11.2.3全等三角形的判定(ASA、AAS)

合集下载

全等三角形判定二(ASA,AAS)(基础)知识讲解

全等三角形判定二(ASA,AAS)(基础)知识讲解

全等三角形判定二(ASA ,AAS )(基础)【学习目标】1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】【高清课堂:379110 全等三角形判定二,知识点讲解】要点一、全等三角形判定3——“角边角”全等三角形判定3——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择已知条件可选择的判定方法 一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等 SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“角边角”【高清课堂:379110 全等三角形判定二,例5】1、已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.。

三角形的全等的判定方法

三角形的全等的判定方法

三角形的全等的判定方法
1.SSS判定法(边边边):当两个三角形的三条边分别相等时,可以
判定这两个三角形全等。

2.SAS判定法(边角边):当两个三角形的一边和夹角的对边(两边)分别相等,再加上另一边相等,则可以判定这两个三角形全等。

3.ASA判定法(角边角):当两个三角形的两个角和一条边分别相等时,即第一个三角形的一个角、一边分别与第二个三角形的一角、一边相等,则可以判定这两个三角形全等。

4.AAS判定法(角角边):当两个三角形的两个角和一边分别相等时,即第一个三角形的两个角、一边分别与第二个三角形的两个角、一边相等,则可以判定这两个三角形全等。

5.HL判定法(斜边和高):当两个直角三角形的斜边和高分别相等时,可以判定这两个三角形全等。

6.LL判定法(边边):当两个等腰三角形的两个边边分别相等时,
可以判定这两个三角形全等。

7.RL判定法(斜边和一条直角边):当两个直角三角形的斜边和一
条直角边分别相等时,可以判定这两个三角形全等。

这些判定方法是根据全等三角形的性质推导出来的,可以通过比较三
角形的边和角的大小来判定是否全等。

在实际问题中,我们可以根据题目
中给出的已知条件来选择合适的判定方法,从而求解问题。

通过全等三角
形的判定,我们可以在几何问题中简化复杂的计算和证明,提高解题的效率。

需要注意的是,判定两个三角形全等的条件并不一定只有一种,有时候可能需要结合多种条件进行判定。

此外,判定两个三角形不全等并不能证明它们一定全等,因为可能存在其他方法判定它们全等。

因此,在应用判定方法时,要根据具体情况综合考虑各种条件,避免误判。

三角形全等的判定导学案(ASA、AAS)苏版数学

三角形全等的判定导学案(ASA、AAS)苏版数学

三角形全等的判定导学案(ASA、AAS)苏版数学课题:《11.2三角形全等的判定》(ASA、AAS)导学案使用说明:学生利用自习先预习课本第11页-12页10分钟,然后35分钟独立做完学案。

正课由小组讨论交流10分钟,25分钟展现点评,10分钟整理落实,关于有疑问的题目教师点拨、拓展。

【学习目标】1、把握三角形全等的角边角角角边条件。

能运用全等三角形的条件,解决简单的推理证明问题2.经历探究三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程。

3、积极投入,激情展现,体验成功的欢乐。

教学重点:已知两角一边的三角形全等探究。

教学难点:灵活运用三角形全等条件证明。

【学习过程】一、自主学习1、复习摸索(1)。

到目前为止,能够作为判别两三角形全等的方法有几种?各是什么?(2)。

在三角形中,已知三个元素的四种情形中,我们研究了三种,今天我们接着探究已知两角一边是否能够判定两三角形全等呢?三角形中已知两角一边又分成哪两种呢?2、探究一:两角和它们的夹边对应相等的两个三角形是否全等?(1)动手试一试。

已知:△ABC求作:△,使=B, =C,=BC,(不写作法,保留作图痕迹)(2) 把△剪下来放到△ABC上,观看△与△ABC是否能够完全重合?(3)归纳;由上面的画图和实验能够得出全等三角形判定(三):“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。

只是更早的“先生”概念并非源于教书,最初显现的“先生”一词也并非有传授知识那般的含义。

《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。

事实上《国策》中本身就有“先生长者,有德之称”的说法。

可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。

看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。

全等三角形的判定(ASA)

全等三角形的判定(ASA)
在解题过程中,灵活运用角角边(aas)判定定理可以简化复杂图形的证明过程,提 高解题效率。
04 边角边(sas)判定定理
定理内容
两个三角形中,如果两边和它们之间的夹角分别相等,则 这两个三角形全等。
用数学符号表示为:如果$Delta ABC cong Delta DEF$, 且$AB = DE, BC = EF, angle B = angle E$,则$angle A = angle D$。
三角形全等在几何证明中的应用
证明线段相等
通过构造两个全等的三角形 ,利用全等三角形的对应边 相等,证明两条线段相等。
证明角度相等
利用全等三角形的对应 角相等,证明两个角度
相等。
证明垂直关系
通过证明两个三角形全等, 利用全等三角形的对应角为 直角,证明两条线段垂直。
证明平行关系
通过证明两个三角形全等, 利用全等三角形的对应边平
第六步,根据第三步和第五步的 结论,可得 $AC = A'C'$。
第七步,由全等三角形的判定条 件,有 $triangle ABC cong triangle A'B'C'$。
定理应用
01
在几何证明中,角边角(asa)判定 定理常用于证明两个三角形全等 ,从而可以进一步推导出其他几 何性质和结论。
定理证明
其次,根据已知条件$AB = AB$和$AC = AC$,利用 SSS判定定理可得$triangle ABC cong triangle ACD$。
首先,由已知条件可知,$angle A = angle A$和 $angle B = angle B$,所以$angle C = angle C$ (三角形的内角和性质)。

11、2三角形全等的判定(ASA、AAS)上课用

11、2三角形全等的判定(ASA、AAS)上课用

1、SSS
B C

三边
E
F
2 、SAS
两边一夹角
3、 ASA 一边两角 4、 AAS
练习:
1、如图,要测量池塘两岸相对的两点A,B的距离, 可以在AB的垂线BF上取两点C,D,使BC=CD,再 画出BF的垂线DE,使E与A、C在同一条直线上,这 时测得DE的长就是AB的长AB⊥BC,AD⊥DC,B ∠1=∠2,求证:AB=AD
C
E C C′ D
A
B
A′
B′
现在同学们把我们所画的两个三角形 重合在一起,你发现了什么?
E C D
C′
A
B
A′
B′
发现的结果是:两个三角形完全重合。 从而我们又得到了一个判定两个三角形全 的方法:
两角和它们的夹边对应相等的两个三角 形全等(简写为“角边角”或“ASA”)
探究6. 在△ABC和△DEF中, ∠A=∠D, ∠B=∠E ,BC=EF, △ABC与△DEF全等吗?能利用角边 A 角证明你的结论吗?
11、2三角形全等的判定(ASA、AAS)
• 目的要求: • 1、使学生理解判定两三角形全等的角边角 公理,并能运用这个方法证明线段或角的相等。 • 2、通过画图发现规律,并用之解决问题。 • 重点难点: • 1、重点 : 熟悉判定两三角形全等的角边角 公理。 • 2、难点:通过两个三角形全等,间接证明 线段或角相等及两线平行、垂直等。
C
注 意
这条边一定要是一个角的对边
例3:已知,如图,D在AB上, E在AC上,AB=AC,∠B=∠C 求证:①AD=AE ②BD=CE A ③OB=OC
D
B
C
探究7: 三角对应相等的两个三角形 全等吗?解答上述问题后把三角 形全等的判定方法做一个小结。

三角形全等的判定(ASA、AAS)

三角形全等的判定(ASA、AAS)

全等三角形的判定(ASA)(AAS)教案绵阳中学英才学校余伟(一)教学目标1、掌握“角边角”及“角角边”条件的内容。

能初步运用“角边角”及“角角边”条件判定两个三角形全等2、经历探索全等三角形判定思想的过程,领会“角边角”及“角角边”条件以及应用方法,发展学生主动探究的思想和说理的基本方法3、通过探究三角形全等的条件的活动,培养学生敢于面对困难、克服困难的能力(二)重难点重点:会找“角边角”及“角角边”条件难点:会用“角边角”及“角角边”条件判定全等并解决相关问题(三)教学方法实验探究、启发式、自主探索和合作交流(四)教学程序一、复习回顾判定两个三角形全等我们已学了那些判定条件?二、新知探究1、问题情境一块三角形的玻璃碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么应该带哪一块去?工人应该怎样操作?从操作过程中我们不难看出,第3号碎玻璃保留了原三角形的两个角和一条边,此时三角形的形状、大小已经确定了,所以配出的三角形与原三角形玻璃全等。

那如果两个三角形具备两角一边对应相等,它们是否一定全等呢?2、新知探究问:两个三角形两角一边对应相等会出现几种情况的对应方式?(1)两角及夹边分别相等(2)两角分别相等且其中一组等角的对边相等探究1、两角及夹边分别相等先任意画一个△ABC,再画一个△DEF,使得EF=BC,∠E =∠B ,∠F =∠C;观察所得的两个三角形是否全等?如何验证?(截下完全重合)AB CDE F归纳:两角和它们的夹边分别相等的两个三角形全等(简写成“角边角”或“ASA”) 用符号语言表达为: 在△ABC 与△DEF 中探究2、两角分别相等且其中一组等角的对边相等 变式:在△ABC 与△DEF 中,若∠E =∠B ,∠F =∠C ,AC=DF ,则△ABC ≌△DEF 吗?为什么?板书证明过程归纳:两角分别相等且其中一组等角的对边相等的两个三角形全等。

(简写成“角角边”或“AAS”)用符号语言表达为: 在△ABC 与△DEF 中归纳:若两个三角形具备两角相等及一边相等,这两个三角形要全等,只有满足ASA ,AAS 时才成立 三、典例分析例1、下列各组条件中,不能判定△ABC ≌△DEF 的是( ) A .∠B=∠E ∠C=∠F BC=EFB .∠B=∠E ∠C=∠F AC=DFC .∠A=∠D ∠C=∠F AB=DED .∠A=∠D ∠B=∠E AB=DF例2.已知:点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AB=AC ,∠B=∠C. (1)求证:AD=AE(2)△BDO 与△CEO 全等吗?为什么? 板书书写格式问:从此题寻找全等条件的过程中,你觉得有哪些值得注意的地方?A B C D E FO A B C DE F练习:课本第41页练习已知:如图,AB ⊥BC ,AD ⊥DC ,垂足分别为B ,D ,∠1=∠2. 求证:AB=AD从此题寻找全等条件的过程中,你觉得有哪些值得注意的地方?变式:已知,如图示:∠B=∠D=90o,∠1=∠2,AC=AE变式:AM=AN 吗?你有几种证明方法(学生讨论)四、能力拓展例3、已知,如图示:∠C=∠D ,∠1=∠2, 可添加条件 ,使△A BC ≌△FED练习:1、已知,如图示:∠C=∠D=90o,CB ∥ED ,AE=FB , 以下结论正确的有AB=EF ②∠A=∠F ③CA ∥DF ④S ΔABC = S ΔFEDBC DEBAEDCF2、已知,如图示,∠ABC=90°,AB=BC,BP为一条射线,AD⊥BP于D,CE⊥PB于E. 求证:DE=AD—EC问:本题的解决过程,你有什么收获?五、课堂小结通过本节课的学习,你学会了什么?1、三角形全等的判定条件ASA、AAS2、根据题意选择适当的证明方法3、证明线段或角相等,就是证明它们所在的两个三角形全等(全等的作用)。

11.2三角形全等的判定(AAS-ASA)练习题及答案

11.2三角形全等的判定(AAS-ASA)练习题及答案

11.2三角形全等的判定(AAS-ASA)◆随堂检测1.如图,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么?2.已知如图,AB=AC,AD=AE,∠BAC=∠DAE,试说明BD=CE。

3.如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC。

试说明AD=CB。

4.如图,已知AC 、BD 相交于点0,∠A=∠B ,∠1=∠2,AD=BC. 试说明△AOD ≌△BOC.◆典例分析例:如图:已知AE 交BC 于点D ,∠1= AB=AD. 求证:DC=BE 。

证明:∵∠ADB=∠1+∠C , ∠ADB=∠3+∠E , 又∵∠1=∠3, ∴∠C=∠E 。

在△ABE 和△ADC 中, ∵∠E =∠C , ∠2 =∠1, AB =AD ,∴ △ABE ≌△ADC (AAS )。

∴DC=BE 。

解析:要证DC=BE,先观察DC 与BE 分别在可能全等的两个三角形中.根据所给条件选择方法◆课下作业●拓展提高5.玻璃三角板摔成三块如图,现在到玻璃店在配一块同样大小的三角板,最省事的方法( )A 、带①去B 、带②去C 、带③去D 、带①②③去6. 如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .7.如图,已知AC 、BD 交于E ,∠A=∠B ,∠1=∠2.求证:AE=BE .8.如图,在△ABC 中,MN ⊥AC ,垂足为N ,,且MN 平分∠AMC ,△ABM 的周长为9cm,AN=2cm,求△ABC 的周长。

9.如图,在△ABC 中,∠B=∠C ,说明AB=ACABCDE10.已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。

⑴求证:∠ABE=∠C ;⑵若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。

11.2 三角形全等的判定(ASA,AAS)(含答案)

11.2 三角形全等的判定(ASA,AAS)(含答案)

11.2 三角形全等的判定(ASA,AAS)◆课堂测控测试点 ASA,AAS1.三角形对应相等的两个三角形______全等,•即两个三角形全等的条件中至少有_______相等.2.已知在△ABC与△A′B′C′中,∠A=∠A′,∠B=∠B′,•则在下列条件中不能确定△ABC与△A′B′C′全等的是()A.AB=A′B′ B.BC=B′C′ C.AC=A′C′ D.∠C=∠C′3.如图,已知AB=A′B′,∠A=∠A′,若△ABC≌△A′B′C′,还需要()A.∠B=∠B′ B.∠C=∠C′ C.AC=A′C′ D.以上都对4.如图,已知△ABC的六个元素,则下面甲,乙,丙三个三角形中和△ABC全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙5.如图,某同学把一块三角形的玻璃打碎成了三块,•现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去 B.带②去 C.带③去 D.带①和②去◆课后测控6.如图,在△ABC中,D是BC上一点,AB=AD,∠1=•∠2,•∠B=•∠ADE,•根据______可判定△ABC≌△ADE.7.如图,AD=AB,∠C=∠E,∠ADC=125°,则∠ABE=_____.8.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,交BC于D,•且DC=15,则点D到AB的距离DE长为_______.EDC BA(第6题) (第7题) (第8题)9.如图,∠E=∠F=90°,∠B=∠C ,AE=AF ,给出下列结论:①∠1=∠2;②BE=CF ;③△ACN ≌△ABM ,其中正确的结论是_______.(注:将你认为正确的结论都填上)(第9题) (第11题)10.在△ABC 与△A ′B ′C ′中,∠A=44°,∠B=67°,∠C ′=69°,∠B ′=44°,且AC=B ′C ′.那么这两个三角形(提醒:画出草图)( )A .一定不全等B .一定全等C .不一定全等D .以上都不对11.如图,在△ABC 与△DEF 中,已有条件AB=DE ,•还需添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( )A .∠B=∠E ,BC=EFB .BC=EF ,AC=DFC .∠A=∠D ,∠B=∠E D .∠A=∠D ,BC=EF12.如图,AB=AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,求证:AD=AE .13.如图,AC和BD相交于点E,AB∥CD,AB=CD,求证:E为BD的中点.14.已知:如图,B,C,E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE.◆拓展测控15.(教材变式探究题)如图(1),在△ACB中,∠ACB=90°,AC=BC,直线L经过点C,AD ⊥L于D,BE⊥L于E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线L绕点C旋转到图(2)的位置时,DE,AD,BE具有怎样的等量关系?说出你的猜想,并证明你的猜想.答案:1.不一定一对对应边2.D (点拨:没有一对对应边相等)3.D (点拨:根据ASA可选A,根据AAS可选B,根据SAS可选C)4.B (点拨:根据SAS可知乙,根据AAS可知丙)5.C (点拨:依据ASA)[总结反思]证明三角形全等的方法增加了ASA和AAS.6.ASA (点拨:由∠1=∠2可得∠BAC=∠DAE)7.125°(点拨:易知△ADC≌△ABE)8.15 (点拨:易证△ACD≌△AED,DE=CD)9.①②③(点拨:根据已知条件易证△ABE≌△ACF,△ABM≌△ACN)10.B (点拨:画出草图后,确定对应边和角)11.D (点拨:三角形全等条件中边边角不成立)12.证明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°.在△ADC和△AEB中,,,,A AAD C AEB AC AB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△AEB,∴AD=AE.[解题规律]有两角及其一角对边相等的两个三角形全等.13.证明:∵AB∥CD,∴∠A=∠C,∠B=∠D.在△ABE和△CDE中,,,,A C ABC DB E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE≌△CDE(ASA).∴BE=DE,即E为BD的中点.[解题规律]有两角及其夹边对应相等的两个三角形全等.14.证明:∵AC∥DE,∴∠ACD=∠D,∠ACB=∠E.又∵∠ACD=∠B,∴B=∠D.在△ABC和△CDE中,,,,B DAC B E AC C E∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△CDE(AAS).[解题技巧]充分利用AC∥DE得到∠ACB=∠E和∠ACD=∠D,即一线二用.15.(1)证明:∵AD⊥L,BE⊥L,∴∠ADC=∠CEB=90°.∵∠ACB=90°,∴∠ACD+∠ECB=90°.又∠1+∠ACD=90°,∴∠1=∠ECB.在△ADC和△CEB中,, 1,,AD C C EBEC BAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE.∴DE=CE+DC=AD+BE.(2)结论:DE=AD-BE.证明:同(1)可证△ADC≌△CEB.∴AD=CE,DC=BE,∴DE=CE-CD=AD-BE.[解题方法]解决问题(2)的关键是弄清图(2)中哪些量发生了变化,•哪些没有发生变化,本题在证明过程中要发现∠ACD=90°的用法,即由∠ACB=90°可得∠ACD+∠BCE=90°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形的判定(ASA 、AAS ) 姓名:
一、学习目标
1、通过动手实践,自主探索,进一步掌握三角形全等的条件。

2、学生探索出全等三角形的条件“ASA 、AAS ”结合图形能准确表达三角形全等。

3、能运用“ASA 、AAS ”的方法进行三角形全等的判定。

二、重点难点
重点:掌握三角形全等的条件“ASA 、AAS ”,并能应用它们来判定两个三角形是否全等。

难点:探索“ASA 、AAS ”及应用。

三、自主、合作与探究
回忆
1.全等三角形的定义:
2.你学过的判定两个三角形全等的方法有: 、
交流探索
我们已经探索了给三个条件中包括“三角、三边、两边一角”三种情况,那么“两角一边”呢?
问题引入:如图,小明不慎将一块三角形模具打碎为三块,他是否可
以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形
模具吗? 如果可以,带哪块去合适? 你能说明其中理由吗?
探索1:先任意画出一个△ABC 。

再画一个△A ′B ′C ′,使A ′B ′=AB ,∠A ′=∠A , ∠B ′=∠B (即使两角和它们的夹边对应相等)。

把画好的△A ′B ′C ′剪下,放到△ABC 上,它们全等吗?你能得出什么结论?(参考P11)
结论:三角形全等的“ASA ”判定方法: 的两个三角形全等. 可以简写成 “ ” 或“ ” (注意:边必须是相等对应角的夹边)
数学语言表述: 在△ABC 和△A ′B ′C ′中
⎪⎩⎪⎨⎧∠=∠∠=∠//
________________B B A A
∴ △ABC ≌△ A ′B ′C ′(ASA )
新知应用
例1:如图,D 在AB 上,E 在AC 上,AB =AC ,∠B =∠C .求证AD =AE .
探索2:思考:如果两个三角形有两个角和其中一个角的对边分别对应相等,那么这两个三角形是否全等? (利用角边角条件证明你的结论)
结论:三角形全等的“AAS ”判定方法: 的两个三角形全等. 可以简写成 “ ” 或“ ”
新知应用
例2:如图:∠1=∠2,∠3=∠4 求证:AC=AD
四、课堂练习
A 组练习
1、如图1,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃
店去配一块完全一样的玻璃,那么最省事的办法( )
A 、选①去,
B 、选② C、选③去
2、如图2,O 是AB 的中点, 要使通过角边角(ASA )来判定
△OAC≌△OBD,需要添加一个条件,下列条件正确的是( )
A 、∠A=∠
B B、AC=BD
C 、∠C=∠
D D 、OC=OD 3.如图,21∠=∠,AD AB =,若想使ABC ∆≌AD
E ∆,则需增加
一个条件,你增加的条件为: .并加以证明.
B 组练习
4、如图,要测量河两岸相对的两点A 、B 的距离,可以在AB 的垂线BF 上取两点C 、D ,使BC=CD ,再定出BF 的垂线DE ,使A ,C ,E 在一条直线上,这时测得DE 的长度就是AB 的长度,为什么?
5、如图,已知21∠=∠,43∠=∠
求证:BE BD =
6.如图,已知CE BD =,21∠=∠,那么AC AB =,你知道这是
为什么吗?
C 组练习
7. 已知如图,AB CE ⊥于点E ,AC BD ⊥于点D ,BD 、CE 交于点O ,
且AO 平分BAC ∠.
证明:CD BE =(用两种方法证明)
法一: 法二:。

相关文档
最新文档