|BF|=t,则|AF|=2t,推出∠F'AB=60°.在△F'AB 中,由余弦定理求解.结合双曲线的定义,求出,.在△F'AF中,由余弦定理推出a,c关系,得到离心率即可.【解答】解:设双曲线C的左焦点为F',连结AF',BF',设|BF|=t,则|AF|=2t,所以|AF'|=2a+2t,|BF'|=2a+t.由对称性可知,四边形AF'PF为平行四边形,故∠F'AB=60°.在△F'AB中,由余弦定理得(2a+t)2=(2a+2t)2+(3t)2-2×(2a+2t)×3t×cos60°,解得.故,.在△F'AF中,由余弦定理得,,解得:.故答案为:.17.【答案】解:(I)因为圆与轴交于两点,,所以圆心在直线上,由,得,即圆心的坐标为.半径,所以圆的方程为;(II)若直线的斜率不存在,则直线的方程为,此时可得,不符合题意;(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)当直线的斜率存在时,设直线的方程为:,即,过点作于点,则D为线段MN中点,∴,∴,即点C到直线l的距离,解得或k=-3;综上,直线的方程为x-3y+3=0或3x+y-11=0.【解析】本题考查圆的标准方程,直线与圆的位置关系,属于中档题.(I)根据题意,即可得解;(II)分类讨论,进行求解即可.18.【答案】(1)证明:将直线化为直线束方程:x+y-4+(2x+y-7)=0.联立方程x+y-4=0与2x+y-7=0,得点(3,1);将点(3,1)代入直线方程,不论m为何值时都满足方程,所以直线l恒过定点(3,1);(2)解:当直线l过圆心与定点(3,1)时,弦长最大,代入圆心坐标得m=.当直线l垂直于圆心与定点(3,1)所在直线时弦长最短,斜率为2,代入方程得m=此时直线l方程为2x-y-5=0,圆心到直线的距离为,所以最短弦长为.【解析】(1)通过直线l转化为直线系,求出直线恒过的定点;(2)说明直线l被圆C截得的弦长最小时,圆心与定点连线与直线l垂直,求出斜率即可求出m的值,再由勾股定理即可得到最短弦长.本题考查直线系方程的应用,考查直线与圆的位置关系,考查平面几何知识的运用,考查计算能力,属于中档题.19.【答案】(1)证明详见解析;(2).【解析】试题分析:(1)要证平面,根据直线与平面平行的判定定理可知只需证与平面内一直线平行即可,设的中点为,则为平行四边形,则,又平面,不在平面内,满足定理所需条件;(2)过点作于,根据面面垂直的性质可知平面,即正的高,然后根据三棱锥的体积公式进行求解即可.试题解析:(1)设的中点为,则又,∴∴为平行四边形∴又平面,平面∴平面(2)过点作于平面平面,∴平面,即正的高∴∴∴.考点:1.空间中的平行关系;2.空间中的垂直关系;3.棱锥的体积计算.20.【答案】证明:设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x2,y2).当直线l的钭率不存在时,直线l的方程为x=3,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)此时,直线l与抛物线相交于点A(3,)、B(3,-).∴=3当直线l的钭率存在时,设直线l的方程为y=k(x-3),其中k≠0,由得ky2-2y-6k=0⇒y1y2=-6,又∵x1=y12,x2=y22,∴x1x2=9,∴=x1x2+y1y2=3,综上所述,命题“如果直线l过点T(3,0),那么=3”是真命题;综上,命题成立.【解析】设出A,B两点的坐标根据向量的点乘运算求证即可得到:“如果直线l过(3,0),那么=3”是真命题.本题考查了真假命题的证明,抛物线的简单性质,向量数量积,是抛物线与平面向量的综合应用,难度中档.21.【答案】(1)证明:∵底面是菱形,∴.又平面.又又平面.(2)连接,∵SB平面,平面,平面平面,SB∥平面APC,∴SB∥OP.又∵是的中点,∴是的中点.由题意知△ABD为正三角形..由(1)知平面,∴.又,∴在Rt△SOD中,.∴到面的距离为.【解析】主要考查了线面垂直的判定和三棱锥的体积.(1)要证明线面垂直,证明SO与平面ABCD中两条相交直线垂直即可,应用已知条件与等腰三角形的三线合一即可得到证明;(2)由SB∥平面APC的性质定理证明得SB∥OP,由(1)得高为PO,利用三棱锥的体积公式即可求出结果.22.【答案】(1)(2)(3),证明略.【解析】解:(1)设P((x,y),由题意可得,解得,∴P.(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)(2)∵,两条直线PA,PB倾斜角互补,∴k PA+k PB=0,解得k PB=1.因此直线PA,PB,的方程分别为,,化为,.联立,解得(舍去),,即A.同理解得B.∴k AB= = ,∴直线AB的方程为,化为.(3)S设A(x 1,y 1),B(x 2,y 2),设直线PA的方程为:,则直线PB 的方程为.联立,解得A.同理B,∴k AB= = .即直线AB的斜率为定值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二上期末考试模拟试题十四数 学(测试时间:120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.不等式|x|.(x-2)≥0的解集是( ) A .{x|x≥2} B .{x|x≥2或x=0} C .{x|x>2} D .{x|x>2或x=0}2.抛物线y=-2x 2的焦点坐标是( )A .(0,-81)B .(0,-21)C .(-81,0)D .(-21,0)3.若双曲线42x -52y =l 上一点P 到它的右焦点的距离为4,则点P 到它的左准线的距离为( ) A .38 B .4 C .316 D .8或3164.过点P(-2,1)的直线l 到A(-4,1),B(0,3)的距离相等,则直线l 的方程为( )A .x-2y+4=OB .x=-2C .x-2y+4=O 或x=-2D .x-2y+4=O 或y=-25.满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤-≥-000221y x y y x 的目标函数z=2x+2y 的最小值是( )A .-2B .-lC .1D .26.若|x-a|<q ,|y-a|<q ,(q>O),则下列不等式一定成立的是( )A .|x-y|<qB .|x-y|>qC .|x-y|<2qD .|x-y|>2q7.若(x-2)2+y 2=l ,则x+y 的最小值为( )A .-2B .1C .2+2D .2-28.抛物线的顶点为原点,焦点在y 轴上,抛物线上点M(m ,-2)到焦点的距离为4,则m 的值为( )A .4B .-2C .4或-4D .2或-29.直线l 1过点P(1,2),且斜率为3,直线l 1与l 2关于y 轴对称,则l 2的方程是( )A .3x+y-l=0B .x+3y-l=0C .3x+y+1=0D .x+3y+1=010.若圆x 2+y 2=r 2(r>0)上恰有相异两点到直线 4x-3y+25=O 的距离等于1,则r 的取值范围是 ( )A .[4,6]B .(4,6)C .(4,6)D .[4,6]11.给定四条曲线①x 2+y 2=25,②92x +42y =1,③x 2+42y =1, ④42x +y 2=1,其中与直线x+y-5=0仅有一个公共点的曲线是( )A .①②③B .②③④C .①②④D .①③④12.某厂的某种产品的产量第二年增长率为p l ,第三年增长率为p 2,且p 1>0,p 2>0,p l +p 2=p ,p 为常数,如果这两年的平均增长率为x ,则有( )A .x≤2pB .x = 2pC . x<2pD .x≥2p二、填空题(本大题共4小题,每小题4分,共16分,把正确答案填在题中横线上)13.直线x+my-3=0与直线2mx-(m-1))y+5=O 互相垂直,则m 的值为________.14.已知双曲线的渐近线方程是y=±43x ,则此双曲线的离心率是_______.15.不等式1-x ax<1的解集是{x| x<1或x>2},则a=______________.16.已知圆x 2+y 2-6x-7=0与抛物线y 2=2px(p>0)的准线相切,则P 的值为____. 三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或推演步骤)17.(12分)已知双曲线与椭圆92x +252y =1共焦点,它们的离心率之和为514,求双曲线方程.18.(12分)不等式120822--+-mx mx x x <0对一切实数x 恒成立,求实数m 的取值范围.19.(12分)已知圆上点A(2,3)关于直线x+2y=0的对称点仍在圆上,且该圆截直线x-y+1=0所得的弦长为22,求此圆的方程.20.(12分)有一种大型商品,A 、B 两地都有出售,且价格相同,某地居民从两地之一购得商品后运回的费用是:每单位距离A 地的运费是B 地运费的3倍,已知A 、B 两地相距10千米,顾客选择A 或B 地购买这件商品的标准是:包括运费和价格的总费用较低,求A 、B 两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民如何选择购货地点.21.(12分)已知椭圆的中心为原点,焦点在x 轴上,过它的右焦点引倾斜角为4π的直线l 交椭圆于P 、Q 两点,P 、Q 到椭圆的右准线的距离之和为38,它的左焦点到l 的距离为2,求椭圆的方程.22.(14分)如图,已知直角ΔPAQ 的顶点P(-4,0),点A 在y 轴上,点Q 在x 轴的正半轴上,∠PAQ=900,在AQ 的延长线上取一点M ,使|QM|-|AQ|.(1)当A 点在y 轴上移动时,求动点M 的轨迹E ;(2)已知D(1,0),是否存在过点F(-1,0)的直线l 交轨迹E 于两点B 、C ,满足∠BDC=900,若存在,求出直线l 的方程;若不存在,说明理由.参考答案1.B2.A3.C4.C5.D6.C7.D8.C9.C 10.B 11.D 12.A一、解析1. ∵|x|≥0恒成立,∴原不等式等价于x=0或x-2≥0,故 x=0或x≥2.2. 将抛物线方程化为标准形式x 2=-21y ,开口向下,2p=21,∴焦点(0,-81).3. ∵a=2,b=5,∴c=3,a+c=5. ∴双曲线左支上的点到右焦点的距离d≥5,因此点P 应在双曲线右支上.∴|PF 1|-4=2a=4,|PF 1|=8,又dPF ||1=a c =23, ∴d=316. 4. ∵直线l 到A 、B 两点距离相等, ∴Z 应过AB 的中点或与AB 平行,易求得答案C .5.画出可行域如图,平移直线2x+2y=O ,当它经过点A(1,O)时,对应的目标函数z 取得最小值, Z min =2×l+2×0=26. |x-y|=|(x-a)-(y-a)|≤|x-a|+|y-a|<q+q=2q.7.可设⎩⎨⎧==-θθsin cos 2y x ∴x+y=sin θ+cos θ+2 =2sin(4πθ+)+2∴x+y 的最小值为2-2.8.根据题意可设抛物线方程为x 2=-2py ,由抛物线的定义知,点M 到准线的距离等于到焦点的距离,即2p+2=4, ∴p=4. ∴抛物线方程为x 2=-8y ,把(m ,-2)代入得m=±4.9.l 1的方程为y-2=3(x-1),即3x-y-l=0, 设P(x ,y)是l 2上任一点,∵l 1与l 2关于y 轴对称, ∴p /(-x ,y)一定在l 1上,代入l 1的方程得-3x-y-1=0 即3x+y+l=0,这就是l 2的方程.10. ∵圆心(0,0)到直线4x-3y+25=0的距离d=525=5. 结合图形易知4<r<6.11.①圆心(0,0)到直线x+y-5=0的距离d=25=25= r , ∴圆与直线相切,故①符合,排除(B). 由⎪⎩⎪⎨⎧=-+=+0514922y x y x 得13x 2-185x+9=0,△>0,∴直线与椭圆相交,故②不符合,应排除(A)、(C)、故选(D).12.设第一年的产量为1,则第二年的产量为l+p 1,第三年的 产量为(1+p 1)(1+p 2)又两年的平均增长率为x ,则第二年 的产量为1+x ,第三年的产量为(1+x)2∴(1+x)2=(1+p 1)(1+p 2)≤(21121p p +++)2=(1+2p )2 ∴1+x≤1+2p ,x ≤2p.13.0或3 14.45或35 15.2116.2, 二、解析:13.两直线垂直的充要条件是A 1A 2+B l B 2=0,∴2m -m(m-1)=0,∴m=O 或314.若焦点在x 轴上,则a b =43,a c =ab a 22+=2)(1a b +=2)43(1+=45.若焦点在y 轴上,则b a =43,a b =34,ac =2)34(1+=35. 15.原不等式可化为11)1(-+-x x a <0, 分子,分母的根分别为a-11,1, ∵不等式的解集为{x|x<1或x>2}, ∴a -11=2,a=21.16.圆x 2+y 2-6x-7=O 的标准方程为(x-3)2+y 2=16, ∴圆心为(3,0),半径为4, 根据题意3+2p=4,p=2.17.解:椭圆92x +252y =1的焦点为(0,4),(0,-4), 由题意设双曲线方程为22a y -22b x =l(a>0,b>0),则⎪⎩⎪⎨⎧=+=+5124541622a b a ∴a=2,b 2=12, ∴所求的双曲线的方程为42y -122x =1.18.解:∵x 2-8x+20=(x-4)2+4>0, ∴原不等式等价于:mx 2-x-l<0对x∈R恒成立.当m=0时,-1<0恒成立,符合题意. m≠0时,则⎩⎨⎧<∆<00m 即⎩⎨⎧<+<0402m m m解得:-4<m<O, 综上,得 -4<m≤O19.解:由题意知:圆心在直线x+2y=0上. 设圆的圆心为(a ,b),半径为r ,是⎪⎪⎪⎩⎪⎪⎪⎨⎧=++-=-+-=+222222)2()2|1|()3()2(02rb a r b a b a 解得⎪⎩⎪⎨⎧=-==52362r b a 或⎪⎩⎪⎨⎧=-==2447142r b a ∴所求圆的方程为(x-6)2+(y+3)2=52或(x-14)2+(y+7)2=24420.解:以AB 所确定的直线为x 轴,线段AB 的中点为坐标原点,建立直角坐标系. ∵|AB|=10,设A(-5,O)、B(5,0), 设某地P 处居民选择A 地购物便宜,并设A 地的运费为3a 元/千米,B 地的运费为a 元/千米. ∵P(x,y)地的居民购物总费用满足条件:价格+A 地运费≤价格+B 地运费, 即3a 22)5(y x ++≤a 22)5(y x +-, ∵a>0, ∴8x 2+8y 2+lOOx+200≤0 得(x+425)2+y 2≤(415)2 , ∴以点C(-425,0)为圆心,415为半径的圆,是这两地购物区域的分界线. 圆C 内的居民从A 地购物便宜,圆C 外的居民从B 地购物便宜.圆C 上的居民从A 、B 两地购物的总费用相等,可随意选择一地购物.2l.解:设椭圆方程为22a x +22by =1(a>b>0),P(x 1,y 1),Q(x 2,y 2)左焦点F 1(-c ,0),右焦点F 2(c ,0),(c>0). 直线l 的方程:y=(x-c)tan 4π即y=x-c, 由(-c ,0)到l 的距离为2,得2||c c --=2 ∴c=1, 则a 2-b 2=1, ∴椭圆方程为22a x +122-a y =1, ⎪⎩⎪⎨⎧=-+-=1112222a y ax x y 消去y 整理得 (2a 2-1)x 2-2a 2x+2a 2-a 4=O ∴x 1+x 2=12222-a a ………………………… ①P 、Q到右准线距离之和为:c a 2-x 1+ca 2-x 2=38, 即x 1+x 2=2a 2-38………………………②由①②得a 2=2, ∴b 2=1, ∴椭圆方程为22x +y 2=122. 解:(1)设M(x ,y),A(0,b),Q(a ,0)(a>0),由|QM|=|AQ|知Q 是AM的中点,则⎪⎪⎩⎪⎪⎨⎧+==202b y x a∴⎪⎩⎪⎨⎧-==yb x a 2 ……………………………………………① 由∠PAQ=900 知0400--∙+-a bb =-1………………② ①代入②并化简得y 2=2x ∴动点M 的轨迹方程y 2=2x (x≠0), 轨迹是:顶点为原点,焦点为(21,0)的抛物线(顶点除外)(2)假设存在,设直线l 的方程为:y=k(x+1),B(x 1,y 1),C(x 2,y 2),⎩⎨⎧=+=x y x k y 2)1(2消去y 并整理得:k 2x 2+(2k 2-2)x+k 2=0, 则⎩⎨⎧--=∆≠2224)22(0kk k ∴-22<k<22且k≠0 …………(*) x 1+x 2=2222kk -,x 1x 2=1,∴y 1y 2=k(x 1+1)·k(x 2+1)=k 2(x 1x 2+x 1+x 2+1)=2 ∵∠BDC=900 ∴1011--x y ·122--x y =-1, 即y 1y 2+x 1x 2-(x 1+x 2)+l=0 ∴2+|-2222kk -|=0, ∴k =±33满足(*) 故直线l 存在,直线l 的方程为y=±33(x+1) 即x-3y+1=0或x+3y+1=0本卷由《100测评网》整理上传,专注于中小学生学业检测、练习与提升.。