概率论答案

合集下载

概率论整理答案

概率论整理答案

第1章 随机变量及其概率1,写出下列试验的样本空间:(1)连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2)连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4)抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P 5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。

(1)4只中恰有2只白球,1只红球,1只黑球。

(2)4只中至少有2只红球。

(3)4只中没有白球。

解: (1)所求概率为338412131425=C C C C ; (2) 所求概率为165674952014124418342824==++C C C C C C ; (3)所求概率为16574953541247==C C 。

6,一公司向M 个销售点分发)(M n n <张提货单,设每张提货单分发给每一销售点是等可能的,每一销售点得到的提货单不限,求其中某一特定的销售点得到)(n k k ≤张提货单的概率。

概率论试题及答案

概率论试题及答案

概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。

2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。

三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。

求在一小时内至少有一台机器发生故障的概率。

2. 一个班级有50名学生,其中30名男生和20名女生。

如果随机选择一名学生,这名学生是男生的概率是0.6。

求这个班级中男生和女生的人数。

四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。

2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。

如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。

求第二次取出的球是蓝球的概率。

答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。

至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。

2. 设男生人数为x,女生人数为y。

根据题意,x/(x+y) = 0.6,且x+y=50。

解得x=30,y=20。

四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。

计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。

概率论课后习题答案

概率论课后习题答案

习题1解答1. 写出下列随机试验的样本空间Ω:(1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数;(3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标.解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为{|0,1,2,,100}ii n nΩ==.(2)设在生产第10件正品前共生产了k 件不合格品,样本空间为{10|0,1,2,}k k Ω=+=,或写成{10,11,12,}.Ω=(3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的是正品,样本空间可表示为{00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=.(3)取直角坐标系,则有22{(,)|1}x y x y Ω=+<,若取极坐标系,则有{(,)|01,02π}ρθρθΩ=≤<≤<.2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件. (1)A 发生而B 与C 不发生; (2)A 、B 、C 中恰好发生一个; (3)A 、B 、C 中至少有一个发生; (4)A 、B 、C 中恰好有两个发生; (5)A 、B 、C 中至少有两个发生; (6)A 、B 、C 中有不多于一个事件发生.解:(1)ABC 或A B C --或()A B C -;(2)ABC ABC ABC ;(3)AB C 或ABCABCABCABCABCABCABC ;(4)ABC ABCABC .(5)AB AC BC 或ABC ABC ABCABC ;(6)ABCABCABCABC .3.设样本空间{|02}x x Ω=≤≤,事件{|0.51}A x x =≤≤,{|0.8 1.6}B x x =<≤,具体写出下列事件:(1)AB ;(2)A B -;(3)A B -;(4)A B .解:(1){|0.81}AB x x =<≤; (2){|0.50.8}A B x x -=≤≤;(3){|00.50.82}A B x x x -=≤<<≤或; (4){|00.5 1.62}AB x x x =≤<<≤或.4. 一个样本空间有三个样本点, 其对应的概率分别为22,,41p p p -, 求p 的值. 解:由于样本空间所有的样本点构成一个必然事件,所以2241 1.p p p ++-=解之得1233p p =-=-,又因为一个事件的概率总是大于0,所以3p =- 5. 已知()P A =0.3,()P B =0.5,()P A B =0.8,求(1)()P AB ;(2)()P A B -;(3)()P AB .解:(1)由()()()()P AB P A P B P AB =+-得()()()()030.50.80P AB P A P B P A B =+-=+-=.(2) ()()()0.300.3P A B P A P AB -=-=-=. (3) ()1()1()10.80.2.P AB P AB P AB =-=-=-=6. 设()P AB =()P AB ,且()P A p =,求()P B . 解:由()P AB =()1()1()1()()()P AB P AB P AB P A P B P AB =-=-=--+得()()1P A P B +=,从而()1.P B p =-7. 设3个事件A 、B 、C ,()0.4P A =,()0.5P B =,()0.6P C =,()0.2P AC =,()P BC =0.4且AB =Φ,求()P A B C .解:()()()()()()()()0.40.50.600.20.400.9.P A B C P A P B P C P AB P AC P BC P ABC =++---+=++---+=8. 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:依题意可知,基本事件总数为34个.以,1,2,3i A i =表示事件“杯子中球的最大个数为i ”,则1A 表示每个杯子最多放一个球,共有34A 种方法,故34136().416A P A ==2A 表示3个球中任取2个放入4个杯子中的任一个中,其余一个放入其余3个杯子中,放法总数为211343C C C 种,故211343239().416C C C P A == 3A 表示3个球放入同一个杯子中,共有14C 种放法,故14331().416C P A ==9. 在整数0至9中任取4个,能排成一个四位偶数的概率是多少?解:从0至9 中任取4个数进行排列共有10×9×8×7种排法.其中有(4×9×8×7-4×8×7+9×8×7)种能成4位偶数. 故所求概率为4987487987411098790P ⨯⨯⨯-⨯⨯+⨯⨯==⨯⨯⨯. 10. 一部五卷的文集,按任意次序放到书架上去,试求下列事件的概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中.解:(1)第一卷出现在旁边,可能出现在左边或右边,剩下四卷可在剩下四个位置上任意排,所以5/2!5/!42=⨯=p .(2)可能有第一卷出现在左边而第五卷出现右边,或者第一卷出现在右边而第五卷出现在左边,剩下三卷可在中间三人上位置上任意排,所以 10/1!5/!32=⨯=p .(3)p P ={第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁边}2217551010=+-=. (4)这里事件是(3)中事件的对立事件,所以 10/310/71=-=P .(5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以5/1!5/!41=⨯=P . 11. 把2,3,4,5诸数各写在一X 小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率.解:末位数可能是2或4.当末位数是2(或4)时,前两位数字从剩下三个数字中选排,所以 23342/1/2P A A =⨯=.12. 一幢10层楼的楼房中的一架电梯,在底层登上7位乘客.电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有两位及两位以上乘客在同一层离开的概率.解:每位乘客可在除底层外的9层中任意一层离开电梯,现有7位乘客,所以样本点总数为79.事件A “没有两位及两位以上乘客在同一层离开”相当于“从9层中任取7层,各有一位乘客离开电梯”.所以包含79A 个样本点,于是7799)(A A P =.13. 某人午觉醒来,发觉表停了, 他打开收音机,想听电台报时, 设电台每正点是报时一次,求他(她)等待时间短于10分钟的概率.解:以分钟为单位, 记上一次报时时刻为下一次报时时刻为60, 于是这个人打开收音机的时间必在),60,0(记 “等待时间短于10分钟”为事件,A 则有(0,60),Ω=)60,50(=A ,⊂Ω于是)(A P 6010=.61= 14. 甲乙两人相约812-点在预定地点会面。

概率论解答(李贤平)

概率论解答(李贤平)

第一章 事件与概率1、解:(1) P {只订购A 的}=P{A(B ∪C)}=P(A)-{P(AB)+P(AC)-P(ABC)}=0.45-0.1.-0.08+0.03=0.30. (2) P {只订购A 及B 的}=P{AB}-C }=P(AB)-P(ABC)=0.10-0.03=0.07 (3) P {只订购A 的}=0.30,P {只订购B 的}=P{B-(A ∪C)}=0.35-(0.10+0.05-0.03)=0.23. P {只订购C 的}=P{C-(A ∪B )}=0.30-(0.05+0.08-0.03)=0.20.∴P {只订购一种报纸的}=P{只订购A}+P{只订购B}+P{只订购C}=0.30+0.23+0.20=0.73. (4) P{正好订购两种报纸的}=P{(AB-C) ∪(AC-B) ∪(BC-A)}=P(AB-ABC)+P(AC-ABC)+P(BC-ABC) =(0.1-0.03)+(0.08-0.03)+.(0.05-0.03)=0.07+0.05+0.02=0.14.(5) P {至少订购一种报纸的}= P {只订一种的}+ P {恰订两种的}+ P {恰订三种的} =0.73+0.14+0.03=0.90. (6) P {不订任何报纸的}=1-0.90=0.10.2、解:(1)ABC A C A B A ABC A BC A ⊃⊃⇒⊂⊃⇒=且显然)(,若A 发生,则B 与C 必同时发生。

(2)A C ⊂⊂⇒⊂⇒=且A B A C B A C B A ,B 发生或C 发生,均导致A 发生。

(3)A C AB ⇒⊂与B 同时发生必导致C 发生。

(4)C B A BC A ⊂⇒⊂,A 发生,则B 与C 至少有一不发生。

3、解:n A A A 21)()(11121----++-+=n n A A A A A A (或)=121121-+++n n A A A A A A A .4、解:(1)C AB ={抽到的是男同学,又不爱唱歌,又不是运动员}; C B A ={抽到的是男同学,又爱唱歌,又是运动员}。

概率论答案

概率论答案

习题二答案1.随机变量的分布函数、分布律、密度函数有何联系与区别? 答:随机变量的分布刻画了随机变量的取值规律,不管是连续型、离散型或既不是连续型,也不是离散型随机变量都可用分布函数来描述其取值的规律;而分布律只用来描述离散型随机变量的取值规律;密度函数只能来描述连续型随机变量的取值规律。

它们的联系在于当知道了X 的分布律,可通过求概率P {X ≤x }(x 取任意的值)求得X 的分布函数F (x );仅之亦然。

当知道了连续型随机变量的密度函数f (x ),可通过积分F (x )=∫dt x−∞ (−∞≤x ≥+∞) ,求得分布函数F (x ), 可通过对F (x )求导,即dy dx F (x )=f (x )(对一切f (x )的连续点处)求得密度函数f (x )。

2. 同时掷两枚骰子,求两枚骰子的点数之和X 的概率分布,并计算P{X ≤3}和P{X>13}.解:由题意X 的正概率点为2,3,…12 P {X =k }=6−|k−7|36 , k=2,3, (12)P {X ≤3}=P {X =2}=P {X =3}=136+236=112P {X >12}=P {∅}=03. 某产品共17件,其中有次品3件,现从中任取5件,求抽得次品数X 的概率分布,并计算P{1≤X<2} 解:P {X =k }=C 3k C 145−k C 175 , P {1≤X <2}=C 31C 144C 1754. 一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布解:X 的可能取值为0,1,2,3 A i (i=1,2,3)表示事件“汽车在第i 个路口首次遇到红灯”;A 1,A 2,A 3 相互独立,且P (A i )=P (A i ̅)=12,i=1,2,3对于m =0,1,2,3 ,有P {X =0}=P {A i }=12 P {X =1}=P {A 1̅̅̅A 2}=12P {X =2}=P {A 1̅̅̅ A 2̅̅̅A 3}=123 P {X =3}=P {A 1̅̅̅ A 2̅̅̅ A 3̅̅̅}=1235.设随机变量X 的概率密度为:f (x )={13 x ∈[0,1]29x ∈[3,6]0 其他 若k 使得P {X ≥k }=23, 求k 的取值范围。

概率论期末试题及解析答案

概率论期末试题及解析答案

概率论期末试题及解析答案1. 简答题(每题10分)1.1 什么是概率?概率是描述随机事件发生可能性的数值。

它可以用来衡量某一事件在多次重复试验中出现的频率。

1.2 什么是样本空间?样本空间是指一个随机试验中所有可能结果的集合。

1.3 什么是事件?事件是样本空间中包含的一组可能结果的子集。

1.4 什么是互斥事件?互斥事件是指两个事件不能同时发生。

1.5 什么是独立事件?独立事件是指两个事件的发生与不发生互不影响。

2. 计算题(每题20分)2.1 设一枚硬币抛掷3次,计算至少出现两次正面的概率。

解析:样本空间:{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}至少出现两次正面的事件:{HHH, HHT, HTH, THH}概率 = 事件发生的次数 / 样本空间的次数 = 4 / 8 = 1/22.2 设A、B两个事件相互独立,且P(A) = 0.4,P(B) = 0.6,计算P(A∪B)。

解析:由于A、B事件相互独立,所以P(A∩B) = P(A) * P(B) = 0.4 * 0.6 = 0.24P(A∪B) = P(A) + P(B) - P(A∩B) = 0.4 + 0.6 - 0.24 = 0.763. 应用题(每题30分)3.1 甲乙两个备胎分别拥有10个和15个备用轮胎,轮胎坏掉时甲用2个备用轮胎的概率为0.2,乙用3个备用轮胎的概率为0.15。

现在从甲、乙两个备胎中随机挑选一个备用轮胎,请计算此备用轮胎坏掉的概率。

解析:设事件A为甲备胎的备用轮胎坏掉,事件B为乙备胎的备用轮胎坏掉。

P(A) = 0.2 * 10 / (0.2 * 10 + 0.15 * 15) = 0.2 * 10 / (2 + 2.25) ≈ 0.6667 P(B) = 0.15 * 15 / (0.2 * 10 + 0.15 * 15) = 0.15 * 15 / (2 + 2.25) ≈0.3333由于只能选择甲或乙中的一个备用轮胎,所以备用轮胎坏掉的概率为P(A) + P(B) ≈ 13.2 水果篮子中有5个橙子、3个苹果和2个香蕉,现从篮子中随机挑选两个水果,请计算挑选出的两个水果中至少有一个是橙子的概率。

概率论答案

概率论答案

数学兴趣小组---概率论自测习题(一)答案第二章 随机变量及其分布一、填空题1. 设~()X P λ,且(1)(2P X P X ===,则(1)P X ≥=__________,2(03)P X <<=__________。

解:122(1)2(0)1!2!2P Xeeλλλλλλλλ--===⇒=⇒=>2(1)1(0)110!P X P X e e λλ--≥=-==-=-22(03)(1)2P X P X e -<<===2. 设 X ~⎩⎨⎧<<=0102)(x x x f ,对X 的三次独立重复观察中,事件{X ≤0.5}出现的次数为随机变量Y,则P{Y =2}= 9/64 。

解:P{X ≤0.5}=0.25, Y 服从B(3,0.25)分布,则P{Y=2}=75.025.0223C =649 3. 设随机变量X 在区间[2,5]上服从均匀分布,求对X 进行的三次独立观测中,至少有两次的观测值大于3的概率为 。

解:P(X >3)=⎰5331dx = 32, 则所求概率即为2720323132323223=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛C C 4. 设随机变量X 服从均值为10,均方差为0.02的正态分布,设Ф(x )为标准正态分布函数,已知Ф(2.5)=0.9938,则X 落在区间(9.95,10.05)内的概率为 0.9876 。

5. 在区间[0, a ]上任意投掷一个质点,以X 表示这个质点的坐标,设这个质点落在[0, a ]中任意小区间内的概率与这个小区间的长度成正比例,则X 的分布函数F(x)=。

6. 设X ~U(0,2),则Y=2X 在(0,4)内的概率密度=)(y f Y y41。

解:当0<y <4时,)(}{}{}{)(2y F y X P y X P y Y P y F X Y =≤=≤=≤=此时,=)(y f Y yy f yy F y F X x Y 21)(21)()(='='=y417. 设随机变量X 的概率密度函数221(),x x f x Ae-+-=则A =________,E(X )=________________。

概率论课后习题解答

概率论课后习题解答

一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习九一、1. C 2. A 3. C 4. C 5. A 二、(1)∵)1,0(~/N nX σμ-∴}05.02)(05.0{}/21.0/2||{}1.0|{|n X n n P nnX P X P ≤-≤-=≤-=≤-μμμ153764.153695.01)05.0(2)05.0()05.0(≥⇒≥⇒≥-Φ=-Φ-Φ=n n n n n (2)n p p p np nX nD X D p np n X nE X E ni i ni i )1()1(1)1()( ,1)1()(211-=-=====∑∑==p (1-p )在p =1/2处取得最大值1/4,nX D X E X E p X E41)(|)(|||22≤=-=-要使01.0||2≤-p X E ,只需1/4n ≤0.01,即n ≥25三、X 1,X 2,X 3,X 4~N (μ,σ2),且相互独立⇒X 1-X 2~N (0,2σ2), X 3-X 4~N (0,2σ2),且X 1-X 2与X 3-X 4相互独立 则)1(~)2();1(~)2()1,0(~2);1,0(~2224322214321χσχσσσX X X X N X X N X X --⇒--)1,1(~)()()1,1(~)2()2(243221243221F X X X X F X X X X --⇒--⇒σσ05.095.01)()(1)()(243221243221=-=⎭⎬⎫⎩⎨⎧≤---=⎭⎬⎫⎩⎨⎧>--a X X X X P a X X X X P ⇒a =F 0.05(1,1)=161.4四、由题意知:)1,0(~)(212N X X C i i +- (i =1,2,3)22222122112)()]([σσσσ=⇒==+=+⇒-C C C X X C D i i又σ2212ii X X+- (i =1,2,3)是相互独立的,得Y ~χ2(3),即自由度为3五、X 1,X 2,...,X 16相互独立,且)16(~)()1,0(~21612χσμσμ∑=-⇒-i i i X N X}32)({}8)({}32)(8{161216121612>--≥-=≤-≤=∑∑∑===i i i i i i X P X P X P P σμσμσμ=0.95-0.01=0.94六、X 1,X 2,...,X n 相互独立,且E (X i )=D (X i )=λn n nXnD X D n n X nE X E ni ini i λλλλ======∑∑==2111)1()( ;1)1()()(112122X n Xn Sni i --=∑=E (X i 2)=D (X i )+E 2(X i )=λ+λ2, 222)()()(λλ+=+=nX E X D XEλλλλλ=--+-=)(11)(222n n n n S E 练习十一、1. A 2. D 3. A 4. B 5. C 二、矩估计量:⎪⎪⎩⎪⎪⎨⎧++===+===⎰⎰∞+--∞+--22222122)()(θμθμθμθμθμμθμμθμdx e x X E dx e x X E x x ⎪⎪⎩⎪⎪⎨⎧===∑∑==ni i ni i X n A X X n A 1221111 令⎩⎨⎧==2211A A μμ⇒⎪⎩⎪⎨⎧=++=+∑=ni iXnX1222122θμθμθμ⇒⎪⎪⎩⎪⎪⎨⎧-=--=∑∑==2122121ˆ1ˆX X n X X n X ni i ni i θμ三、似然函数L (x 1, x 2,..., x n , σ )=∑==-=-∏ni i i x nni x ee1||1||)2(121σσσσ⇒ln L = -n ln(2σ) -∑=ni i x 1||σ= -n ln(2σ) -∑=ni ix1||1σ令0ln =∂∂σL ⇒0||112=+-∑=ni i x n σσ⇒∑==ni iXn 1||1ˆσ由大数定律,有: ∑∑==−→−ni iPni i XE n X n11||1||1E |X i |=E |X |=dx e x dx e x dx e x xxx ⎰⎰⎰∞+-∞-∞+∞--⋅+⋅-=⋅0||2121)(21||σσσσσσ=22σσ+=σ⇒σn n X E nni i 1||11=∑==σ, 即σ−→−∑=Pni iXn1||1⇒σˆ为σ的一致估计量四、极大似然函数(){}⎪⎪⎭⎫ ⎝⎛λπ==π=λλ-==ex x X P x x x L ix n i i ni n i !,,,,1121 ()!ln ln ln 11i ni ni i x x n L ==π-λ+λ-=∑,令λ+-=λ∑=ni ixn d L d 1ln =0得x =λ故X =λˆ ()()()λ===λX E X E E ˆ,于是此估计为无偏估计。

五、 ()()μmb na T E +=,当1=+mb na 时,()μ=T E ,T 是μ的无偏估计。

()mb n a T D 224+=,当mn b mn a +=+=41,44时,()T D 最小,故最有效.练习十一一、n =16, 1-α =0.95⇒α =0.05, σ2未知)1(2-n t α=t 0.025(15)=2.131516029.01315.2705.2)1(2⨯-=--n t n sx α=2.6916029.01315.2705.2)1(2⨯+=-+n t n sx α=2.72∴μ的置信度为0.95的置信区间为(2.69, 2.72) 二、n =9, 1-α =0.95⇒α =0.05)8()1(2025.022χχα=-n =17.535, )8()1(2975.0221χχα=--n =2.180535.171218)1()1(222⨯=--n sn αχ=55.20, 180.21218)1()1(2212⨯=---n s n αχ=444.04 ∴σ2的置信度为0.95的置信区间为(55.20, 444.04) 三、μ1, μ2分别为一号方案和二号方案的平均产量n 1= n 2=8, α =0.05, x =81.63, 21s =145.70, y =75.88, 22s =101.98)2(212-+n n t α=t 0.025(14)=2.14, 2)1()1(21222211-+-+-=n n s n s n s ω=11.132121211)2(n n s n n t y x +-+--ωα= -6.162121211)2(n n s n n t y x +-++-ωα=17.66∴μ1-μ2的置信度为0.95的置信区间为(-6.16, 17.66)四、n 1= n 2=10, α =0.05, )1,1()1,1(122212--=--n n F n n F αα=F 0.05(9, 9)=4.0303.416065.05419.0)1,1(121222⋅=--n n F SS BA α=0.222)1,1()1,1(11)1,1(11222212222212122--=--=---n n F S S n n F S S n n F S S B A BA B Aααα03.46065.05419.0⋅==3.601 ∴22BA σσ的置信度为0.95的置信区间为(0.222, 3.601)五、∵212111)()(n n S Y X +---ωμμ~t (n 1+n 2-2)∴P {212111)()(n n S Y X +---ωμμ< t α(n 1+n 2-2)}=1-α∴P {2111n n S Y X +--ωt α(n 1+n 2-2)<μ1-μ2}=1-α∴μ1-μ2的置信度为1-α的置信下限为2111n n S Y X +--ωt α(n 1+n 2-2)x=0.14125, s 12=0.0000083, y =0.1392, s 22=0.0000052,7432221s s s +=ω=0.00254952111n n s y x +--ωt α(n 1+n 2-2)=0.14125-0.1392-0.00254955141+t 0.05(7)= -0.0011901≈ -0.0012 ∴μ1-μ2的置信度为0.95的置信下限为-0.0012 六、∵SnX )(μ-~t (n -1), 且P {)1(|)(|2-<-n t SnX αμ}=1-α∴P {nS n t X nS n t X )1()1(22-+<<--ααμ}=1-α∴μ的置信度为1-α的置信区间为(nS n t X )1(2--α,nS n t X )1(2-+α)此时n Sn t L )1(22-=α⇒2222222)]1([4)()]1([4)(-=-=n t nS E n t n L E αασ练习十二一、1、C 2、A 3、A 4、A 二、由已知得 1600,1600:10≠=H H μ取统计量 52/1501600/1600-=-=X nX U σ~N (0,1)则拒绝域为96.1233.13016001637u ,96.1||025.0〈而=-==>Z U于是接受H 0,即可以认为这批产品的指标X 的期望值为1600。

三、由已知得 12100,12100:0≠=μμH 取统计量 42/32312100/12100-=-=X nS X T ~ t (23)则拒绝域为 2.06872.153724323/1210011958t ,0687.2)23(||025.0>=-==>而t T于是拒绝H 0,即不可以认为发热量的期望值为12100。

四、由已知得 221220108.0:,108.0:≠=σσH H取统计量 )1(~108.0)1(2222--=n x s n x则拒绝域为1.11827.17108.04s288.0s 484.0)4()1(1.11)4()1(222975.022/122025.022/2>≈===-<==->-,而或x n x xx n x xαα 则拒绝H 0,即不可以认为新工艺炼出的铁水含碳量的方差为0.1082。

五、取统计量 )1(~0004.0)1(2222--=n x s n x则拒绝域为325.37006.70004.09s00037.0s 325.3)9()1(22295.0212>≈===-<-,而x n x xα则接受H 0,即可以认为测定值总体的方差为0.00042。

练习十三一、由已知得 211210:,:μμμμ≠=H H取统计量 )2(~112121-++-=n n t n n S Y X T w则拒绝域为2.3462.2454151/778.7730.0218-21.5t ,346.2)7(||025.0<=++==>而t T则接受H 0,即不可以两煤矿的含灰率的均值无显著差异。

相关文档
最新文档