高一数学上册期中考试试卷1
余姚中学2023学年第一学期期中考试高一数学试题(含答案)

A. 54 cm2
B. 48 cm2
C. 27 cm2
D. 9 cm2
4.函数 f (x) | x2 1| 的大致图象为( ) x
A
B
C
D
5.已知函数 f (x) log2 (2 x) 的值域为 ,1 , 则函数 f (2 x ) 的定义域为( )
A. [0, )
B. [0, 2)
C. [0,1)
9.下列说法正确的是( )
A.
10
化成角度是
18
B.
120
化成弧度是
5 6
C. 330 与 750 的终边相同
D.
若 sin
cos
1 ,则 tan 2
cos sin
2
10.用二分法求函数 f (x) x3 x2 2x 2 的一个零点的近似值 ( 精确度为 0.1) 时,依次计算得到如下数据:
11.函数
f
(x)
x 1 | x
(x |
R)
,以下四个结论正确的是(
)
A. f (x) 的值域是 (1,1)
B.
函数 y
f (x) 的图像与函数 g(x) log2
x x
1 1
图像的交点为
x1
,
y1
,
x2
,
y2
,
x3
,
y3
,,
xm
,
ym
,则
x1 x2 x3 xm 2
C.
若规定
f1(x)
f (x) | x2 1| f (x) , x
该函数为奇函数,故 A 错误;
当 x 0 时, f (x) | x2 1| 0 ,故 D 错误; x
2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。
高一年级第一学期期中考试数学试卷及其参考答案

高一年级第一学期期中考试数学试卷(基础模块第一章、第二章)一、选择题(每小题5分,共60分)1.下列表示正确的是().A.{ 0 }=∅B.{全体实数}=RC.{ a }∈{a,b,c } D.{ x∈R∣x2+1=0 }=∅2.已知全集U={ 0,1,2,3,4,5},集合A={1,2,5},B={2,3,4},则(U C A)B=().A.{2}B.{0,2,3,4}C.{3,4}D.{1,2,3,4,5}3.已知A={ (x,y) | 2x-y=0 },B={ (x,y) | 3x+2y=7 },则A B=().A.{(2,1)}B.{1,2}C.{(1,2)}D.{x=1,y=2}4.设A={ x | 0< x < 1 },B={ x | x < a } ,若A⊆B,则a的取值范围是().A.[1,+∞) B.(-∞,0]C.[0,+∞)D.(-∞,1]5.已知集合A={ x | x2+14= 0 },若A∩R =∅,则实数m的取值范围是().A.m<1B.m≥1C.0<m<1D.0≤m<16.“A⊆B”是“A B=A”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.不等式21-+xx≤0的解集为().A.{ x | x≥2}B.{ x | x≥2或x<-1 }C.{ x|-1<x≤2 }D.{x| x≥2或x≤-1 }8.已知a<b<0,c>0,那么().A.a2<b2B.a b<1C.ca<cb D.ca>cb9.绝对值不等式| 2x-3 |<5的解集是().A.{ x | x<-1或x>4 }B.{ x |-1<x<4 }C.{ x | x<-1 }D.{ x | x>4 }10.与不等式-x2-2x+3>0同解的不等式(组)是().A. x2+2x-3>0B. (x+3)(x-1)<0C.x+3>0x-1D.x+3<0x-1>0⎧⎨⎩a 、b 、c 的大小顺序是( ). A.a>b>c B.c>b>a C.b>a>c D.a>c>b12.若实数0<a <1,则)0>1(a-x)(x-a的解集为( ). A.{ x |1<x<a a } B.{ x | 1<<a x a} C.{ x | 1< >x a 或x a } D.{ x | 1<a >x 或x a}二、填空题(每小题4分,共16分)13.设全集U={ 1,2,3,4,5 },A={ 2,5 },则U C A 的所有子集的个数为 _________. 14.符合条件{a}⊆M {a,c,d}的集合M的个数是 _________.15.设a,b为实数,则“a2=b2”是“a=b”的 _________条件.(填充分或必要)16.不等式2+2m x x+n>0的解集是(11,32-),则不等式2-nx +2x-m >0的解集是 _________.三、解答题(共74分,解答应写出文字说明及演算步骤) 17.已知U={ x |-2<x<7 ,x ∈N },A={ 1,2,4 },B={ 2,3,5}.求: ⑴ A U B ;⑵ A B ;⑶ B C C U U A;⑷ B C C U U A .(12分)18.若集合A={ x | mx 2+2x -1 = 0 , m ∈R , x ∈R }中有且仅有一个元素,那么m 的值是多少?(12分)19.设集合A={ x | x 2-3x +2 = 0 },B = { x | x 2+2(a +1)x +(a 2-5) = 0 },若A B = { 2 },求实数a的值.(12分) 20.解不等式x+23-x≤1.(12分) 21.设全集为R ,A={ x | |x-1|<3 },B={ x | x 2-x -2≥0 },求A B ,A U B ,A CB .(12分)22.已知集合A={ x | x 2-x -12 ≤0 },集合B={ x | m -1≤x ≤2m +3 },若A U B=A ,求实数m 的取值范围.(14分)高一年级第一学期期中考试数学试卷参考答案二、填空题(每小题4分,共16分)13、 8 14、 3 15、 必要 16、 (-2,3)三、解答题:(22题14分,17~21题每题12分,共计74分)17.解:U={ 0,1,2,3,4,5,6 }. ⑴A U B={1,2,3,4,5}.⑵A B={2}.⑶B C C U U A ={ 0,3,5,6 }U { 0,1,4,6 }={ 0,1,3,4,5,6, }. ⑷ B C C U U A={ 0,3,5,6 } { 0,1,4,6 }={ 0,6 }.18. 解:当m=0时, A=12⎧⎫⎨⎬⎩⎭,符合题意.当m ≠0时,要使集合A 中有且仅有一个元素,必须 方程mx 2+2x -1 = 0有两个相等实数根, ∴ 2∆=2+4m =0, 即m=-1,综上所述,m=0或m=-1. 19. 解:A={ 1,2 }∵ A B={ 2 }, ∴ 2 B, ∴ 2是方程x 2+2(a +1)x +(a 2-5) = 0的根,把x=2代入此方程得2a +4a+3=0, ∴ a=-1或a=-3, 当a=-1时,B={ -2,2 }, A B={ 2 },符合题意. 当a=-3时,B={ 2 }, A B={ 2 },符合题意. 综上所述,a 的值为-1或3. 20. 解:原不等式⇔x+2-13-x ≤0⇔x+2-(3-x)3-x ≤0⇔2x-13-x≤0 ⇔2x-1x-3≥00≠⎧⇔⎨⎩x-3(2x-1)(x-3)≥012⇔x ≤或x>3, ∴ 解集为12{x |x ≤或x>3}. 21. 解:解|x-1|<3得-2<x<4, 故A=(-2,4).解x 2-x -2≥0得x ≤-1或x ≥2, 故B=(-∞,-1]∪[2,+∞).∴ A B=(-2,-1]∪[2,4),A U B=R,A C B=(-2,4) (-1,2)=(-1,2).22.解: 解x2-x-12 ≤0得-3≤x≤4, 故A=[-3,4],由A U B=A,知B A,∴⎧⎪⎨⎪⎩m-1≤2m+3,m-1≥-3,2m+3≤4,即12⎧⎪⎪⎨⎪⎪⎩m≥-4,m≥-2,m≤,∴ -2≤m≤12.。
辽宁省实验中学2024-2025学年高一上学期期中考试数学试卷

辽宁省实验中学2024-2025学年高一上学期期中考试数学试卷一、单选题1.已知集合{}34A x x =-<<,{}35B x x =<<,则}{|45x x ≤<=()A .()R A B ðB .()R A B ⋂ðC .()R A B ðD .()R A Bð2.下列函数中,不能用二分法求零点的是()A .()2f x x =B .()22f x x =++C .()14=+-f x x xD .()23xf x =-3.“18a =”是“方程220ax x ++=有实数解”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设函数()f x 在R 上为增函数,则下列结论正确的是()A .()y xf x =在R 上为增函数B .()f x y x=在R 上为减函数C .()1y f x =-在R 上为增函数D .()y f x =-在R 上为减函数5.设0.12a =,0.60.7b =,0.70.7c =,则()A .a b c>>B .a c b>>C .c a b>>D .b c a>>6.已知函数()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增.若关于x 的不等式()3f x x ≤的解集为][(),22,∞∞--⋃+,则不等式()232f x x >的解集为()A .()(),22,∞∞--⋃+B .()2,2-C .()(),44,∞∞--⋃+D .()4,4-7.高斯是德国著名的数学家,近代数学奠基者之一,用其名字命名的“高斯函数”为:设R x ∈,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数.例如:[]0.61-=-,[]1.61=,已知函数()2e 11ex xf x =-++,则函数()()y f x f x ⎡⎤=+-⎣⎦的值域是()A .{}1,0-B .(]1,0-C .111,,022⎛⎫⎛⎤--- ⎪ ⎥⎝⎭⎝⎦ D .111,,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭8.已知函数()32f x x ax bx c =+++的三个零点分别为1,1x ,()2120x x x <<,若函数满足()()2112f x f x +=--,则()3f 的取值范围为()A .[]2,4B .()4,6C .()6,8D .[]4,8二、多选题9.下列说法正确的有()A .当0a >,且1a ≠时,函数()xf x a =的图像必过定点()0,1;B .若函数()f x 为奇函数,则()00f =;C .函数()11f x x =-在()(),11,-∞+∞ 上是单调减函数;D .将()2y f x =的图像向右平移12个单位,可得()21y f x =-的图像10.已知0a >,0b >,且21a b +=,则下列说法正确的是()A .18ab ≥B .22142a b +≥C .129a b+≥D .()()2125a b ab++≥11.已知函数()121,012,02x x x f x x -⎧--≥⎪=⎨+<⎪⎩,若123x x x <<,且()()()123f x f x f x ==,则下列结论正确的是()A .123x x x ++的取值范围为(],4∞-B .()()1223f x f x x x +的取值范围为8,7⎛⎫+∞ ⎪⎝⎭C .若方程()()211022f x b f x b ⎛⎫-++= ⎪⎝⎡⎤⎣⎦⎭有5个不同的实根,则1,12b ⎛⎫∈ ⎪⎝⎭D .若方程()()f f x a =有5个不同的实根,则3,14a ⎛⎫∈ ⎪⎝⎭三、填空题12.命题“R x ∃∈,30x +<”的否定是.13.若函数()f x =在(),2-∞单调递减,则a 的取值范围是.14.已知函数()f x 是定义域为R ,图象恒过()0,2点,对于R 上任意12x x <,都有()()12121f x f x x x ->--,则关于x 的不等式()2112f x x +<-的解集为.四、解答题15.(1)计算:203133310.02752-⎡⎤⎛⎫⎛⎫--+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦;(2)计算:()()31log 54839log 3log 3log 2log 29-++++-;16.已知函数()1x af x x b x +=+++为奇函数.(1)求a ,b 的值;(2)指出并证明()f x 在[)0,+∞上的单调性;(3)求()f x 在区间[)2,3-上的值域.17.地下矿产资源勘探建模是一种重要的技术手段,用于帮助人们更好的了解底下矿产资源的分布和特征.地球物理勘探技术包括地震勘探、电磁勘探和重力勘探等,可以通过测量地下的物理参数来获取不同地理位置下矿产资源的信息.基于测量得到的物理参数,通过处理和分析,可以建立底下矿产资源的分布模型,进而指导开采活动.在某个矿藏区域,通过前期的勘探活动,测得了某物理指标随着地理位置变化的数据,如下表所示.其中x 表示采样点距离矿藏中心标记点的距离,y 表示物理指标的数值.x123456y5.74.02.82.01.41.0(1)根据矿藏分布可能的物理情况,数据分析人员估计物理指标y 随着x 变化的模型可能为两种,分别是①2y ax b =+,②2mx n y +=,请根据表格中的数据,在答题卡中绘制散点图,简要分析此矿藏区域应该用哪一个模型来估计物理指标y 随着x 变化的趋势.(2)根据(1)中的结论,选取表格中2x =,4x =的两组数据,建立数学模型描述物理指标y 随着x 变化的趋势.根据既往经验,当物理指标y 低于0.1时,则不具备开采条件,请问正整数x 的范围应该如何选取,方能保证范围内所有区域都具备开采条件.18.(1)已知x y z >>,且20x y z ++=≤(2)已知0m >,0n >,且3m n +>,请证明:3m n +与3n m +至少有一个大于13.19.解关于x 的不等式:(1)()22120ax a x a -+++>;(2)()2228816log x x a ax a ax a x-+-++≥。
(整理版)第一学期期中试卷高一数学

~ 度第一学期期中试卷高 一 数 学第一卷 客观卷〔共36分〕一、选择题〔每题3分,共36分,每题的四个选项中,只有一项为哪项符合题目要求的〕 1. 集合A ={x | x ( x -1) = 0},那么A .0∈AB . 1∉AC . -1∈AD . 0∉A 2. 集合M={(x,y)|x+y=2}, N={(x,y)|x-y=4},那么M ∩N 为A .x=3,y=-1B .(3,-1)C . {3 ,-1}D .{(3,-1)} 3. 以下函数中,与函数y = x ( x ≥0 ) 是同一函数的一个为A . y. y2C . yD . y =2x x4.函数21,0(),0x x f x x x +≥⎧=⎨<⎩,那么f 〔-2〕的值为A .1B .2C .4D .55. 函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,那么a 的取值范围是A .a ≥3B .a ≤-3C .a ≤5D .a ≥-36.函数f 〔x 〕=|x |和g 〔x 〕=x 〔2-x 〕的递增区间依次是A .〔-∞,0],〔-∞,1]B .〔-∞,0],[1,+∞)C .[0,+∞),〔-∞,1]D .[0,+∞〕,[1,+∞〕7.设集合A ={x|-5≤x <1=,B ={x|x ≤2},那么A B = A .{x|-5≤x <1= B .{x|-5≤x ≤2} C .{x|x <1= D .{x|x ≤2}8.函数xx f 1)(=,那么)1(-x f 的图像大致是x〔A 〕 〔B 〕 〔C 〕 〔D 〕 9.图中的曲线是log a y x =(0,1)a a >≠的图象,a 的值为2,43,310,15,那么相应曲线1234,,,C C C C 的a 依次为 A .2,43,15,310 B .2,43,310,15C .15,310,43,2D .43,2,310,1510.函数y=log 2x-123-x 的定义域是A . 〔32,1〕⋃〔1,+∞〕B . 〔21,1〕⋃〔1,+∞〕 C . 〔32,+∞〕 D . 〔21,+∞〕11.函数lg(1)lg(1)y x x =-++的图象关于A .直线0x =B .直线0y =对称C .点(0,0)对称D .点(1,1)对称12. 假设4log 3log 32⋅=P ,5lg 2lg +=Q ,0e M =,1ln =N ,那么正确的选项是0 x C 1C 2 C 4C 3 1yA Q P =B . M Q =C . N M =D .P N =第II 卷 主观卷〔共64分〕二、填空题:(本大题共4小题,每题4分,总分值16分;把答案填在横线上)13.化简1416()81-的值为 .14.函数(1)x y a a =>的定义域是[1,1]-,且最大值与最小值的差为1,那么a = .15.集合{1,2},{,},a A B a b ==假设1{}2A B =,那么A B = .16.设236ab==,那么11a b+的值为 . 三、解答题:(本大题共5小题,共48分.). 17.〔8分〕非空集合2{|0}Ax x ax b ,2{|8150}Bx x x ,且A B ⊆.求:〔1〕写出集合B 所有的子集;〔2〕求ab 的值.18.〔8分〕求以下函数的定义域:〔1〕y 〔2〕xx y +++=31)5(log 219.〔8分〕函数1()f x xx. 〔1〕求f (x ) 的定义域; 〔2〕用单调性定义证明函数1()f x xx在(0,)+∞上单调递增.20.〔8分〕函数)(x f 是定义在R 上的奇函数,且当0>x 时,x x x f -=2)(.〔1〕计算)0(f ,)1(-f ; 〔2〕当0<x 时,求)(x f 的解析式.21.〔8分〕函数2()log (41)xf x ax .假设函数()f x 是R 上的偶函数,求:实数a 的值;22.〔8分〕 函数()log (1)log (3),(01).a a f x x x a =-++<<〔1〕求函数()f x 的定义域;〔2〕假设函数()f x 的最小值为2-,求实数a 的值.。
福建省厦门2024-2025学年高一上学期期中考试数学试卷(含答案)

厦门2024-2025学年第一学期期中考高一数学试卷(答卷时间:120分钟 卷面总分:150分)一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.设全集,集合,则( )A .B .C .D .2.若命题,则命题的否定为( )A .B .C .D .3.已知命题,若命题是命题的充分不必要条件,则命题可以为( )A .B .C .D .4.下列幕函数满足:“①;②当时,为单调通增”的是( )A . B .C .D .5.已知函数(其中)的图象如图所示,则函数的图像是( )A .B .C .D .6.已知且,则的最小值是( )A .B . 25C .5D .{}0,1,2,3,4,5,6U ={}{}1,2,3,3,4,5,6A B ==U ()A B = ð{}1,2{}2,3{}1,2,3{}0,1,2,32:0,320p x x x ∃>-+>p 20,320x x x ∃>-+≤20,320x x x ∃≤-+≤20,320x x x ∀≤-+>20,320x x x ∀>-+≤:32p x -<≤q p q 31x -≤≤1x <31x -<<3x <-,()()x R f x f x ∀∈-=-(0,)x ∈+∞()f x ()f x =3()f x x=1()f x x-=2()f x x=()()()f x x a x b =--a b >()2xg x a b =+-0,0x y >>3210x y +=32x y+52657.已知偶函数与奇函数的定义域都是,它们在上的图象如图所示,则使关于的不等式成立的的取值范围为( )A .B .C .D .8.已知,则与之间的大小关系是( )A .B .C .D .无法比较二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对得5分,部分选对得部分分.9.下列函数中,与不是同一函数的是( )A .B .C .D .10.若,则下列不等式成立的是( )A .B.C .D .11.设,用符号表示不大于的最大整数,如.若函数,则下列说法正确的是( )A .B .函数的值域是C .若,则D .方程有2个不同的实数根三、填空题:本大题共3小题,每小题5分,共15分.将答案填写在答题卷相应位置上.12.计算________.13.“不等式对一切实数都成立”,则的取值范围为________.()f x ()g x (2,2)-[0,2]x ()()0f x g x ⋅>x (2,1)(0,1)-- (1,0)(0,1)- (1,0)(1,2)- (2,1)(1,2)-- 45342024120241,2024120241a b ++==++a b a b>a b <a b =y x =2y =u =y =2n m n=,0a b c a b c >>++=22a b <ac bc <11a b<32a a a b b+>+x R ∈[]x x [1.6]1,[ 1.6]2=-=-()[]f x x x =-[(1.5)]1f =-()f x [1,0]-()()f a f b =1a b -≥2()30f x x -+=21232927()((1.5)48---+=23208x kx -+-<x k14.某学校高一年级一班48名同学全部参加语文和英语书面表达写作比赛,根据作品质量评定为优秀和合格两个等级,结果如表所示:若在两项比赛中都评定为合格的学生最多为10人,则在两项比赛中都评定为优秀的同学最多为________人.优秀合格合计语文202848英语301848四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合,集合.(1)当时,求,.(2)若,求的取值范围.16.(15分)已知函数.(1)判断函数的奇偶性并用定义加以证明;(2)判断函数在上的单调性并用定义加以证明.17.(15分)已知函数.(1)若函数图像关于对称,求不等式的解集;(2)若当时函数的最小值为2,求当时,函数的最大值.18.(17分)某游戏厂商对新出品的一款游戏设定了“防沉迷系统”规则如下①3小时内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值(单位:EXP )与游玩时间(单位:小时)滴足关系式:;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验值不变);③超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时国成正比例关系,正比例系数为50.(1)当时,写出累积经验值与游玩时间的函数关系式,求出游玩6小时的累积经验值;(2)该游戏厂商把累积经验值与游现时间的比值称为“玩家愉悦指数”,记为,若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数的取值范围.19.(17分)《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是发现新问题、新结论的重要方法.例如,已知,求证:.{}34A x x =-<≤{}121B x k x k =+≤≤-2k ≠A B ()R A B ðA B B = k 2()f x x x=-()f x ()f x (0,)+∞2()23,f x x bx b R =-+∈()f x 2x =()0f x >[1,2]x ∈-()f x [1,2]e ∈-()f x E t 22016E t t a =++1a =E t ()E f t =E t ()H t 0a >a 1ab =11111a b+=++证明:原式.波利亚在《怎样解题》中也指出:“当你找到第一个蘑菇或作出第一个发现后,再四处看看,他们总是成群生长.”类似上述问题,我们有更多的式子满足以上特征.请根据上述材料解答下列问题:(1)已知,求的值;(2)若,解方程;(3)若正数满足,求的最小值.111111ab b ab a b b b=+=+=++++1ab =221111a b+++1abc =5551111ax bx cxab a bc b ca c ++=++++++,a b 1ab =11112M a b=+++高一数学期中考参考答案1234567891011A DCB DAABABDBDACD12.13.14.1215.解:(1)由题设,则,,则,(2)由,若时,,满足;若时,;综上,.16.解:(1)是奇函数,证明如下:由已知得的定义域是,则,都有,且,所以是定义域在上的奇函数.(2)在上单调递减,证明如下:,且,都有∵,∴,∵,∴∴,即,所以在上单调递减32({}3B ={}34A B x x =-<≤ {}()34R A x x x =≤->或ð()R A B = ð∅A B A B A =⇒⊆ B =∅1212k k k +>-⇒<B ≠∅12151322214k k k k k +≤-⎧⎪+>-⇒≤≤⎨⎪-≤⎩52k ≤()f x ()f x (,0)(0,)-∞+∞ (,0)(0,)x ∀∈-∞+∞ (,0)(0,)x -∈-∞+∞ 22()()()f x x x f x x x-=--=-=--()f x (,0)(0,)-∞+∞ ()f x (0,)+∞12,(0,)x x ∀∈+∞12x x <22212121121212122222()()x x x x x x f x f x x x x x x x --+-=--+=222112************222()()x x x x x x x x x x x x x x x x --+⨯---==211212()(2)x x x x x x -⨯+=12x x <210x x ->12,(0,)x x ∈+∞120x x >12()()0f x f x ->12()()f x f x >()f x (0,)+∞17.解:(1)因为图像关于对称,所以:,所以:得:,即,解得或所以,原不等式的解集为:(2)因为是二次函数,图像抛物线开口向上,对称轴为,①若,则在上是增函数所以:,解得:;所以:,②若,则在上是减函数,所以:,解得:(舍);③若,则在上是减函数,在上是增函数;所以,解得:或(舍),所以:综上,当时,的最大值为11;当时,最大值为6.18.解:(1)当时,,,当时,,当时,当时,所以,当时,.(2)当时,,整理得:恒成立,令函数的对称轴是,当时,取得最小值,即,()f x 2x =2b =22()43()43,1f x xx f x x x e e -+=-+=<2430x x ee -+<2430x x -+<1x <3x >{}13x x x <>或2()23f x x bx =-+x b =1b ≤-()f x [1,2]-min ()(1)422f x f b =-=+=1b =-max ()()7411f x f x b ==-=2b ≥()f x [1,2]-min ()(2)742f x f b ==-=54b =12b -<<()f x [1,]b -(,2]b 2min ()()32f x f b b ==-=1b =1b =-max ()(1)426f x f b =-=+=1b =-()f x 1b =()f x 03t <≤1a =22016E t t =++3t =85E =35t <≤85E =5t >8550(5)33550E t t=--=-22016,03()85,3533550,5t t t E t t t t ⎧++<≤⎪=<≤⎨⎪->⎩6t =()35E t =03t <≤22016()24t t aH t t++=≥24160t t a -+≥2()416f t t t a =-+2(0,3]t =∈2t =()f t 164a -1640a -≥14a ≥19.解:(1).(2)∵,∴原方程可化为:,即:,∴,即,解得:.(3)∵,当且仅当,即∴有最小值,此时有最大值,从而有最小值,即有最小值.222211111ab ab b aa b ab a ab b ab a b+=+=+=++++++1abc =55511(1)ax bx bcxab a abc bc b b ca c ++=++++++5551111x bx bcx b bc bc b bc b ++=++++++5(1)11b bc x b bc ++=++51x =15x =2221122111111211223123123ab b b b b M ab a b b b b b b b b b++=+=+==-=-++++++++++12b b +≥=12b b =1b a b===12b b +1123b b ++3-11123b b-++2-11112M a b=+++2。
高一数学期中考试测试题(必修一含答案)

高一数学期中考试测试题(必修一含答案)高一年级上学期期中考试数学试题一、选择题(本大题共12小题,每小题5分,共60分。
给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5},集合A={1,2},B={2,3},则A ∩C U B A .{}45, B .{}23, C .{}1 D .{}2 2.下列表示错误的是(A )0?Φ (B ){}12Φ?,(C ){}{}21035(,)3,4x y x y x y +=-== (D )若,A B ?则A B A ?=3.下列四组函数,表示同一函数的是A .f (x )=2x ,g (x )=x B .f (x )=x ,g (x )=2x xC .2(),()2ln f x lnx g x x ==D .33()log (),()xa f x a a g x x =>0,α≠1=4.设1232,2,log (1), 2.(){x x x x f x -<-≥=则f ( f (2) )的值为A .0B .1C .2D .35.当0<a <1时,在同一坐标系中,函数xy a -=与log a y x =的图象是6.令0.760.76,0.7,log 6a b c ===,则三个数a 、b 、c 的大小顺序是A .b <c <aB .b <a <cC .c <a <bD .c <b <a 7.函数2()ln f x x x=-的零点所在的大致区间是 A .(1,2) B .(2,3)C .11,e ?? ???和(3,4) D .(),e +∞ 8.若2log 31x =,则39xx+的值为A .6B .3C .52 D .129.若函数y = f (x )的定义域为[]1,2,则(1)y f x =+的定义域为A .[]2,3B .[]0,1C .[]1,0-D .[]3,2-- 10.已知()f x 是偶函数,当x <0时,()(1)f x x x =+,则当x >0时,()f x = A .(1)x x - B .(1)x x -- C (1)x x + D .(1)x x -+11.设()()f x x R ∈为偶函数,且()f x 在[)0,+∞上是增函数,则(2)f -、()f π-、(3)f 的大小顺序是A .()(3)(2)f f f π->>-B .()(2)(3)f f f π->->C .()(2)f f f π-<(3)<-D .()(2)(3)f f f π-<-<12 已知函数f(x)的图象是连续不断的,x 与f(x)的对应关系见下表,则函数f(x)在区间[1,6] 上的零点至少有(A) 2(B) 3(C) 4(D) 5第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题4分,共16分。
高一数学上期中考试试卷及答案

高一数学上期中考试试卷及答案说明:1、考试时间为90分钟,满分为150分。
2、将卷Ⅰ 答案用2B 铅笔涂在答题卡上,卷Ⅱ用蓝黑钢笔或圆珠笔答在试卷答题纸上。
第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.若集合A={}|lg 0x x ≤,B={}2|1y y x =-则A ⋂B=A. (],1-∞B. ()0,1C. (]0,1D. [)1,+∞2.当0>a 时=-3ax A. ax x B. ax x - C. ax x -- D. ax x -3设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31x f x =-,则有 A .132()()()323f f f << B .231()()()323f f f <<C .213()()()332f f f <<D .321()()()233f f f << 4. 函数85y x =的图象是A .B .C .D .5. .若C A B A ⋃=⋃,则一定有A. B=C ;B. C A B A ⋂=⋂;C. C C A B C A U U ⋃=⋂;D. C A C B A C U U ⋂=⋂ 6.已知10.121.2,ln 2,5a b c -=== ,则c b a ,,的大小关系是A. c b a >> B . c a b >> C. a c b >> D . b a c >>7. 函数2()ln(1)f x x x =+,若实数,a b 满足(2+5)(4-)0f a f b +=,则2a b -=A. 1B. -1C. -9D. 98若函数y=x 2﹣4x ﹣4的定义域为[0,m],值域为[]8,4--,则m 的取值范围是 A. (0,2] B. (]2,4 C. []2,4 D. ()0,4 9. 若f(x)的零点与g(x)=422x x +-的零点之差的绝对值不超过0.25则f(x)可以是A .f(x)=4x-1 B. f(x)=2(1)x - C. f(x)=1xe - D. f(x)=12ln()x -10.已知函数()21124(02)()(2)a x x x f x x -⎧<≤⎪=⎨+>⎪⎩是(0,+∞)上的单调递减函数,则实数a 的取值 范围是A. ()2,∞-B. ()1,2C. (]0,2D. [)1,211.已知()(2)1f x x x =-⋅+若关于x 的方程()f x x t =+有三个不同的实数解,则实数t 的取值范围A. (]1,1-B. [)3,2-C. ()3,1-D. ()1,2-12.设()f x 是定义在R 上的奇函数,当0x ≤时,2(),f x x = 若对任意的[,2],x t t ∈+ 不等式()4()f x f x t ≤+恒成立,则实数t 的最大值是 A. 23- B. 0 C . 32 D. 2 第II 卷(非选择题 共90分)二、填空题 (本大题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林一中09级高一下学期期中考试
数 学 试 题
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共120分.考试时间90分钟.
第Ⅰ卷(选择题)
一、选择题:(本大题共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有
一项是符合题目要求的).
1.式子sin3000
的值等于
A .
12 B . 2
C .- 12
D .- 2
2.角α的始边在x 轴正半轴、终边过点P y ),且cos α =
1
2
,则y 的值为 A .3 B. 1 C.±3 D.±1 3.已知81cos sin =
αα,且)2
,4(π
πα∈,则ααsin cos -的值是 A .
23 B .43 C .23- D .2
3±
4.同时掷3枚硬币,那么下面两个事件中是对立事件的是
A .至少有1次正面和最多有1次正面
B .最多1次正面和恰好2次正面
C .不多于1次正面和至少有2次正面
D .至少有2次正面和恰好有1次正面
5. 图中所示的算法流程图,表达式为
A .112399++++.
B .
1
123100
++++
C .199
D .1100
6. 有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率为 A
101 B 103 C 21 D 10
7 7.现有60件产品,编号从1到60,若用系统抽样方法从中抽取6件检验,则所抽到的个体
编号可能是
A .5,10,15,20,25,30
B .2,14,26,28,42,56
C .5,8,31,36,48,54
D .3,13,23,33,43,53
8.函数]2,0[,sin 1π∈-=x x y 的大致图象是
B. C.
D.
9.为了得到函数)12cos(+=x y 的图象,只需将函数x y 2cos =的图象上各点
A.向左平移
2π个长度单位
B.向右平移2π
个长度单位 C.向左平移21个长度单位 D.向右平移2
1
个长度单位
10.函数x x y cos sin
-+=的定义域是
A .))12(,2(ππ+k k Z k ∈
B .])12(,2
2[ππ
π++
k k Z k ∈
C .])1(,2
[ππ
π++k k Z k ∈ D .[2k π,(2k+1)π] Z k ∈
11已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2
A π
ωϕ>><,则
A .4=A
B .1ω=
C .6
π
ϕ=
D .4=B
12.某小组有男生6人,女生4人,现要选2名班干部,
则当选的人中至少有一名女生的概率为 A.
23 B.15 C.25 D.3
10
13. 已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 A .5
B .-5
C .6
D .-6
14. 集合A={},
32
2|{},2|Z n n Z n n ∈±=⋃∈=
ππααπαα, B={},
2
1
|{},3
2|Z n n Z n n ∈+=⋃∈=ππββπ
ββ,
则A 、B 之间关系为
A .A
B ⊂
B .B A ⊂
C .B ⊂A
D .A ⊂B
≠
≠
15.已知函数f x x x x x x x ()sin (sin cos )cos (sin cos )
=≤>⎧⎨
⎩,,,给出下列四个结论:
(1)当且仅当x k k Z =+∈2ππ()时,f x ()取得最小值; (2)f x ()是周期函数; (3)f x ()的值域是[]
-11,;(4)当且仅当)(222
2Z k k x k ∈+<<+
πππ
π时
0)(<x f .
其中正确结论的个数是
A .0
B .1
C .2
D .3
二、填空:(共20分)
16. 已知cos()6απ-=31,则cos(
)65απ+·sin()3
2απ
-_______ 17. 设()f x 是定义域为R ,最小正周期为32π的函数,若cos (0)()2sin (0)
x x f x x x ππ⎧-≤<⎪=⎨⎪
≤≤⎩,则15()4
f π
-
的值等于________ 18. 已知函数)5
2
sin(
)(π
π
+
=x x f ,若对任意R x ∈都有)()()(21x f x f x f ≤≤成立,则
||21x x -的最小值是__________
19. 已知α是第二象限的角,且cos(α
-2π)=5
1,则)
2
3cos()2tan()
23
tan()cos()sin(απαπαπαπαπ+⋅+--⋅-⋅+是
20. 给出下列命题:
①函数x y sin =不是周期函数; ②函数x y tan =在定义域内是增函数; ③函数|212cos |+
=x y 的周期是2
π; ④函数)25sin(π
+=x y 是偶函数;
其中正确的命题的序号是_______________.
三、解答题:(共40分)
21.已知函数3)23
sin(2)(++=x x f π
(1)求该函数的单调减区间,最大、最小值以及对应的x 值; (2)求该函数的对称轴,对称中心,并说出由y=sinx 怎么得到的?
22.有10个同学,分别佩带着1号到10号的校徽,任意取3人的校徽记录其号码。
(1)求3个号码中至多有一个是偶数的概率; (2)求3个号码之和不超过9的概率。
23. 已知函数)2
||,0,0)(sin()(π
ϕωϕω<>>+=A x A x f 在一个周期内的图象如下图所示。
(1)求函数的解析式;
(2)设π<<x 0,且方程m x f =)(有两个不同的实数根,求实数m 的取值范围和这两
个根的和。
. 24.已知函数),1,1(,5tan sin )(-∈++=x x x x x f 如果,0)1()1(2<-+-m f m f 求m 的
取值范围。
吉林一中09级高一下学期期中考试
数 学 试 题 答 题 卡
一、选择题:(本大题共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有
一项是符合题目要求的).
二、填空:(共20分)
16. -91 17. 2
2
18. 2
19 -5
6
2 20. (1) (4)
三、解答题:(共40分)
21. 解:当)(2
23222Z k k x k ∈+≤+≤-π
ππππ时函数递增,得
所以函数的单调增区间为: [])(12,125Z k K K ∈+-
π
πππ 同理得函数单调减区间为:[])(12
7,12Z k K K ∈++
π
πππ; 当)(125Z k K x ∈-=π
π时,y min =1; 当)(12Z k k x ∈+=π
π时,y max =5 (2)由2x+3π=k 2ππ+,k z ∈ 可求对称轴x=
z k k ∈+,122ππ.由2x+3
π
=k π,k z ∈ x=
z k k ∈-,62ππ,可知对称中心(,6
2π
π-k 3) 22.解:(1)设3个号码中至多有一个是偶数的事件为A 。
则:P(A)=3
10
3
52515C C C C + =21
(2) 设3个号码之和不超过9的事件为B 。
则:P(B)=
3
10
34C +=1207
23. 解:(1)显然A =2, 又图象过(0,1)点,1)0(=∴f ,
21sin =
∴ϕ,6
,2||πϕπϕ=∴< ; 由图象结合“五点法”可知,)0,12
11(π
对应函数x y sin =图象的点(0,2π), πππω26
1211=+⋅∴,得2=ω.
所以所求的函数的解析式为:)6
2sin(2)(π
+
=x x f .
(2)如图所示,在同一坐标系中画出
)6
2sin(2π
+
=x y 和m y =(R m ∈)的图象,
由图可知,当2112<<<<-m m 或时,直线m y =与曲线有两个不同的交点,即原方程有两个不同的实数根。
∴m 的取值范围为:2112<<<<-m m 或; 当12<<-m 时,两根和为
34π;当21<<m 时,两根和为3
π.
24.解:函数f (x )是奇函数又是定义域上的增函数,所以,由f(1-m)+f(1-m )2﹤0,
f1-m)﹤f(m )12-,所以,1-m <m 12
-、且-1<1-m <1及-1<m 12
-<1,故m 的范围为:(1,2)。