学案-同角三角函数的基本关系(第1课时)

合集下载

同角三角函数基本关系式教案

同角三角函数基本关系式教案

第一章 三角函数任意角的三角函数同角三角函数的基本关系教学目标1.掌握三种基本关系式之间的联系;2.熟练掌握已知一个角的三角函数值求其他三角函数值的方法;3.牢固掌握同角三角函数的关系式,并能灵活运用于解题,提高分析、解决三角函数的思维能力;4.灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力. 教学重难点 重点:同角三角函数基本关系式:22sin sin cos 1,tan cos ααααα+==的运用; 难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式运用. 教学设计一、自主学习问题1:任意角的三角函数是怎样定义的?问题2:sinα,cosα,tanα之间有什么关系?这个关系对于任意角都成立吗?问题3:设P(x,y)是角α的终边与单位圆的交点,x 和y 之间有什么关系?sinα和cosα之间有什么关系?这个关系对于任意角都成立吗?二、自主探究同角三角函数的基本关系式:1.平方关系:2.商的关系:同角三角函数的基本关系式的变形:三、合作探究、典例精析【例1】已知sinα=13,并且α是第二象限角,求cosα,tanα.【例2】已知sinα=-35,求cosα,tanα的值【例3】已知cosα=-817,求sinα,tanα的值.【例4】已知tanα=2,求下列各式的值:(1)sinα+cosαsinα-cosα;(2)sinαcosαsin 2α-cos 2α;(3)sinαcosα.【例5】求证:cosx 1-sinx =1+sinx cosx. 四、课堂练习、巩固基础1.(1)已知sinα=1213,并且α是第二象限角,求cosα,tanα.(2)已知cosα=-45,求sinα,tanα.2.已知tanα=5,求下列各式的值.(1)5sinα-3cosα7sinα+9cosα;(2)cos 2α4sin 2α+2sinαcosα-3; (3)2sin 2α-3cosαsinα+5cos 2α.五、课堂小结1.通过观察、归纳,发现同角三角函数的基本关系.2.同角三角函数关系的基本关系的应用.3.应用同角三角函数的基本关系式的基本关系的变形解决计算和证明问题.六、达标检测+cos 22022等于( )D.不能确定 2.已知sinα=-34,α是第四象限角,则tanα的值为( )A.3√77B.√74 3√77 √743.已知tanα=4,求(1)sinα-2cosα2sinα+5cosα;(2)1sin 2α+2sinαcosα.4.已知tanα=√3,π<α<3π2,求cosα-sinα的值.5.已知tanα=-34,求sinα,cosα的值.。

同角三角函数的基本关系 学案

    同角三角函数的基本关系   学案

5.2.2 同角三角函数的基本关系[目标] 1.记住并能推导同角三角函数基本关系式;2.能够利用同角三角函数基本关系式进行求值、化简和证明.[重点] 同角三角函数关系式的应用. [难点] 同角三角函数关系式的推导及应用.知识点一 同角三角函数基本关系式[填一填](1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α,其中α≠k π+π2(k ∈Z ).[答一答]1.同角三角函数基本关系中,角α是否是任意角?提示:平方关系中的角α是任意角,商数关系中的角α并非任意角,α≠k π+π2,k ∈Z .2.这里的“同角”是什么含义?提示:这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下)关系式都成立,即与角的表达形式无关,如sin 23α+cos 23α=1成立,但是sin 2α+cos 2β=1就不一定成立.3.下列四个结论中可能成立的是( B ) A .sin α=12且cos α=12B .sin α=0且cos α=-1C .tan α=1且cos α=-1D .α是第二象限角时,tan α=-sin αcos α[解析] (1)∵sin 2α+cos 2α=1,sin α=-513,∴cos α=±1-sin 2α=±1-⎝⎛⎭⎫-5132=±1213. 又∵α是第四象限角,∴cos α>0,∴cos α=1213,∴tan α=sin αcos α=-512.(2)解:∵cos α=-35<0,∴α是第二或第三象限角.当α是第二象限角时,sin α>0,tan α<0, ∴sin α=1-cos 2α=1-⎝⎛⎭⎫-352=45,tan α=sin αcos α=-43; 当α是第三象限角时,sin α<0,tan α>0, ∴sin α=-1-cos 2α=-1-⎝⎛⎭⎫-352=-45, tan α=sin αcos α=43.[答案] (1)D (2)见解析已知角α的某种三角函数值,求角α的其余三角函数值时,要注意公式的合理选择;若角所在的象限已经确定,求另两种三角函数值时,只有一组结果;若角所在的象限不确定,应分类讨论,有两组结果.[变式训练1] 已知tan α=2,则cos α=±55.解析:由tan α=sin αcos α=2得,sin α=2cos α,又sin 2α+cos 2α=1,∴4cos 2α+cos 2α=1,即cos 2α=15,∴cos α=±55.类型二 整体代入,化切求值 [例2] 设tan α=2,求下列各式的值: (1)1+2sin αcos αsin 2α-cos 2α; (2)2sin 2α-3sin αcos α+5cos 2α. [解] 因为tan α=2≠0,所以(1)1+2sin αcos αsin 2α-cos 2α=sin 2α+cos 2α+2sin αcos αsin 2α-cos 2α=tan 2α+1+2tan αtan 2α-1=22+1+2×222-1=93=3.(2)2sin 2α-3sin αcos α+5cos 2α=2sin 2α-3sin αcos α+5cos 2αsin 2α+cos 2α=2tan 2α-3tan α+5tan 2α+1=2×4-3×2+54+1=75.[变式训练2] 已知tan α=3,求下列各式的值: (1)cos α-sin αcos α+sin α+cos α+sin αcos α-sin α; (2)1sin αcos α; (3)sin 2α-2sin αcos α+4cos 2α.解:(1)cos α-sin αcos α+sin α+cos α+sin αcos α-sin α=1-tan α1+tan α+1+tan α1-tan α=1-31+3+1+31-3=-52.(2)1sin αcos α=sin 2α+cos 2αsin αcos α=tan 2α+1tan α=103. (3)sin 2α-2sin αcos α+4cos 2α=sin 2α-2sin αcos α+4cos 2αsin 2α+cos 2α=tan 2α-2tan α+4tan 2α+1=9-6+49+1=710. 类型三 三角函数式的化简 [例3] 化简下列各式: (1)1-2sin130°cos130°sin130°+1-sin 2130°; (2)sin 2αtan α+2sin αcos α+cos 2αtan α. [分析] (1)中含有根号,运用三角函数平方关系将被开方式化为平方形式去根号;(2)观察式子中有正切,从而利用切化弦的思路进行变形.[解] (1)原式=sin 2130°-2sin130°cos130°+cos 2130°sin130°+cos 2130°=|sin130°-cos130°|sin130°+|cos130°|=sin130°-cos130°sin130°-cos130°=1. (2)原式=sin 2α·sin αcos α+2sin αcos α+cos 2α·cos αsin α=sin 4α+2sin 2αcos 2α+cos 4αcos αsin α=(sin 2α+cos 2α)2sin αcos α=1sin αcos α.化简三角函数式常用的方法有:(1)化切为弦,即把非正、余弦的函数都化成正、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下的式子化成完全平方式,然后去根号达到化简的目的. (3)对于化简含高次的三角函数式,往往借助因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.[变式训练3] 化简下列各式: (1)2sin 2α-11-2cos 2α; (2)sin 2α-sin 4α(其中α是第二象限角).解:(1)2sin 2α-11-2cos 2α=2sin 2α-(sin 2α+cos 2α)(sin 2α+cos 2α)-2cos 2α=sin 2α-cos 2αsin 2α-cos 2α=1.(2)sin 2α-sin 4α=sin 2α(1-sin 2α)=sin 2αcos 2α=-sin αcos α.类型四 sin θ±cos θ与sin θcos θ之间的关系 [例4] 已知sin α+cos α=-13,0<α<π.(1)求sin αcos α的值; (2)求sin α-cos α的值.[解] (1)由sin α+cos α=-13⇒(sin α+cos α)2=19,sin 2α+2sin αcos α+cos 2α=19,sin αcos α=-49.(2)因为0<α<π,sin α+cos α=-13,所以sin α>0,cos α<0⇒sin α-cos α>0. sin α-cos α=(sin α-cos α)2=1-2sin αcos α=173.(1)sin α+cos α,sin αcos α,sin α-cos α三个式子中,已知其中一个,可以利用平方关系求其他两个,即“知一求二”.(2)求sin α+cos α或sin α-cos α的值,要注意判断它们的符号.[变式训练4] 已知-π2<x <0,sin x +cos x =15,则sin x -cos x =-75.解析:由sin x +cos x =15,两边平方得sin 2x +2sin x cos x +cos 2x =125,即2sin x cos x =-2425,(sin x -cos x )2=1-2sin x ·cos x =4925.又-π2<x <0,∴sin x <0,cos x >0,sin x -cos x <0, ∴sin x -cos x =-75.1.下列结论能成立的是( C ) A .sin α=13且cos α=23B .tan α=2且cos αsin α=13C .tan α=1且cos α=22D .sin α=1且tan α·cos α=12解析:A 中,sin 2α+cos 2α≠1,故A 选项不成立;B 中,tan α·cos αsin α≠1,故B 选项不成立;D 中,tan α·cos α≠sin α,故D 选项不成立.只有C 正确.2.已知α是第四象限角,cos α=1213,则sin α=( B )A.513 B .-513 C.512 D .-512 解析:由α为第四象限角,cos α=1213,得sin α=-1-cos 2α=-1-(1213)2=-513,故选B.3.若△ABC 的内角A 满足sin A cos A =13,则sin A +cos A 的值为( A )A.153B .-153C.53 D .-53解析:因为A 为△ABC 的内角,且sin A cos A =13>0,所以A 为锐角,所以sin A +cos A >0.又1+2sin A cos A =1+23,即(sin A +cos A )2=53,所以sin A +cos A =153,故选A.4.已知tan α=3,则2sin 2α+4sin αcos α-9cos 2α的值为2110.解析:原式=2sin 2α+4sin αcos α-9cos 2αsin 2α+cos 2α=2tan 2α+4tan α-9tan 2α+1=2×32+4×3-932+1=2110.5.已知cos α=-817,求sin α,tan α的值.解:∵cos α=-817<0,∴α是第二或第三象限角.若α是第二象限角, 则sin α=1-cos 2α=1-⎝⎛⎭⎫-8172=1517, tan α=sin αcos α=1517-817=-158.若α是第三象限角, 则sin α=-1-cos 2α=-1-⎝⎛⎭⎫-8172=-1517,tanα=sinαcosα=-15 17-817=158.——本课须掌握的五大问题1.同角三角函数的基本关系揭示了“同角不同名”的三角函数的运算规律,这里,“同角”有两层含义:一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下),关系式成立与角的表达形式无关,如sin23α+cos23α=1.2.sin2α是(sinα)2的简写,不能写成sinα2.3.在使用同角三角函数关系式时要注意使式子有意义,如式子tan90°=sin90°cos90°不成立.4.注意公式变形的灵活应用.5.在应用平方关系式求sinα或cosα时,其正负号是由角α所在的象限决定的.当角所在象限不明确时,要进行分类讨论.。

《同角三角函数的基本关系》第1课时示范教学方案北师大新课标

《同角三角函数的基本关系》第1课时示范教学方案北师大新课标

第四章三角恒等变换4.1同角三角函数的基本关系第1课时同角三角函数的基本关系1.能根据三角函数定义,利用单位圆,推导出同角三角函数的基本关系.2.理解同角三角函数的基本关系.3.并能运用同角三角函数基本关系进行简单的求值.4.通过本节课的学习,提升逻辑推理、数学运算等核心素养.教学重点:同角三角函数基本关系的推导及应用.教学难点:已知一个角的一个三角函数值,求这个角的其它三角函数值时符号的确定.PPT课件.一、导入新课问题1:阅读课本第137页,回答下列问题:(1)本章将要探究哪些问题?(2)本章要探究的对象在高中的地位是怎样的?师生活动:学生带着问题阅读课本,老师指导学生概括总结章引言的内容.预设答案:(1)本章将要探究基本的三角恒等变换公式及其简单的应用,提高数学运算、逻辑推理的核心素养.(2)三角恒等变换是研究三角函数性质的工具,求三角函数最值,三角恒等变换是常用方法之一,也是解三角形的工具之一.设计意图:通过章引言的学习,让学生明晰下一阶段的学习目标,初步构建学习内容的思维框架.问题2:数学是美的,其中一个重要的原因在于数学中存在十分美妙的数量关系,如勾股定理反映了直角三角形的三边之间关系的美妙.若直角三角形斜边为1,锐角α的对边为sin α、邻边为cos α,在这个直角三角中,你能得出什么关系?师生活动:学生思考,举手回答.预设答案:如图,若直角三角形斜边为1,锐角α的对边为sin α、邻边为cos α, 自然将有sin 2α+cos 2α=12,即sin 2α+cos 2α=1,另外还有tan α=sin αcos α.设计意图:通过学生回顾、探究直角三角形的边角关系,引出本节课的研究主题–同角三角函数的基本关系(版书).二、新知探究1.同角三角函数基本关系式问题1:观察单位圆,利用三角函数分析角α的正弦、余弦和正切之间存在什么关系?师生活动:学生独立思考和交流后,举手回答. 预设答案:sin 2α+cos 2α=1和tan α=sin αcos α.设计意图:利用三角函数定义推导基本关系. 知识点1:同角三角函数基本关系式 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α,2k k Z παπ≠+∈(,). 问题2:同角三角函数的基本关系式对任意角都成立吗? 师生活动:学生思考,举手回答.预设答案:sin 2α+cos 2α=1对一切α∈R 恒成立,而tan α=sin αcos α仅对α≠π2+k π(k ∈Z )成立.设计意图:让学生进一步理解同角三角函数的基本关系式.问题3:sin2α能写成sinα2吗?师生活动:学生思考,举手回答.预设答案:sin2α是(sinα)2的简写,不能写成sinα2.设计意图:理解同角三角函数的基本关系式结构.问题4:“同角”的含义是什么?师生活动:学生思考,举手回答.预设答案:这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下)都成立,即与角的表达形式无关,如sin23α+cos23α=1成立,但是sin2α+cos2β=1就不一定成立.设计意图:帮助学生进一步理解同角三角函数的基本关系式.★资源名称:【知识点解析】同角三角函数的基本关系.★使用说明:本资源为《同角三角函数的基本关系》的知识解析,通过讲解相关概念,并结合具体例题,提高知识的应用能力.注:此图片为“微课”缩略图,如需使用资源,请于资源库调用.2.同角三角函数基本关系式的变形问题5:同角三角函数基本关系式的变形有哪些?师生活动:学生思考,写出公式变形,教师补充.预设答案:(1)sin2α+cos2α=1的变形公式sin2α=1-cos2α;cos2α=1-sin2α.(2)tanα=sinαcosα的变形公式sinα=cosαtanα;cosα=sinαtanα.设计意图:进一步理解同角三角函数关系.问题6:已知4sin5α=,角的终边在第二象限,如何求cos,tanαα的值?师生活动:学生思考、求解.预设答案:34 cos,tan53αα=-=-.因为4sin5α=,角的终边在第二象限,所以3sin4 cos,tan5cos3αααα==-==-.设计意图:巩固同角三角函数的基本关系式及其变形.三、巩固练习例1已知12cos13α=-,求sin,tanαα的值.师生活动:学生分析解题思路,找学生板书解题过程.预设答案:①当α在第二象限,则sin0α>,5sin13α===,sin5tancos12ααα==-.②当α在第三象限,则sin0α<,5sin13α===-,sintan12cosααα==.方法总结:若已知sinα或cosα,求其它角的函数值,可以利用平方关系、和商数关系求解,注意角的范围.设计意图:巩固同角三角函数的基本关系式.例2已知tan(0)m mα=≠求sinα和cosα的值.师生活动:学生分析解题思路,教师书写解题过程.预设答案:因为22sin cos1αα+=,sintancosmααα==,αα所以|cos |α=若α在第一象限或第四象限,cos α=,sin α=⎪⎪⎩. 若α在第二象限或第三象限,cos α=,sin α=⎪⎪⎩. 综上所述:cos α=⎪⎪⎩,sin α=⎪⎪⎩. 方法总结:(1)已知tan θ求sin θ(或cos θ)常用以下方式求解.(2)当角θ的范围不确定且涉及开方时,常因三角函数值的符号问题而对角θ分区间(象限)讨论.设计意图:巩固同角三角函数的基本关系式以及分类讨论思想.例3如图,点A ,B 在圆O 上,且点A 位于第一象限,圆O 与正半轴的交点是C ,点B 的坐标为43(,)55-,AOC α∠=,若||1AB =,求sin α的值.师生活动:学生分析解题思路,写出解题过程.x预设答案:半径4||(1r OB ===, 由三角函数定义知,点A 的坐标为(cos α,sin α). ∵点B 的坐标为43(,)55-,||1BC =,1=, ∴整理可得:-6sin α+8cos α=5,又22cos sin 1αα+=,解得3sin 10α-+=或3sin 10α--=, 又∵点A 位于第一象限,∴,∴sin α=方法总结:利用同角三角函数基本关系式求sin α、cos α的值时,易忽视角Α范围,造成sin α、cos α漏解或多解的错误.设计意图:巩固三角函数的定义与同角三角函数的基本关系式的综合应用. 【板书设计】四、归纳小结问题7:回归本节的学习,你有什么收获?可以从以下几个问题归纳. (1)同角三角函数的基本关系的内容是什么? (2)已知三角函数值求其他三角函数值的方法是什么? 师生活动:学生尝试总结,老师适当补充. 预设答案:(1)同一个角的正弦、余弦的平方和等于1,商等于角α的正切.(2)①若已知sin α=m ,可以先应用公式cos α=±1-sin 2α求得cos α的值,再由公式02πα<<tan α=sin αcos α求得tan α的值.②若已知cos α=m ,可以先应用公式sin α=±1-cos 2α求得sin α的值,再由公式tan α=sin αcos α求得tan α的值. 设计意图:通过梳理本节课的内容,能让学生更加明确同角三角函数基本关系及其应用. 布置作业:教科书第142页,A 组第1,2题. 五、目标检测设计1.已知α是第四象限角,cos α=1213,则sin α等于( )A .513B .-513C .512D .-512设计意图:检查学生对同角三角函数的基本关系掌握的情况. 2.已知cos θ=45,且3π2<θ<2π,则1tan θ的值为( )A .34B .-34C .43D .-43设计意图:检查学生对同角三角函数的基本关系掌握的情况. 3.已知sin θ=1213,且sin θ-cos θ>1,则tan θ等于 .设计意图:检查学生对同角三角函数的基本关系掌握的情况. 4.若sin(180°+α)=-1010,0°<α<90°.求sin (-α)+sin (-90°-α)cos (540°-α)+cos (-270°-α)的值. 设计意图:检查学生对同角三角函数的基本关系掌握的情况. 【参考答案】 1.答案:B .解析:∵sin 2θ+cos 2θ=1,∴sin 2θ=1-cos 2θ=1-144169=25169,又∵α是第四象限角,∴sin α<0,即sin θ=-513.2.答案:D .解析:由于cos θ=45,且3π2<θ<2π.所以sin θ=-=-35,所以tan θ=-34,故1tan θ=-43.3.答案:-125.解析:因为sin θ-cos θ>1,所以cos θ<0,所以cos θ=-1-sin 2θ=-513,所以tan θ==-125.4.解析:由sin(180°+α)=-1010,α∈(0°,90°), 可得sin α=1010,cos α=31010, ∴原式=-sin α-sin(90°+α)cos(360°+180°-α)+cos(270°+α)=-sin α-cos α-cos α+sin α=-1010-31010-31010+1010=2.。

人教a版必修4学案:1.2.2同角三角函数的基本关系(含答案)

人教a版必修4学案:1.2.2同角三角函数的基本关系(含答案)

1.2.2 同角三角函数的基本关系自主学习知识梳理1.同角三角函数的基本关系式(1)平方关系:____________________.(2)商数关系:____________________.2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α=__________;cos 2α=__________;(sin α+cos α)2=__________;(sin α-cos α)2=____________;(sin α+cos α)2+(sin α-cos α)2=________;sin α·cos α=____________=____________.(2)tan α=sin αcos α的变形公式:sin α=____________; cos α=____________.自主探究1.利用任意角三角函数的定义推导平方关系.2.已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α; (2)14sin 2α+13sin αcos α+12cos 2α.对点讲练知识点一 已知某一个三角函数值,求同角的其余三角函数值例1 已知cos α=-817,求sin α、tan α.回顾归纳 同角三角函数的基本关系式揭示了同角之间的三角函数关系,其最基本的应用是“知一求二”,要注意这个角所在的象限,由此来决定所求的是一解还是两解,同时应体会方程思想的应用.变式训练1 已知tan α=43,且α是第三象限角,求sin α,cos α的值.知识点二 利用同角的三角函数基本关系式化简例2 化简:1cos α1+tan 2α+1+sin α1-sin α-1-sin α1+sin α.回顾归纳 解答此类题目的关键在于公式的灵活运用,切实分析好同角三角函数间的关系.化简过程中常用的方法有:(1)化切为弦,即把非正弦、非余弦的函数都化成正弦、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下化成完全平方式,然后去根号,达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解.变式训练2 化简:1-cos 4α-sin 4α1-cos 6α-sin 6α.知识点三 利用同角的三角函数基本关系式证明恒等式例3 求证:cos α1+sin α-sin α1+cos α=2(cos α-sin α)1+sin α+cos α.回顾归纳 证明三角恒等式的实质是清除等式两端的差异,有目的地进行化简.证明三角恒等式的基本原则:由繁到简.常用方法:从左向右证;从右向左证;左、右同时证.常用技巧:切化弦、整体代换.变式训练3 求证:1-2sin 2x cos 2x cos 22x -sin 22x =1-tan 2x 1+tan 2x.1.同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,它的精髓在“同角”二字上,如sin 22α+cos 22α=1,sin 8αcos 8α=tan 8α等都成立,理由是式子中的角为“同角”.2.已知角α的某一种三角函数值,求角α的其余三角函数值时,要注意公式的合理选择.一般是先选用平方关系,再用商数关系.在应用平方关系求sin α或cos α时,其正负号是由角α所在象限来决定,切不可不加分析,凭想象乱写公式.3.在进行三角函数式的求值时,细心观察题目的特征,灵活、恰当的选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.课时作业一、选择题1.化简sin 2β+cos 4β+sin 2βcos 2β的结果是( )A.14B.12 C .1 D.322.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为( ) A .3 B .-3 C .1 D .-13.若sin α=45,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±434.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α的值是( ) A.13 B .3 C .-13D .-3 5.已知sin α-cos α=-52,则tan α+1tan α的值为( ) A .-4 B .4 C .-8 D .8二、填空题6.已知α是第二象限角,tan α=-12,则cos α=________. 7.已知sin αcos α=18且π4<α<π2,则cos α-sin α= ______________________________________________________________________.8.若sin θ=k +1k -3,cos θ=k -1k -3,且θ的终边不落在坐标轴上,则tan θ的值为________.三、解答题9.证明:(1)1-cos 2αsin α-cos α-sin α+cos αtan 2α-1=sin α+cos α; (2)(2-cos 2α)(2+tan 2α)=(1+2tan 2α)(2-sin 2α).10.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π) 求:(1)m 的值;(2)方程的两根及此时θ的值.1.2.2 同角三角函数的基本关系答案知识梳理1.(1)sin 2α+cos 2α=1 (2)tan α=sin αcos α (α≠k π+π2,k ∈Z ) 2.(1)1-cos 2α 1-sin 2α 1+2sin αcos α1-2sin αcos α 2 (sin α+cos α)2-121-(sin α-cos α)22(2)cos αtan α sin αtan α自主探究1.解 ∵sin α=y r ,cos α=x r ,tan α=y x,x 2+y 2=r 2, ∴sin 2α+cos 2α=y 2r 2+x 2r 2=x 2+y 2r 2=1 (α∈R ). sin αcos α=y r x r=y x =tan α (α≠k π+π2,k ∈Z ). 2.解 关于sin α、cos α的齐次式,可以通过分子、分母同除以cos α或cos 2α转化为关于tan α的式子后再求值.(1)原式=4tan α-23tan α+5=611. (2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330. 对点讲练例1 解 ∵cos α=-817<0且cos α≠-1, ∴α是第二或第三象限的角.(1)如果α是第二象限的角,可以得到sin α=1-cos 2α= 1-⎝⎛⎭⎫-8172=1517. tan α=sin αcos α=1517-817=-158. (2)如果α是第三象限的角,可得到:sin α=-1517,tan α=158. 变式训练1 解 由tan α=sin αcos α=43, 得sin α=43cos α. ① 又sin 2 α+cos 2α=1, ②由①②得169cos 2α+cos 2α=1,即cos 2α=925. 又α是第三象限角,∴cos α=-35,sin α=43cos α=-45. 例2 解 原式=1cos α 1+sin 2αcos 2α+(1+sin α)21-sin 2α -(1-sin α)21-sin 2α =|cos α|cos α+1+sin α|cos α|-1-sin α|cos α|=⎩⎪⎨⎪⎧1+2tan α(α为第一或第四象限角),-1-2tan α(α为第二或第三象限角). 变式训练2 解 原式=(1-cos 4 α)-sin 4 α(1-cos 6 α)-sin 6 α=(1-cos 2α)(1+cos 2α)-sin 4 α(1-cos 2α)(1+cos 2α+cos 4 α)-sin 6 α=sin 2α(1+cos 2α)-sin 4 αsin 2α(1+cos 2α+cos 4 α)-sin 6 α=1+cos 2α-sin 2α1+cos 2α+cos 4 α-sin 4 α=2cos 2α1+cos 2α+(cos 2α+sin 2α)(cos 2α-sin 2α)=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23. 例3 证明 左边=cos α(1+cos α)-sin α(1+sin α)(1+sin α)(1+cos α)=cos 2α-sin 2α+cos α-sin α1+sin α+cos α+sin αcos α=(cos α-sin α)(cos α+sin α+1)12(cos α+sin α)2+sin α+cos α+12=2(cos α-sin α)(cos α+sin α+1)(sin α+cos α+1)2=2(cos α-sin α)1+sin α+cos α=右边. ∴原式成立.变式训练3 证明 左边=cos 22x +sin 22x -2sin 2x cos 2x cos 22x -sin 22x=(cos 2x -sin 2x )2(cos 2x -sin 2x )(cos 2x +sin 2x )=cos 2x -sin 2x cos 2x +sin 2x=1-tan 2x 1+tan 2x=右边.∴原等式成立.课时作业1.C [sin 2β+cos 4β+sin 2βcos 2β=sin 2β+cos 2β(cos 2β+sin 2β)=sin 2β+cos 2β=1.]2.B [∵α为第三象限角,cos α<0,sin α<0,∴原式=cos αcos 2α+2sin αsin 2α=cos α-cos α+2sin α-sin α=-3.] 3.A [α为第二象限角,sin α=45,cos α=-35, tan α=-43.] 4.C [1+2sin αcos αsin 2α-cos 2α=(sin α+cos α)·(sin α+cos α)(sin α+cos α)·(sin α-cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=-13.] 5.C [tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α. ∵sin αcos α=1-(sin α-cos α)22=-18, ∴tan α+1tan α=-8.] 6.-255 解析 由α是第二象限的角且tan α=-12,则⎩⎪⎨⎪⎧sin α=-12cos αsin 2α+cos 2α=1,则⎩⎨⎧ sin α=55cos α=-255.7.-32解析 (cos α-sin α)2=1-2sin αcos α=34,∵π4<α<π2,∴cos α<sin α.∴cos α-sin α=-32.8.34解析 ∵sin 2θ+cos 2θ=⎝ ⎛⎭⎪⎫k +1k -32+⎝ ⎛⎭⎪⎫k -1k -32=1,∴k 2+6k -7=0,∴k 1=1或k 2=-7. 当k =1时,cos θ不符合,舍去.当k =-7时,sin θ=35,cos θ=45,tan θ=34.9.证明 (1)左边=sin 2αsin α-cos α-sin α+cos αsin 2αcos 2α-1=sin 2αsin α-cos α-sin α+cos αsin 2α-cos 2αcos 2α=sin 2αsin α-cos α-cos 2α(sin α+cos α)sin 2α-cos 2α=sin 2αsin α-cos α-cos 2αsin α-cos α=sin 2α-cos 2αsin α-cos α=sin α+cos α=右边.∴原式成立.(2)∵左边=4+2tan 2α-2cos 2α-sin 2α =2+2tan 2α+2sin 2α-sin 2α=2+2tan 2α+sin 2α右边=(1+2tan 2α)(1+cos 2α)=1+2tan 2α+cos 2α+2sin 2α=2+2tan 2α+sin 2α∴左边=右边,原式成立.10.解 (1)由韦达定理知⎩⎨⎧ sin θ+cos θ=3+12①sin θ·cos θ=m2 ②由①式可知1+2sin θcos θ=1+32, ∴sin θcos θ=34,∴m2=34,∴m =32, (2)当m =32时,原方程2x 2-(3+1)x +32=0, ∴x 1=32,x 2=12. ∵θ∈(0,2π)∴⎩⎨⎧ sin θ=32cos θ=12或⎩⎨⎧ sin θ=12cos θ=32. ∴θ=π3或θ=π6.。

《同角三角函数的基本关系》教学设计

《同角三角函数的基本关系》教学设计

《同角三角函数的基本关系》教学设计一、教学目标 1.知识与技能目标(1)能根据三角函数的几何、代数定义导出同角三角函数的基本关系式;(2)掌握同角三角函数的两个基本关系式,并能够根据一个角的三角函数值,求这个角的其他三角函数值.2.过程与方法目标(1)牢固掌握同角三角函数关系式,并能灵活解题,提高学生分析、解决三角函数的思维能力; (2)探究同角三角函数关系式时,体会数形结合的思想;已知一个角的三角函数值,求这个角的其他三角函数值时,进一步树立分类思想;解题时,注重化归的思想,将新题目化归到已经掌握的知识点上; (3)通过对知识的探究,掌握自主学习的方法,通过学习中的交流,形成合作学习的习惯. 3.情感、态度、价值观目标通过教学,使学生学习运用观察、类比、数形结合、联想、猜测、检验等合情推理方法,提高学生运算能力和逻辑推理能力.二、教学重点和难点教学重点:公式1cos sin 22=α+α和α=ααtan cos sin 的推导及其应用 教学难点:同角三角函数的基本关系式的变式应用三、教学流程 (一) 提问引入1、 提出问题:已知53sin -=α,求αcos 、αtan 的值. 2、 在解题过程中,让学生自己探索同角的三角函数关系.(二)探究新知1. 探究对同角三角函数基本关系(1) 根据学生探究出的结果,得出结论.引导学生注意“正弦的平方”的表示方法是“a 2sin ”,而不是:“2sin a ”,进而得到符号表达式:22sin cos 1αα+=;开方计算时,注意“分类”的思想在象限角正负号问题处理时的应用.(2) 探究正弦、余弦和正切函数三者的关系:αααtan cos sin =. 以上的探究由学生自由完成,可以从图形角度,也可以从定义角度加以探究,让学生体会图形语言与符号语言之间的转换关系,体会两种语言的区别于联系.为了让学生及时熟悉公式,同时为后续学生归纳“同角”作铺垫,要求学生完成以下的课堂练习: (1) =+30cos 30sin 22_______________; (2) =+++)4(cos )4(sin 22ππx x ________________;(3) ︒︒45cos 45sin =_______________(4) =+45cos 30sin 22.(3) 学生交流、讨论,最终在教师的引导下得到上述两个公式中应该注意的问题:①注意“同角”指相同的角,例如:145cos 30sin 22≠+ 、12cos 2sin 22=+αα、12cos 2sin22=+αα;②注意这些关系式都是对于使它们有意义的角而言的,如α=ααtan cos sin 中0cos ≠α,且αtan 需有意义等.(三)架构迁移(1)探究上述两个关系式的等价变形式教师点明:由等价变形式αα22cos 1sin -=已知余弦值可以求正弦值;由等价变形式αα22sin 1cos -=已知余弦值可以求正弦值,学生可能得到:αα2cos 1sin -±=的结论,此时,应该向学生说明:αcos 、αsin 的符号受所在象限的限制,不是无条件的,不同于“由12=x 可以推出1±=x ”这种情形,此情况类似于“⎪⎩⎪⎨⎧<-≥=)0()0(||a a a aa ”而不是“a a ±=||”.等价变形式αααcos tan sin =可以将分式可以化为整式例1 已知锐角α满足3tan =α,求(1)ααααcos 2sin 5cos 4sin +-;(2)αααcos sin 2sin 2+.让学生探究第一小题的解法,注意αsin 、αcos 、αtan 之间的关系的应用,学生的解题方法可能有很多种,注意每种解法后对数学思想方法的归纳.然后让学生尝试解决第二小题.第二小题较第一小题难度有所增加,可以让学生采取合作学习的办法,分小组讨论,探究其解题方法.再与第一小题比较,寻找其可借鉴之处.体会类比、化归思想,化未知为已知. 例2 化简αα22cos )tan 1(+.本例在时间允许的情况下进行,否则放到下节课解决. 若时间允许,则进行强化练习: 练习1:已知54cos -=α,且α为第三象限角,求αsin 、αtan 的值.该题与引例配套. 练习2:已知ααcos 5sin =,求ααααcos 2sin cos sin -+的值.该题与例2配套.(四)反思升华:由学生自己反思:“本节课你有些什么收获?”让学生自己总结本节课所学内容,教师从知识层面和思想方法层面帮助学生整理本节课的小节。

高中数学 第三章 三角恒等变换 3.1 同角三角函数的基本关系学案(含解析)北师大版必修4-北师大版

高中数学 第三章 三角恒等变换 3.1 同角三角函数的基本关系学案(含解析)北师大版必修4-北师大版

第三章三角恒等变形§1同角三角函数的基本关系知识点同角三角函数的基本关系式[填一填]常用的同角三角函数基本关系式的变形:(1)sin2α+cos2α=1的变形:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α,sinα=±1-cos2α,cosα=±1-sin2α.(2)tanα=sinαcosα的变形:sin α=cos αtan α,cos α=sin αtan α.[答一答]已知某角的一个三角函数值,求它的其他三角函数值时,应注意些什么?提示:(1)已知某角的一个三角函数值,求它的其他三角函数值时,要注意这个角的终边所在的象限.①由sin 2α+cos 2α=1变形可知,cos α=±1-sin 2α或sin α=±1-cos 2α,因此,在使用这两个变形公式计算时,要根据角α的终边所在的象限,确定根号前面的正负号.②在使用tan α=sin αcos α时,没有选择正负号的问题,只是在sin α,cos α的计算中会出现上述①中的情形.(2)如果已知的三角函数值中含有字母,且没有指定角的终边在哪个象限,那么就需要结合数学中分类讨论的思想来确定其他三角函数值.对同角三角函数的基本关系式的四点说明(1)同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,这里,“同角”有两层含义:一是“角相同”如π3与π3,2α与2α都是同角,二是对“任意”一个角(在使函数有意义的前提下).关系式成立与角的表达形式无关,如sin 234α+cos 234α=1.(2)sin 2α是(sin α)2的简写,不能写成sin α2.因为sin α2与sin 2α含义不同. (3)在使用同角三角函数基本关系时要注意使式子有意义,如式子tan90°=sin90°cos90°不成立. (4)在应用平方关系式求sin α或cos α时,其正负号是由角α所在的象限决定的,不可凭空想象.类型一 利用同角三角函数的关系求值 【例1】 (1)已知sin α=513,求cos α和tan α;(2)在△ABC 中,若tan A =63,求sin A 和cos A . 【思路探究】 (1)已知角α的正弦值,先用平方关系求cos α,再求tan α,注意角α是第几象限角不确定,故需要分类讨论;(2)已知角A 的正切值,可利用角A 终边上一点的坐标,根据三角函数的定义求解;也可利用同角三角函数的商数关系和平方关系求解,注意角A 是△ABC 的内角这一隐含条件.【解】 (1)∵sin α=513>0,∴α是第一或第二象限角.当α是第一象限角时,cos α=1-sin 2α=1-(513)2=1213,∴tan α=sin αcos α=5131213=512.当α是第二象限角时,cos α=-1-sin 2α=-1-(513)2=-1213,∴tan α=sin αcos α=513-1213=-512.(2)法1:因为tan A =63,角A 为三角形的内角,可知角A 终边上一点的坐标为(3,6),则该点到原点的距离r =15,故sin A =615=105,cos A =315=155.法2:因为tan A =63,所以sin A cos A =63,则sin A =63cos A , 又sin 2A +cos 2A =1,所以23cos 2A +cos 2A =1,即cos 2A =35.因为角A 是△ABC 的内角,且tan A >0,所以角A 为锐角,所以cos A =155,sin A =63cos A=105. 规律方法 已知某角的一个三角函数值,求它的其余各三角函数值时,要注意角的终边所在的象限,这主要是因为在使用cos α=±1-sin 2α或sin α=±1-cos 2α时,要根据角α的终边所在的象限,恰当地选择正、负号.tan α=sin αcos α的正、负号是由sin α和cos α共同决定的.这类问题通常有下列几种情况:(1)如果已知三角函数值,且角的终边所在的象限已被指定,那么只有一组解. (2)如果已知三角函数值,但没有指定角的终边所在的象限,那么先由已知三角函数值确定角的终边可能在的象限,再求解,这种情况一般有两组解.(3)如果所给的三角函数值是用字母表示的,且没有指定角的终边所在的象限,那么就需要对表示该值的字母的正、负进行讨论.另外,还要注意其角的终边有可能落在坐标轴上.已知cos α=-1517,求sin α,tan α的值.解:∵cos α<0,且cos α≠-1,∴α是第二或第三象限角.当α是第二象限角时, sin α=1-cos 2α=1-⎝⎛⎭⎫-15172=817, tan α=sin αcos α=817×⎝⎛⎭⎫-1715=-815.当α是第三象限角时, sin α=-1-cos 2α=-1-⎝⎛⎭⎫-15172=-817, tan α=sin αcos α=⎝⎛⎭⎫-817×⎝⎛⎭⎫-1715=815.类型二 关于sin α,cos α齐次式的求值 【例2】 已知tan α=13,求值:(1)5sin α+7cos αsin α-3cos α; (2)1cos 2α-2sin αcos α+5sin 2α. 【思路探究】 可以将分子、分母中的“1”化成“sin 2α+cos 2α”,进而将原来的代数式化成关于sin α,cos α的齐次分式,求解.【解】 ∵sin 2α+cos 2α=1,tan α=sin αcos α=13,∴cos α≠0.(1)原式=5tan α+7tan α-3=5×13+713-3=-134.(2)解法一:∵1+tan 2α=cos 2α+sin 2αcos 2α=1cos 2α, ∴原式=1cos 2α(1-2tan α+5tan 2α)=1+tan 2α1-2tan α+5tan 2α.将tan α=13代入上式得:原式=1+191-23+5×19=9+19-6+5=54.解法二:∵sin 2α+cos 2α=1,∴原式=cos 2α+sin 2αcos 2α-2sin αcos α+5sin 2α=1+tan 2α1-2tan α+5tan 2α. 将tan α=13代入上式得,原式= 1+191-23+5×19=9+19-6+5=54.解法三:∵tan α=13,∴sin αcos α=13,令sin α=k ,cos α=3k ,则1=cos 2α+sin 2α=10k 2.∴原式=10k 29k 2-6k 2+5k 2=54.规律方法 关于sin α,cos α的齐次式的求值问题关于sin α,cos α的齐次式就是式子中的每一项都是关于sin α,cos α的式子,且它们的次数相同,其求解策略为:可用cos n α(n ∈N +)去除原式分子、分母的各项,这样可以将原式化为关于tan α的表达式,再整体代入tan α=m 的值,从而完成求值任务.具体如下:(1)形如a sin α+b cos αc sin α+d cos α,a sin 2α+b sin αcos α+c cos 2αd sin 2α+e sin αcos α+f cos 2α的分式,分子、分母分别同时除以cos α,cos 2α,将正、余弦转化为正切或常数,从而求值.(2)形如a sin 2α+b sin αcos α+c cos 2α的式子,将其看成分母为1的分式,再将分母1变形为sin 2α+cos 2α,转化为形如a sin 2α+b sin αcos α+c cos 2αsin 2α+cos 2α的式子.已知tan α=2,求下列各式的值: (1)2sin α-3cos α4sin α-9cos α; (2)sin 2α-3sin αcos α+1.解:(1)解法一:因为tan α=2,所以cos α≠0,2sin α-3cos α4sin α-9cos α=2sin αcos α-3cos αcos α4sin αcos α-9cos αcos α=2tan α-34tan α-9=2×2-34×2-9=-1.解法二:因为tan α=2,所以sin α=2cos α, 故原式=2×2cos α-3cos α4×2cos α-9cos α=-1.(2)sin 2α-3sin αcos α+1=sin 2α-3sin αcos α+(sin 2α+cos 2α)=2sin 2α-3sin αcos α+cos 2α=2sin 2α-3sin αcos α+cos 2αsin 2α+cos 2α=2tan 2α-3tan α+1tan 2α+1=2×22-3×2+122+1=35.类型三 含sin α±cos α,sin αcos α的式子的求值【例3】 已知0<α<π,sin α+cos α=15,求sin α-cos α的值.【思路探究】 欲求sin α-cos α的值,可先求(sin α-cos α)2,为此需由已知条件求出sin α·cos α的值,解题时需注意sin α-cos α的符号.【解】 将已知等式两边平方,得1+2sin αcos α=125,∴2sin αcos α=-2425.又∵0<α<π,∴sin α>0,cos α<0, ∴sin α-cos α>0, ∴sin α-cos α=1-2sin αcos α=1+2425=75. 规律方法 1.sin α+cos α,sin αcos α,sin α-cos α三个式子中,已知其中一个,可以求出其他两个,即“知一求二”.它们的关系是:(sin α+cos α)2=1+2sin αcos α,(sin α-cos α)2=1-2sin αcos α.2.求sin α+cos α或sin α-cos α的值时,要注意判断它们的符号.已知0<α<π,sin αcos α=-60169,求sin α-cos α的值.解:∵0<α<π,sin αcos α=-60169<0,∴sin α>0,cos α<0,∴sin α-cos α>0.由(sin α-cos α)2=1-2sin αcos α=1-2×(-60169)=289169,∴sin α-cos α=1713.类型四 化简三角函数式【例4】 化简:(1)1-cos 4α-sin 4α1-cos 6α-sin 6α;(2)1cos α1+tan 2α+1+sin α1-sin α-1-sin α1+sin α.【思路探究】 所谓化简,就是使表达式经过某种变形,使结果尽可能的简单,也就是项数尽可能的少、次数尽可能的低、函数的种类尽可能的少、分母中尽量不含三角函数符号、能求值的一定要求值.【解】 (1)解法一:原式=(cos 2α+sin 2α)2-cos 4α-sin 4α(cos 2α+sin 2α)3-cos 6α-sin 6α=2cos 2α·sin 2α3cos 2αsin 2α(cos 2α+sin 2α)=23. 解法二:原式=1-(cos 4α+sin 4α)1-(cos 6α+sin 6α)=1-[(cos 2α+sin 2α)2-2cos 2α·sin 2α]1-(cos 2α+sin 2α)(cos 4α-cos 2α·sin 2α+sin 4α)=1-1+2cos 2α·sin 2α1-[(cos 2α+sin 2α)2-3cos 2α·sin 2α] =2cos 2α·sin 2α3cos 2α·sin 2α=23. 解法三:原式=(1-cos 2α)(1+cos 2α)-sin 4α(1-cos 2α)(1+cos 2α+cos 4α)-sin 6α=sin 2α(1+cos 2α-sin 2α)sin 2α(1+cos 2α+cos 4α-sin 4α)=2cos 2α1+cos 2α+(cos 2α+sin 2α)(cos 2α-sin 2α)=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23. (2)原式=1cos α1+sin 2αcos 2α+(1+sin α)21-sin 2α-(1-sin α)21-sin 2α=|cos α|cos α+1+sin α|cos α|-1-sin α|cos α|=⎩⎪⎨⎪⎧1+2tan α(α是第一、四象限角),-1-2tan α(α是第二、三象限角).规律方法 化简过程中常用的方法有:(1)化切为弦,即把非正、余弦的函数都化成正、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下的式子化成完全平方式,然后去根号,达到化简的目的. (3)对于化简含高次的三角函数式,往往借助于因式分解或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.若α为第二象限角,则sin 2α-sin 4αcos α=( B )A .sin αB .-sin αC .cos αD .-cos α 解析:sin 2α-sin 4α=sin 2α(1-sin 2α)=sin 2α·cos 2α=|sin αcos α|.因为α为第二象限角,则cos α<0,sin α>0,则|sin αcos α|=-sin αcos α,所以原式=-sin α.类型五 证明三角函数式【例5】 求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.【思路探究】思路1:等号右边分子、分母同乘tan α-sin α→利用平方关系和商数关系由右向左进行化简即可思路2:商数关系,平方关系→分别对等号两边的式子进行化简即可【证明】 法1:右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α=tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α=tan αsin αtan α-sin α=左边, 故原等式成立.法2:因为左边=tan αsin αtan α-tan αcos α=sin α1-cos α,右边=tan α+tan αcos αtan αsin α=1+cos αsin α=1-cos 2αsin α(1-cos α)=sin 2αsin α(1-cos α)=sin α1-cos α. 所以左边=右边,故原等式成立. 规律方法 证明三角恒等式的方法证明恒等式的过程就是通过转化消去等式两边的差异来促成统一的过程,证明方法常有以下几种:(1)从等式的一边证得另一边,一般从比较复杂的一边化简到另一边,其依据是等式的传递性.(2)综合法:由一个已知等式或公式恒等变形得到要证明的等式,其依据是等价转化的思想.(3)证明左、右两边都等于同一个式子(或值),其依据是等式的传递性. (4)比较法:证明“左边-右边=0”或“左边右边=1”.(5)化异为同法:即化异名为同名,化异角为同角等.求证:tan 2α-sin 2α=tan 2α·sin 2α.证明:法1:右边=tan 2α(1-cos 2α)=tan 2α-tan 2α·cos 2α=tan 2α-sin 2αcos 2α·cos 2α=tan 2α-sin 2α=左边,所以等式成立.法2:左边=sin 2αcos 2α-sin 2α=sin 2α-sin 2αcos 2αcos 2α=sin 2α(1-cos 2α)cos 2α=tan 2α·sin 2α=右边. 等式成立.——规范解答—— 利用同角三角函数关系式求值【例6】 在△ABC 中,sin A -cos A =1713,求tan A 的值. 【审题】审条件→一个三角形:△ABC一个关系:sin A -cos A =1713 ↓ 建联系→求解tan A 的值,根据已有的关系把tan A 与sin A ,cos A 联系起来↓找思路→由在△ABC 中,确定A ∈(0,π),再结合已知的关系与sin 2A +cos 2A =1,联立解方程,先求解sin A ,cos A ,再求解tan A【解题】 由sin A -cos A =1713知,cos A =sin A -1713,又因cos 2A +sin 2A =1,有(sin A -1713)2+sin 2 A =1, 化简得sin 2A -1713sin A +60169=0, 解得sin A =1213或sin A =513. 又因为A 为△ABC 的内角,所以sin A >0,当sin A =1213时,cos A =-513,tan A =-125, 当sin A =513时,cos A =-1213,tan A =-512. 【小结】 1.隐含条件的挖掘对题目的条件要认真分析,找出隐含条件,并要学会辨析使用,如本例中在三角形中,内角都是有范围的,均为(0,π),从而有sin A >0这一条件.2.常用知识应用一些常见常用的知识要记牢,并会应用,如三角函数求值中,只要涉及sin α与cos α,就有sin 2α+cos 2α=1,这一条件往往是解题的关键.已知sin α+cos α=-13,其中0<α<π,求sin α-cos α的值. 解:因为sin α+cos α=-13, 所以(sin α+cos α)2=19, 所以1+2sin αcos α=19, 所以sin αcos α=-49. 因为0<α<π且sin αcos α<0,所以sin α>0,cos α<0,所以sin α-cos α>0.又因为(sin α-cos α)2=1-2sin αcos α=179,所以sin α-cos α=173.一、选择题1.化简 1-sin 2π5的结果是( A )A .cos π5 B .-cos π5C .sin π5D .-sin π5解析:原式=cos 2π5=cos π5.2.若tan α=2,则2sin α-cos αsin α+2cos α 的值为( B )A .0 B.34C .1 D.54解析:本小题主要考查同角三角函数基本关系式. 原式=2tan α-1tan α+2=34,故选B.3.已知α是第四象限角,tan α=-512,则sin α等于( D) A.15 B .-15C.513 D .-513解析:∵tan α=-512,∴sin αcos α=-512,即cos α=-125sin α.又sin 2α+cos 2α=1,∴16925sin 2α=1,解得sin α=±513. 而α是第四象限角,∴sin α=-513. 二、填空题4.化简1+2sin4cos4=-(sin4+cos4). 解析:原式=sin 24+2sin4cos4+cos 24 =(sin4+cos4)2=|sin4+cos4|.∵π<4<3π2,∴sin4<0,cos4<0. ∴原式=-(sin4+cos4).5.若sin θ=-45,tan θ>0,则cos θ=-35. 解析:考查同角三角函数值间的关系.∵sin θ=-45<0,tan θ>0, ∴θ在第三象限.∴cos θ=-35. 三、解答题6.已知tan α=3,求下列各式的值. (1)4cos α-sin α4cos α+sin α; (2)2sin 2α-3sin α·cos α.解:(1)原式=4-tan α4+tan α=4-34+3=17. (2)原式=2sin 2α-3sin α·cos αsin 2α+cos 2α=2tan 2α-3tan αtan 2α+1=2×32-3×332+1=910.。

人教版高中数学必修四第一章1-2-2同角三角函数的基本关系式《学案》

人教版高中数学必修四第一章1-2-2同角三角函数的基本关系式《学案》

班级:__________姓名:__________设计人:__________日期:__________♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒温馨寄语在年轻人的颈项上,没有什么东西能比事业心这颗灿烂的宝珠更迷人的了。

——哈菲兹学习目标1.理解同角三角函数的基本关系.2.会利用同角三角函数的基本关系化简、求值、证明恒等式.学习重点同角三角函数的基本关系式的推导,会利用同角三角函数的基本关系式进行三角函数的化简与证明学习难点会用同角三角函数的基本关系式进行三角函数的化简与证明自主学习同角三角函数的基本关系平方关系: .商的关系:.tanα=预习评价1.已知θ是第一象限角且,则cosθ=.2.化简:= .3.已知3sinα+cosα=0,则t a n = .♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒合作探究1.同角三角函数基本关系设角是一个任意象限角,点P(x,y)为角α终边上任意一点,它与原点的距离为r(r= >0),那么:,请根据三角函数的定义思考下面问题:(1)从以上三角函数的定义,试计算sin2α+cos2α与的值,并根据你计算的结果,写出sin ,cos ,t a n 之间的关系式.(2)同角三角函数的两个基本关系成立的条件各是什么?2.利用同角三角函数关系可以解决哪些问题?教师点拨对同角三角函数基本关系的三点说明(1)关系式中的角一定是同角,否则公式可能不成立,如sin230°+cos260°≠1.(2)同角不要拘泥于形式,将换成或2α也成立,如.(3)商的关系中要注意公式中的隐含条件,cos ≠0,即交流展示——利用基本关系求值1.已知( )A. B. C. D.2.已知,则等于A. B. C. D.3.______.4.已知是第二象限角,,则变式训练1.(2011·山东省潍坊市月考)已知cos α-sin α=-,则sin αcos α的值为()A. B.± C. D.±2.已知tan α=-2,且<α<π,则cos α+sin α=.交流展示——三角函数式的化简5.若,则sinαcosα=A. B. C. D.6.当角α的终边在直线3x+4y=0上时,sin α+cos α=B. C. D.±7.(2012·聊城测试)已知tan α,是关于x的方程x2-kx+k2-3=0的两个实根,且3π<α<π,则cos α+sin α=.变式训练已知,求(1);(2)的值.交流展示——三角恒等式的证明8.求证:.9.证明:(1-tan4A)cos2A+tan2A=1.变式训练求证:学习小结1.三角函数求值的常用方法若已知tan =m,求其他三角函数值,其方法是解方程组求出sin a和cos a的值.若已知tan =m,求形如的值,其方法是将分子、分母同除以co s a(或cos2a)转化为tan 的代数式,再求值.形如a sin2 +bsin •cos +c•cos2 通常把分母看作1,然后用sin2 +cos2 代换,分子分母同除以cos2 再求解.提醒:在应用平方关系求sin 或cos 时,函数值的正、负是由角的终边所在的象限决定的,切不可不加分析,凭想象乱写结果.2.三角函数式化简的本质及关注点(1)本质:三角函数式化简的本质是一种不指定答案的恒等变形,体现了由繁到简的最基本的数学解题原则.(2)关注点:不仅要熟悉和灵活运用同角三角函数的基本关系式,还要熟悉并灵活应用这些公式的等价变形,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α,sinα=tanα•cosα,cosα= .3.对三角函数式化简的原则(1)使三角函数式的次数尽量低.(2)使式中的项数尽量少.(3)使三角函数的种类尽量少.(4)使式中的分母尽量不含有三角函数.(5)使式中尽量不含有根号和绝对值符号.(6)能求值的要求出具体的值,否则就用三角函数式来表示.4.证明三角恒等式的常用方法证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边,遵循由繁到简的原则.(2)证明左右两边等于同一个式子.(3)证明左边减去右边等于零或左、右两边之比等于1.(4)证明与原式等价的另一个式子成立,从而推出原式成立.当堂检测1.已知A为三角形的一个内角,且,则cos A−sin A的值为A. B. C. D.2.化简(1+tan2α)·cos2α=__________.3.已知在△ABC中,.(1)求sin A·cos A的值.(2)判断△ABC是锐角三角形还是钝角三角形.(3)求tan A的值.知识拓展在中,,求的值.详细答案♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒【自主学习】(1)sin2α+cos2α=1(2)【预习评价】1.2.cos20°3.♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒【合作探究】1.(1)sin2α+co s2α= + = =1,由以上计算结果可得出以下结论;sin2α+cos2α=1及tanα= .(2)对于平方关系只需同角即可;对于商的关系第一保证是同角,第二保证α≠kπ+ (k∈Z).2.(1)求值:已知一个角的三角函数值,求这个角的其他三角函数的值;(2)化简三角函数式;(3)证明三角恒等式.【交流展示——利用基本关系求值】1.C.【备注】对于与之间的关系,通过平方可以表达出来.2.A,结合可得,所以3.1【解析】本题主要考查同角三角函数基本关系.原式.4.【解析】本题考查同角三角函数基本关系式的应用.利用同角三角函数基本关系式,已知一个角的一个三角函数值可求这个角的其它三角函数值.,又,∴【变式训练】1.A【解析】由已知得(cos α-sin α)2=sin2α+cos2α-2sin αcos α=1-2sin αcos α=,解得sin αcos α=,故选A.2.【解析】本题主要考查了三角函数的概念,意在考查考生对基本概念的理解和应用能力由tan α=-2,得=-2,又sin2α+cos2α=1,且<α<π,解得sin α=,cos α=-,则sin α+cos α==.【交流展示——三角函数式的化简】5.B【解析】由,得,即t a nα.故选B.6.D【解析】在角α的终边上取点P(4t,-3t)(t≠0),则|OP|=5|t|.根据任意角的三角函数的定义,当t>0时,sin α==-,cos α==,sin α+cos α=;当t<0时,sin α==,cos α==-,sin α+cos α=-. 7.-【解析】∵tan α·=k2-3=1,∴k=±2,而3π<α<π,则tan α+=k=2,得tan α=1,则sin α=cos α=-,∴cos α+sin α=-.【变式训练】(1);(2).的一次或二次齐次式,所以可将分子和分母同除以或,然后将代入求解即可.【备注】注意到的应用.【交流展示——三角恒等式的证明】8.证明: 因为1cos sin sin 1cos x x x x+--(1cos )(1cos )sin sin sin (1cos )x x x x x x +--=- 22221cos sin sin sin 0sin (1cos )sin (1cos )x x x xx x x x ---===--,所以1cos sin =sin 1cos x x x x+-. 9.∵左边=·cos 2A+=+=+==1=右边,∴原等式成立. 【变式训练】右边左边.【解析】通过“切割化弦”将右边分子、分母中的正切化为再进行通分求解.【备注】在三角恒等式的证明中化异为同是基本思想,“1”的代换要灵活运用. 【当堂检测】 1.D【解析】由A 为三角形的内角且,可知,,∴cosA −,.故选D. 2.13.(1)由1sin cos 5A A +=,两边平方,得112sin cos 25A A +⋅=,所以12sin cos 25A A ⋅=-. (2)由(1)得12sin cos 025A A ⋅=-<.又0A π<<,所以cos 0A <, 所以A 为钝角.所以ABC ∆是钝角三角形.(3)因为12sin cos 25A A ⋅=-, 所以22449(sin cos )12sin cos 12525A A A A -=-⋅=+=, 又sin 0,cos 0A A ><,所以sin cos 0A A ->,所以7sin cos 5A A -=. 又1sin cos 5A A +=,所以43sin ,cos 55A A ==-. 所以4sin 45tan 3cos 35A A A ===--. 【知识拓展】解:∵,①∴,即,∴.∵,∴,.∴.∵,∴.②①+②,得.①−②,得.∴.【解析】本题主要考查同角三角函数基本关系以及三角形中函数符号的判定。

同角三角函数的基本关系_学案

同角三角函数的基本关系_学案

人教A 版必修四 同角三角函数的基本关系 学案要点一 利用同角基本关系式求值例1 已知cos α=-817,求sin α,tan α的值. 跟踪演练1 已知tan α=43,且α是第三象限角,求sin α,cos α的值. 要点二 三角函数代数式的化简例2 化简下列各式: (1) 1-2sin 10°cos 10°sin 10°-1-sin 2 10°; (2) 1-sin α1+sin α+ 1+sin α1-sin α,其中sin α²tan α<0. 跟踪演练2 已知tan α=3,则(1)2sin α-3cos α4sin α-9cos α= ; (2)sin 2α-3sin αcos α+1= .答案 (1)1 (2)1要点三 三角函数恒等式的证明 例3 求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α. 跟踪演练3 已知2cos 4θ+5cos 2θ-7=asin 4θ+bsin 2θ+c 是恒等式.求a 、b 、c 的值.1.化简1-2sin 40°cos 40°= .2.已知α是第三象限角,sin α=-13,则tan α= . 3.若α是第三象限角,化简 1+cos α1-cos α+1-cos α1+cos α. 4.求证:tan θ²sin θtan θ-sin θ=1+cos θsin θ.一、基础达标1.已知α是第二象限角,sin α=513,则cos α等于 ( ) A .-1213B .-513 C.513 D.12132.已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15 B .-35 C.15 D.353.已知sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( ) A.34 B .±310 C.310 D .-3104.若sin α+sin 2 α=1,则cos 2 α+cos 4 α等于( )A .0B .1C .2D .35.化简:sin 2 α+sin 2 β-sin 2 αsin 2 β+cos 2 αcos 2 β= .6.已知α∈R ,sin α+2cos α=102,则tan α= . 7.(1)化简1-sin 2100°;(2)用tan α表示sin α+cos α2sin α-cos α,sin 2α+sin αcos α+3cos 2α. 二、能力提升8.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( )A .-43 B.54 C .-34 D.459.已知sin α-cos α=-52,则tan α+1tan α的值为( ) A .-4 B .4 C .-8 D .810.已知直线l 的倾斜角是θ,且sin θ=513,则直线l 的斜率k = . 答案 ±51211.已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值. (1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.12.求证:cos α1+sin α-sin α1+cos α=2(cos α-sin α)1+sin α+cos α. 三、探究与创新13.已知sin α+cos α=-13,其中0<α<π,求sin α-cos α的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
1
D. -3
提示 2:注 重方法, 善 于总结, 力 争多题一 解。
提示 3:灵 感象火花 闪现, 要想 抓住它, 就 得赶紧巩 固练习。
学习小结:题组三的解答,主要采用了哪些变形的方法?
4-3
教师寄语:数学思维具有无穷的威力,具有令人心醉的魅力。
2012-05-26
自评
组评
师评
使用说明 请用这些 习题检测 自己的学 习效果。
【★★】3.已知 tan
m(m 0) ,求 sin 与 cos .
2. 解 答 要逻辑严 密,展示 时要规范 表述,讲 解要简明 扼要。
提示 2:这 三个题的 解答, 体现 了什么数 学思想方 法?
3.梳理思 维,寻找 题组中三 个题的共 同特点, 总结解答 通法。
学习小结:给值求值题,解答时一般要注意什么?
学案 编写人:陕西省延安市宜川中学 王建恩 使用人:高一
班第
组 姓名:
课题 同角三角函数的基本关系(一)
【学习目标】 1.识记、熟知同角三角函数的关系式; 2.能够灵活地使用同角三角函数的关系式,提高三角恒等变形的能力; 3.提高学生分析、解决三角问题的能力,树立化归数学思想。 【重点】正确、灵活地使用公式; 【难点】灵活应用公式进行恒等变形。 操作指南 启 动 思 维 1.请在课 1.回忆任意角的三角函数的定义,证明: 前独学或 y sin (x, y) (1) tan , k ; 对学,完 cos 2 成学案中 r 启动思维 (2) sin2 cos2 1 , R . 与小试身 手 两 部 x O 分。
【★】1.设 sin

以 致 用 )
A.
4 3
4 ,且 是第二象限角,则 tan ( 2 5 2 3 4 3 B. C. D. 4 3 4
1 2sin10 cos10 sin10 1 sin 2 10 _________ .

思维导引 请仔细审 题,快速、 准确、 灵巧 地解答。
4-4
4-2
教师寄语:数学思维具有无穷的威力,具有令人心醉的魅力。
2012-05-26
自评
组评师评探究策略来自能力 挑 战思维导引 提示 1:熟 记公式, 放 飞思维, 提 倡一题多 解。
1.对能力 题组二:公式的灵活应用,如公式的变形使用、 “1”的代换、弦切互化等。 挑战题, 2 2 【★】1. (1 tan ) cos = . 应尽量先 1 1 2sin cos 自己完成 【★★】2.已知 tan ,那么 的值为( ) 解答; 2 sin 2 cos 2 A. B. 3 C. 2.自主学 3 3 习之后, 1 先对学、 【★★】3. 已知 tan 求值: 3 再群学, 1 探讨解决 (1) 学习中存 cos 2 2sin cos 5sin 2 在 的 问 2 2 (2) sin sin cos 2cos 题; 3.题目要 注 意 分 析,学习 要注意总 结。 4.思维要 敏捷,展 示 要 规 范,讲解 要清晰, 课堂要倾 听。
4.启动思 维中的 2、 3 两个题 目,要在 课后继续 完善。
请小组长 督促完成 对学任务, 科代表抽 查。
3.注意: “同角”的含义; (1) (2)这些关系式可以作为公式直接使用, 但要注意成立条件; (3)寻找记忆的好办法。
4-1
教师寄语:数学思维具有无穷的威力,具有令人心醉的魅力。
2012-05-26
自评
组评
师评
学习策略 1. 尽 量 独立完成 解答,若 存 在 困 难,可对 学解决。
【★】1.已知 sin

试 身 手
学法指南 提示 1:解 这三个题 的时候, 你 有没有失 误?为什 么?
题组一:给值求值题,即已知某角的三角函数值,求其余的三角函数值。
3 ,且 是第三象限角,求 cos 和 tan . 5 【★】2.已知 tan 2 ,求 sin 与 cos .
【★★】2. 化简:
附加题可 选做。 请把拓展 题抄录在 这里。
【★★★】附加题:化简 【★★】拓展题:
1 cos 4 sin 4 1 cos6 sin 6
总结提升
1. 请回头完善一下“启动思维”的后两个题。
2. 本节课使用的(恒等)变形的主要方法有哪些?
3. 你有没有做到一题多解?请尝试总结出各个题组的通性通法?
思维导引 提示 1:证 明时先要 建系,设 元。
P
2.组内对 学,互相 检查,探 讨解决独 学中存在 的问题。 3.上课前 板书独学 与对学成 果,完成 展 示 任 务。
2. 你能想到或推导出同角三角函数的其他关系式吗?请把你得到的关 系式都写在下面.
提示 2:可 以从课本 或其他资 料中寻找 关系式。
相关文档
最新文档