RFC2328_OSPF_V2_中文版

合集下载

河北师范大学新校区校园无线局域网方案设计

河北师范大学新校区校园无线局域网方案设计

校园网已经成为校园生活的重要组成部分,是教职员工和学生获取资源和信息的主要途径。

目前,越来越多的学生拥有笔记本电脑,在教室、实验室、图书馆、大型会议室、体育馆、室外广场等场合如何突破有线网络节点的限制,解决多路同时上网的问题不可避免。

然而无线网络的技术已经成熟,足以支撑起种类繁多的应用,随时随地为用户提供稳定高速的接入服务。

可以选择的无线网络解决方案很多,实际部署中要充分考虑现实的条件和实际的需求确定最优的方案,以达到期望的效果。

本文首先分析了校园无线局域网的应用需求,制定了河北师范大学新校区校园无线局域网的整体设计方案。

之后进行了具体的网络分析、拓扑设计、原理实现和设备选型,完成了建设校园无线网络的详细方案。

方案的创新点在于对校园有线网进行了有效补充。

关键词:无线局域网;校园网;河北师范大学ABSTRACTCampus network has become an important part of campus life, and a main way for staff and students to gain resources and information. At present, more and more students have their own laptop computers, and in the occasions such as classroom, laboratory, library, large conference room, gymnasium, outdoor plaza and so on, it become an inevitable problem that how to overcome the limitation of the cable network nodes to solve the problem of multiple access to the Internet at the same time. Wireless network technology has become mature enough to support the wide variety of applications, and to provide users with stable and high-speed access service at any time and in any place. There are many wireless network solutions to select, but we should take realistic conditions and actual demand into account to determine the optimal solution in actual development, in order to achieve the desired effect.At first, this paper analyzes the application requirement of campus wireless local area network, and make out the overall solution of wireless local area network of new campus of Hebei Normal University. Then, it conducts the specific network analysis, topology designation, the realization of the principle and equipment selection, completing the detailed scheme of building wireless local area network. The innovation point of this scheme lies in its effective complement to the campus wired network.Key words:Wireless Local Area Network; Campus network; Hebei Normal University引言 (1)1无线局域网的基本原理 (2)1.1方案设计原则 (2)1.2方案设计遵循标准 (3)2河北师范大学新校区无线局域网方案设计 (4)2.1建设目标 (4)2.2需求分析 (4)2.3 实地勘察 (5)2.4产品技术选择 (6)2.5 AP布点覆盖原则 (8)2.6 无线校园网络整体规划 (9)3 河北师范大学新校区无线局域网方案实施 (9)3.1室内无线覆盖方案实施 (10)3.1.1教学楼 (10)3.1.2学生公寓 (11)3.2设备安装 (13)3.3设备选型及造价 (14)结论 (20)致谢 (21)参考文献 (22)附录 (23)河北师范大学新校区校园无线局域网方案设计一、背景分析河北师范大学按照搬迁工作统一要求,2010年9月1日至4日外国语学院、体育学院、文学学院、历史文化学院、法政学院、商学院、公共管理学院、美术与设计学院、新闻传播学院及教育学院共十个学院搬入新校区。

OSPF协议概述

OSPF协议概述

OSPF协议概述OSPF(Open Shortest Path First)是一种用于内部网关协议(IGP),常用于大型企业网络或互联网服务提供商的路由器之间的通信。

它是一个开放的标准协议,由RFC 2328定义。

OSPF协议的设计目标是提供一个可扩展、灵活且稳定的路由协议,以适应复杂网络环境。

它采用链路状态路由算法,通过建立拓扑数据库来计算最短路径,并更新路由表。

OSPF协议的核心概念包括以下几个方面:1. 邻居关系建立:OSPF协议使用Hello报文来发现相邻路由器,并建立邻居关系。

通过交换Hello报文,路由器可以确认邻居的可达性,并协商参数,如路由器ID、优先级等。

2. 拓扑数据库构建:邻居关系建立后,路由器会交换链路状态更新(LSU)报文,其中包含链路状态信息。

每个路由器会根据收到的LSU报文更新自己的拓扑数据库,记录网络中所有路由器和链路的状态。

3. 最短路径计算:根据拓扑数据库中的信息,每个路由器使用Dijkstra算法计算出到达目的地的最短路径。

计算结果存储在路由表中,用于转发数据包。

4. 路由表更新:当拓扑数据库发生变化时,路由器会更新自己的路由表。

OSPF协议使用可变长子网掩码(VLSM)来支持更灵活的路由表更新。

5. 路由器类型:OSPF定义了不同类型的路由器,包括主干路由器(Backbone Router)、区域边界路由器(Area Border Router)和内部路由器(Internal Router)。

每种类型的路由器在拓扑数据库和路由表的更新过程中有不同的角色和责任。

6. 路由器优先级:OSPF协议使用路由器优先级来确定主备路由器。

具有更高优先级的路由器将成为主路由器,处理路由计算和更新任务,而具有较低优先级的路由器将成为备份路由器。

7. 路由器区域划分:为了提高扩展性和性能,OSPF将网络划分为多个区域(Area)。

每个区域内部的路由器只需了解本区域的拓扑信息,而不需要了解整个网络的拓扑。

RFC2328中文版

RFC2328中文版

G.4
路由表查找
安全性考虑
作者的地址
完整的版权声明
第 4 页/总 134 页
hing at a time and All things in their being are good for somethin
1. 绪论
OSPF 版本 2/第二稿
本文档描述了开放最短路径优先/Open Shortest Path First(OSPF)TCP/IP 网际路由协议。 OSPF 是一种典型的内部网关协议/Interior Gateway Protocol(IGP)。这意味着其路由信息是描述 属于同一个自制系统/Autonomous System(AS)中的路由器。OSPF 协议是基于连接状态或被称 为 SPF 的技术,这与传统 TCP/IP 网际路由协议所使用的 Bellman-Ford 技术不同。
OSPF 版本 2/第二稿 第 1 页/总 134 页
hing at a time and All things in their being are good for somethin
RFC 2328
10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 11 11.1 11.2 11.3 12 12.1 12.1.1 12.1.2 12.1.3 12.1.4 12.1.5 12.1.6 12.1.7 12.2 12.3 12.4 12.4.1 12.4.1.1 12.4.1.2 12.4.1.3 12.4.1.4 12.4.1.5 12.4.2 12.4.2.1 12.4.3 12.4.3.1 12.4.3.2 12.4.4 12.4.4.1 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 14 14.1 15 16 16.1

FortiSwitch Data Center系列产品介绍说明书

FortiSwitch Data Center系列产品介绍说明书

DATA SHEETFortiSwitch ™ Data Center SeriesFortiSwitch Data Center switches deliver a Secure, Simple, Scalable Ethernet solution with outstanding throughput, resiliency, and scalability. Virtualization and cloud computing have created dense high-bandwidth Ethernet networking requirements. FortiSwitch Data Center switches meet these challenges by providing a high performance 10 GE, 40 GE, or 100 GE capable switching platform, with a low Total Cost of Ownership. Ideal for Top of Rack server or firewall aggregation applications, as well as SD-Branch network coredeployments, these switches are purpose-built to meetthe needs of today’s bandwidth intensive environments.Highlights§High throughput Ethernet switch suitable for Top of Rack or largeSD-Branch network deployments§ 1 GE, 10 GE, or 100 GE access ports, in a compact 1 RU form factor with 40 or 100 GE capable uplinks which includes breakout support for 2x50G, 4x25G, 4x10G, and 4x1G §FortiGate management through FortiLink, enabling the Security Fabric§Stackable up to 300 switches per FortiGate depending on model§Dual hot swappable power supplies for redundancy§Supports Wire-speed switching with both Store and Forward and Cut Through forwarding modesProduct OfferingsFortiSwitch 1024D, 1048E, 3032D, and 3032ESecurity Fabric Integration through FortiLinkThe FortiSwitch Data Center Series supports FortiGate managementthrough FortiLink, extending the Fortinet Security Fabric to the Ethernet port level. This link allows the same policies configured and applied to FortiGate interfaces to be applied to theFortiSwitch Ethernet ports, reducing complexity and decreasing management cost. With network security and access layer functions enabled and managed through a single console, centralized policy management, including role-based access and control, are easy to implement and manage. Users or devices can be authenticated against the same database and have the same security policy applied regardless of how or where they connect to the network.DATA SHEET | FortiSwitch™ Data Center SeriesDeploymentStandalone ModeThe FortiSwitch has a native GUI and CLI interface. All configuration and switch administration can be accomplished through either of theseinterfaces. Available ReSTful API’s offer additional configuration and management options.FortiLink ModeFortiLink is an innovative proprietary management protocol that allows our FortiGate Security Appliance to seamlessly manage any FortiSwitch. FortiLink enables the FortiSwitch to become a logical extension of the FortiGate integrating it directly into the Fortinet Security Fabric. This management option reduces complexity and decreases management cost as network security and access layer functions are enabled and managed through a single console.DATA SHEET | FortiSwitch ™ Data Center Series3HardwareFortiSwitch 3032D — frontFortiSwitch 3032D — backFortiSwitch 1048E — frontFortiSwitch 1048E — backFortiSwitch 1024D — backFortiSwitch 3032E — frontFortiSwitch 3032E — backFortiSwitch 1024D — frontDATA SHEET | FortiSwitch™ Data Center SeriesFeaturesLAG support for FortiLink Connection YesActive-Active Split LAG from FortiGate to FortiSwitches for Advanced Redundancy YesFORTISWITCH 1024D FORTISWITCH 1048E FORTISWITCH 3032D FORTISWITCH 3032E Layer 2Jumbo Frames Yes Yes Yes YesAuto-negotiation for port speed and duplex Yes Yes Yes YesIEEE 802.1D MAC Bridging/STP Yes Yes Yes YesIEEE 802.1w Rapid Spanning Tree Protocol (RSTP)Yes Yes Yes YesIEEE 802.1s Multiple Spanning Tree Protocol (MSTP)Yes Yes Yes YesSTP Root Guard Yes Yes Yes YesEdge Port / Port Fast Yes Yes Yes YesIEEE 802.1Q VLAN Tagging Yes Yes Yes YesPrivate VLAN Yes Yes Yes YesIEEE 802.3ad Link Aggregation with LACP Yes Yes Yes YesUnicast/Multicast traffic balance over trunking port(dst-ip, dst-mac, src-dst-ip, src-dst-mac, src-ip, src-mac)Yes Yes Yes YesIEEE 802.1AX Link Aggregation Yes Yes Yes YesSpanning Tree Instances (MSTP/CST)32/132/132/132/1IEEE 802.3x Flow Control and Back-pressure Yes Yes Yes YesIEEE 802.1Qbb Priority-based Flow Control Yes Yes Yes YesIEEE 802.3u 100Base-TX Yes No No YesIEEE 802.3z 1000Base-SX/LX Yes Yes Yes YesIEEE 802.3ab 1000Base-T Yes Yes No YesDATA SHEET | FortiSwitch™ Data Center Series Features* Requires ‘Advanced Features’ License5DATA SHEET | FortiSwitch™ Data Center Series RFC ComplianceRFC and MIB Support*BFDRFC 5880: Bidirectional Forwarding Detection (BFD)RFC 5881: Bidirectional Forwarding Detection (BFD) for IPv4 and IPv6 (Single Hop)RFC 5882: Generic Application of Bidirectional Forwarding Detection (BFD)BGPRFC 1771: A Border Gateway Protocol 4 (BGP-4)RFC 1965: Autonomous System Confederations for BGPRFC 1997: BGP Communities AttributeRFC 2545: Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain RoutingRFC 2796: BGP Route Reflection - An Alternative to Full Mesh IBGPRFC 2842: Capabilities Advertisement with BGP-4RFC 2858: Multiprotocol Extensions for BGP-4RFC 4271: BGP-4RFC 6286: Autonomous-System-Wide Unique BGP Identifier for BGP-4RFC 6608: Subcodes for BGP Finite State Machine ErrorRFC 6793: BGP Support for Four-Octet Autonomous System (AS) Number SpaceRFC 7606: Revised Error Handling for BGP UPDATE MessagesRFC 7607: Codification of AS 0 ProcessingRFC 7705: Autonomous System Migration Mechanisms and Their Effects on the BGP AS_PATH Attribute RFC 8212: Default External BGP (EBGP) Route Propagation Behavior without PoliciesRFC 8654: Extended Message Support for BGPDHCPRFC 2131: Dynamic Host Configuration ProtocolRFC 3046: DHCP Relay Agent Information OptionRFC 7513: Source Address Validation Improvement (SAVI) Solution for DHCPIP/IPv4RFC 3168: The Addition of Explicit Congestion Notification (ECN) to IPRFC 5227: IPv4 Address Conflict DetectionRFC 5517: Cisco Systems' Private VLANs: Scalable Security in a Multi-Client EnvironmentRFC 7039: Source Address Validation Improvement (SAVI) FrameworkIP MulticastRFC 2362: Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol SpecificationRFC 2710: Multicast Listener Discovery (MLD) for IPv6 (MLDv1)RFC 4541: Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping SwitchesRFC 4605: Internet Group Management Protocol (IGMP)/Multicast Listener Discovery (MLD)-Based Multicast Forwarding (“IGMP/MLD Proxying”)RFC 4607: Source-Specific Multicast for IPIPv6RFC 2464: Transmission of IPv6 Packets over Ethernet Networks: Transmission of IPv6 Packets over Ethernet NetworksRFC 2474: Definition of the Differentiated Services Field (DS Field) in the and IPv6 Headers (DSCP) RFC 2893: Transition Mechanisms for IPv6 Hosts and RoutersRFC 4213: Basic Transition Mechanisms for IPv6 Hosts and RouterRFC 4291: IP Version 6 Addressing ArchitectureRFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification RFC 4861: Neighbor Discovery for IP version 6 (IPv6)RFC 4862: IPv6 Stateless Address Auto configurationRFC 5095: Deprecation of Type 0 Routing Headers in IPv6RFC 6724: Default Address Selection for Internet Protocol version 6 (IPv6)RFC 7113: IPv6 RA GuardRFC 8200: Internet Protocol, Version 6 (IPv6) SpecificationRFC 8201: Path MTU Discovery for IP version 6IS-ISRFC 1195: Use of OSI IS-IS for Routing in TCP/IP and Dual EnvironmentsRFC 5308: Routing IPv6 with IS-ISMIBMIBRFC 1724: RIPv2-MIBRFC 1850: OSPF Version 2 Management Information BaseRFC 2233: The Interfaces Group MIB using SMIv2RFC 2618: Radius-Auth-Client-MIBRFC 2620: Radius-Acc-Client-MIBRFC 2674: Definitions of Managed Objects for Bridges with Traffic Classes, Multicast Filtering and Virtual LAN extensionsRFC 2787: Definitions of Managed Objects for the Virtual Router Redundancy ProtocolRFC 2819: Remote Network Monitoring Management Information BaseRFC 2932: IPv4 Multicast Routing MIBRFC 2934: Protocol Independent Multicast MIB for IPv4RFC 3289: Management Information Base for the Differentiated Services ArchitectureRFC 3433: Entity Sensor Management Information BaseRFC 3621: Power Ethernet MIBRFC 6933: Entity MIB (Version 4)OSPFRFC 1583: OSPF version 2RFC 1765: OSPF Database OverflowRFC 2328: OSPF version 2RFC 2370: The OSPF Opaque LSA OptionRFC 2740: OSPF for IPv6RFC 3101: The OSPF Not-So-Stubby Area (NSSA) OptionRFC 3137: OSPF Stub Router AdvertisementRFC 3623: OSPF Graceful RestartRFC 5340: OSPF for IPv6 (OSPFv3)RFC 5709: OSPFv2 HMAC-SHA Cryptographic AuthenticationRFC 6549: OSPFv2 Multi-Instance ExtensionsRFC 6845: OSPF Hybrid Broadcast and Point-to-Multipoint Interface TypeRFC 6860: Hiding Transit-Only Networks in OSPFRFC 7474: Security Extension for OSPFv2 When Using Manual Key ManagementRFC 7503: OSPF for IPv6RFC 8042: CCITT Draft Recommendation T.4RFC 8362: OSPFv3 Link State Advertisement (LSA) ExtensibilityOTHERRFC 2030: SNTPRFC 3176: InMon Corporation's sFlow: A Method for Monitoring Traffic in Switched and Routed NetworksRFC 3768: VRRPRFC 3954: Cisco Systems NetFlow Services Export Version 9RFC 5101: Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of Flow InformationRFC 5798: VRRPv3 (IPv4 and IPv6)RADIUSRFC 2865: Admin Authentication Using RADIUSRFC 2866: RADIUS AccountingRFC 5176: Dynamic Authorization Extensions to Remote Authentication Dial In User Service (RADIUS)RIPRFC 1058: Routing Information ProtocolRFC 2080: RIPng for IPv6RFC 2082: RIP-2 MD5 AuthenticationRFC 2453: RIPv2RFC 4822: RIPv2 Cryptographic AuthenticationSNMPRFC 1157: SNMPv1/v2cRFC 2571: Architecture for Describing SNMPDATA SHEET | FortiSwitch ™ Data Center Series7Specifications* Full line rate with minimum packet size of 427bytes on FS-1048E** Fortinet Warranty Policy:/doc/legal/EULA.pdfDATA SHEET | FortiSwitch ™ Data Center Series8Specifications* Full line rate with minimum packet size of 250bytes on FS-3032E, 194bytes on FS-3032D ** Fortinet Warranty Policy:/doc/legal/EULA.pdfDATA SHEET | FortiSwitch™ Data Center Series Order InformationFS-SW-LIC-3000SW License for FS-3000 Series Switches to activate Advanced Features.AC Power Supply FS-PSU-460Spare AC power supply for FS-1048E/1024DFS-PSU-800Spare AC power supply for FS-3032E* When managing a FortiSwitch with a FortiGate via FortiGate Cloud, no additional license is necessary.For details of Transceiver modules, see the Fortinet Transceivers datasheet. Copyright © 2020 Fortinet, Inc. All rights reserved. Fortinet®, FortiGate®, FortiCare® and FortiGuard®, and certain other marks are registered trademarks of Fortinet, Inc., and other Fortinet names herein may also be registered and/or common law trademarks of Fortinet. All other product or company names may be trademarks of their respective owners. Performance and other metrics contained herein were attained in internal lab tests under ideal conditions, and actual performance and other results may vary. Network variables, different network environments and other conditions may affect performance results. Nothing herein represents any binding commitment by Fortinet, and Fortinet disclaims all warranties, whether express or implied, except to the extent Fortinet enters a binding written contract, signed by Fortinet’s General Counsel, with a purchaser that expressly warrants that the identified product will perform according to certain expressly-identified performance metrics and, in such event, only the specific performance metrics expressly identified in such binding written contract shall be binding on Fortinet. For absolute clarity, any such warranty will be limited to performance in the same ideal conditions as in Fortinet’s internal lab tests. Fortinet disclaims in full any covenants, representations, and guarantees pursuant hereto, whether express or implied. Fortinet reserves the right to change, modify, transfer, or otherwise revise this publication without notice, and the most current version of the publication shall be applicable. Fortinet disclaims in full any covenants, representations, and guarantees pursuant hereto, whether express or implied. Fortinet reserves the right to change, modify, transfer, or otherwise revise this publication without notice, and the most current version of the publication shall be applicable.FST-PROD-DS-SW4FS-DC-DAT-R23-202011。

JNCIE考试准备指南

JNCIE考试准备指南
11, <<Interdomain Multicast Routing>>, Juniper出的有关组播的书, 包括JUNOS组播和IOS互操作;
11, JUNOS文档https:///techpubs/cdrom/juniper-cdrom-complete.tgz公开的, 可以直接下载, IPv6的东西就在这里看吧;
1.<<Routing TCP/IP, Volume I>> (IGP知识点经典书) (作者 Jeff Doyle);
2.<<Internet Routing Architectures , 2nd Edition>> (EGP知识点经典书) (作者Basam Halabi);
3. RFC 4271 BGP-4;
4. RFC 2328 OSPF Version 2;
5, RFC 1195 Use of OSI IS-IS for Routing in TCP/IP and Dual Environments;
6, RFC 3031到3037, 是有关MPLS的;
7, RFC 2547, 有关三层VPN的;
关于JNCIE考试:
JNCIE的考试都分笔试和实验两部分,笔试称为JNCIS (Juniper Networks Certified Internet Specialist), 即资格考试,顾名思义,必须通过了笔试部分的考试,才能参加实验部分的考试, 其实JNCIS是一个独立的认证考试, 考过了以后也可以发证书, 但是我们这里讨论的是JNCIE考试, 对于JNCIS就不做详细的单独介绍。JNCIS考试在中国各个城市基本都能考, 就是通过Prometric的考试中心来进行考试(VUE是不能考的), 也就是说, 只要能考CCNA认证或者MCSE认证的地方, 就都能考JNCIS,而实验室部分,在全球只有为数不多的6-7个考场左右。目前中国可以考JNCIE/JNCIP。

学习网络常用的RFC文档的名称

学习网络常用的RFC文档的名称

学习网络常用的RFC文档的名称双语RFC --RFC中英文对照版rfc1050中文版-远程过程调用协议规范rfc1055中文版-在串行线路上传输IP数据报的非标准协议rfc1057中文版-RFC:远程过程调用协议说明第二版rfc1058中文版-路由信息协议(Routing Information Protocol)rfc1073中文版-RFC1073 Telnet窗口尺寸选项rfc1075中文版-远距离矢量多播选路协议rfc1088中文版-在NetBIOS网络上传输IP数据报的标准rfc1090中文版-SMTP在X.25上rfc1091中文版-TELNET终端类型选项rfc1094中文版-RFC1094 网络文件系统协议rfc1096中文版-Telnet X显示定位选项rfc1097中文版-Telnet潜意识-信息选项rfc1112中文版-主机扩展用于IP多点传送rfc1113中文版-Internet电子邮件保密增强:Part1-消息编码和鉴别过程rfc1132中文版-802.2分组在IPX网络上传输的标准rfc1144中文版-低速串行链路上的TCP/IP头部压缩rfc1155中文版-基于TCP/IP网络的管理结构和标记rfc1191中文版-RFC1191 路径MTU发现rfc1332中文版-RFC1332 端对端协议网间协议控制协议(IPCP)rfc1333中文版-PPP 链路质量监控rfc1334中文版-PPP 身份验证协议rfc1387中文版-RIP(版本2)协议分析rfc1388中文版-RIP协议版本2rfc1433中文版-直接ARPrfc1445中文版-SNMPv2的管理模型rfc1582中文版-扩展RIP以支持按需链路rfc1618中文版-ISDN上的PPP(点对点)协议rfc1661中文版-RFC1661 PPP协议rfc1723中文版-路由信息协议(版本2)rfc1738中文版-统一资源定位器(URL)rfc1769中文版-简单网络时间协议( SNTP)rfc1771中文版-边界网关协议版本4(BGP-4)rfc1827中文版-IP封装安全载荷(ESP)rfc1883中文版-Internet协议,版本6(IPv6)说明书rfc1939中文版-POP3协议rfc1945中文版-超文本传输协议 -- HTTP/1.0rfc1994中文版-PPP挑战握手认证协议(CHAP)rfc1997中文版-RFC1997 BGP团体属性rfc2002中文版-IP移动性支持rfc204中文版-利用报路rfc2105中文版-Cisco 系统的标签交换体系结构纵览rfc2281中文版-Cisco热备份路由协议()rfc2283中文版-BGP-4的多协议扩展rfc2326中文版-实时流协议(RTSP)rfc2328中文版-OSPF版本2rfc2516中文版-在以太网上传输PPP的方法(PPPoE)rfc2526中文版-IPv6保留的子网任意传送地址rfc2547中文版-BGP/MPLS VPNsrfc2616中文版-超文本传输协议——HTTP/1.1rfc2702中文版-基于MPLS的流量工程要求rfc2706中文版-RFC2706—电子商务域名标准rfc2756中文版-超文本缓存协议(HTCP/0.0)rfc2764中文版-IP VPN的框架体系rfc2773中文版-使用KEA和SKIPJACK加密rfc2774中文版-HTTP扩展框架rfc2781中文版-UTF-16, 一种ISO 10646的编码方式rfc2784中文版-通用路由封装rfc2793中文版-用于文本交谈的RTP负载rfc2796中文版-BGP路由反射rfc2917中文版-核心 MPLSIP VPN 体系结构rfc2918中文版-BGP-4(边界网关协议)的路由刷新功能rfc2923中文版-TCP的路径MTU发现问题rfc3003中文版-Audio/mpeg 媒体类型rfc3005中文版-IETF 讨论列表许可证rfc3007中文版-安全的域名系统动态更新rfc3018中文版-统一内存空间协议规范rfc3022中文版-传统IP网络地址转换(传统NAT)rfc3032中文版-RFC3032 MPLS标记栈编码rfc3033中文版-用于Internet协议的信息域和协议标识符在Q.2941类属标识符和Q.2957 User-to-user信令中的分配rfc3034中文版-标签转换在帧中继网络说明书中的使用rfc3037中文版-RFC3037 标记分配协议的适用范围(RFC3037 LDP Applicability)rfc3058中文版-IDEA加密算法在CMS上的使用rfc3059中文版-服务定位协议的属性列表扩展rfc3061中文版-对象标识符的一种URN姓名空间rfc3062中文版-LDAP口令修改扩展操作rfc3063中文版-MPLS(多协议标签交换)环路预防机制rfc3066中文版-语言鉴定标签rfc3067中文版-事件对象描述和转换格式要求rfc3069中文版-VLAN聚合实现IP地址有效分配rfc3070中文版-基于帧中继的第二层隧道协议rfc3072中文版-结构化数据交换格式rfc3074中文版-DHCP 负载平衡算法rfc3078中文版-RFC3078微软点到点加密(MPPE)协议rfc3081中文版-将区块扩展交换协议(BEEP)核心映射到传输控制协议(TCP)rfc3083中文版-遵循DOCSIS的Cable Modem和CMTS的PBI 的管理信息数据库rfc3085中文版-新闻型标记语言(NewsML)资源的URN名字空间rfc3090中文版-域名系统在区域状况下的安全扩展声明rfc3091中文版-Pi数字生成协议rfc3093中文版-防火墙增强协议rfc3550中文版-RTP:实时应用程序传输协议rfc457中文版-TIPUGrfc697中文版-FTP的CWD命令rfc698中文版-TELNET扩展ASCII选项rfc775中文版-面向目录的 FTP 命令rfc779中文版-TELNET的SEND-LOCATION选项rfc792中文版-RFC792- Internet控制信息协议(ICMP)rfc821中文版-RFC821 简单邮件传输协议(SMTP)rfc826中文版-以太网地址转换协议或转换网络协议地址为48比特以太网地址用于在以太网硬件上传输rfc854中文版-TELNET协议规范rfc855中文版-TELNET选项规范rfc856中文版-RFC856 TELNET二进制传输rfc857中文版-RFC 857 TELNET ECHO选项rfc858中文版-RFC 858 TELNET SUPPRESS GO AHEAD选项rfc859中文版-RFC 859 TELNET的STATUS选项rfc860中文版-RFC 860 TELNET TIMING MARK选项rfc861中文版-RFC 861 TELNET扩展选项-LISTrfc862中文版-RFC 862 Echo 协议rfc868中文版-RFC868 时间协议rfc894中文版-IP 数据包通过以太网网络传输标准rfc903中文版-反向地址转换协议rfc930中文版-Telnet终端类型选项(RFC930——T elnet Terminal Type Option)rfc932中文版-子网地址分配方案rfc937中文版-邮局协议 (版本2)rfc948中文版-IP数据报通过IEEE802.3网络传输的两种方法rfc949中文版-FTP 未公开的独特命令rfc951中文版-引导协议(BOOTP)rfc962中文版-TCP-4 的最初rfc974中文版-邮件路由与域名系统rfc975中文版-自治联邦。

F2328-OSPFV2-中文

F2328-OSPFV2-中文
1.4 本文档的结构
1.5 感谢
2 连接状态数据库:组织和计算
2.1 路由器和网络的表示方法
2.1.1 非广播网络的表示方法
2.1.2 一个连接状态数据库的示例
2.2 最短路径树
2.3 使用外部路由信息
2.4 等值多路径
3 将自制系统划分为区域
3.1 自制系统的骨干区域
12.1.4 连接状态标识
12.1.5 宣告路由器
12.1.6 连接状态序号
12.1.7 连接状态校验和
12.2 连接状态数据库
12.3 TOS表现
12.4 生成LSA
12.4.1 Router-LSA
12.4.1.1 描述点对点接口
12.4.1.2 描述广播和NBMA接口
16.4 计算AS外部路径
16.4.1 外部路径参数
16.5 增量更新--Summary-LSA
16.6 增量更新--AS-external-LSA
16.7 路由表改变引起的事件
16.8 等值多路径
脚注
引用
A OSPF数据格式
A.1 OSPF包的封装
A.2 选项域
A.4.3 Network-LSA
A.4.4 Summary-LSA
A.4.5 AS-external-LSA
B 结构常量
C 可配置变量
C.1 全局参数
C.2 区域参数
C.3 路由器接口参数
C.4 虚拟通道参数
C.5 NBMA网络参数
C.6 点对多点网络参数
A.3 OSPF包格式
A.3.1 OSPF包头
A.3.2 Hello包

Infoprint 250 導入と計画の手引き 第 7 章ホスト

Infoprint 250 導入と計画の手引き 第 7 章ホスト

SUBNETMASK
255.255.255.128
Type of service...............: TOS
*NORMAL
Maximum transmission unit.....: MTU
*LIND
Autostart.....................:
AUTOSTART
*YES
: xx.xxx.xxx.xxx
: xx.xxx.xxx.xxx
*
(
)
IEEE802.3
60 1500
: xxxx
48 Infoprint 250
31. AS/400
IP
MTU
1
1
IPDS TCP
CRTPSFCFG (V3R2)
WRKAFP2 (V3R1 & V3R6)
RMTLOCNAME RMTSYS
MODEL
0
Advanced function printing............:
AFP
*YES
AFP attachment........................:
AFPATTACH
*APPC
Online at IPL.........................:
ONLINE
FORMFEED
*CONT
Separator drawer......................:
SEPDRAWER
*FILE
Separator program.....................:
SEPPGM
*NONE
Library.............................:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RFC2328 OSPF V2 中文版OSPF 版本 2本备忘录的状态:本文档讲述了一种Internet团体的Internet标准跟踪协议,它需要进一步进行讨论和建议以得到改进。

请参考最新版的“Internet正式协议标准”(STD1)来获得本协议的标准化程度和状态。

本备忘录的发布不受任何限制。

版权提示:Copyright (C) The Internet Society (1998). All Rights Reserved.摘要:本备忘录说明了OSPF协议版本2。

OSPF是一种连接状态/link-state路由协议,被设计用于单一的自制系统/Autonomous System中。

每个OSPF路由器都维持着同样的数据库以描述AS的拓扑结构,并以此数据库来创建最短路径树并计算路由表。

OSPF在发现拓扑改变后,仅利用很少的路由流量就可以快速的重新计算出路径。

OSPF提供等价多路径。

通过提供区域/area路径,来提供额外的路径保护并可以减少协议所需要的流量。

此外,所有的OSPF路由信息交换都经过验证。

本备忘录与RFC 2178的不同,在附录G中说明。

所有的不同点都实现向后兼容。

按本备忘录的实现,与按照RFC2178、1583、1247的实现能够协同运作。

请将建议发往ospf@。

请将有关本文翻译的建议发往raymon@目录1 绪论1.1 协议概述1.2 常用术语的定义1.3 连接状态路由技术的简要历史1.4 本文档的结构1.5 感谢2 连接状态数据库:组织和计算2.1 路由器和网络的表示方法2.1.1 非广播网络的表示方法2.1.2 一个连接状态数据库的示例2.2 最短路径树2.3 使用外部路由信息2.4 等价多路径3 将自制系统划分为区域3.1 自制系统的骨干区域3.2 区域间路由3.3 路由器的分类3.4 一个简单区域配置3.5 IP子网化支持3.6 支持存根区域3.7 区域的划分4 功能摘要4.1 区域间路由4.2 自制系统外部路由4.3 路由协议包4.4 基本实现的需求4.5 OSPF可选项5 协议数据结构6 区域数据结构7 形成邻接7.1 Hello协议7.2 数据库同步7.3 指定路由器7.4 备份指定路由器7.5 邻接图8 协议包处理8.1 发送协议包8.2 接收协议包9 接口数据结构9.1 接口状态9.2 引起接口状态改变的事件9.3 接口状态机9.4 选举指定路由器9.5 发送Hello包9.5.1 在NBMA网络上发送Hello包10 邻居数据结构10.1 邻居状态10.2 引起邻居状态改变的事件10.3 邻居状态机10.4 是否形成邻接10.5 接收到Hello包10.6 接收到数据库描述包10.7 接收到连接状态请求包10.8 发送数据库描述包10.9 发送连接状态请求包10.10 示例11 路由表结构11.1 查找路由表11.2 路由表示例,无区域11.3 路由表示例,有区域12 连接状态宣告(LSA)12.1 LSA头部12.1.1 连接状态时限12.1.2 选项12.1.3 连接状态类型12.1.4 连接状态标识12.1.5 宣告路由器12.1.6 连接状态序号12.1.7 连接状态校验和12.2 连接状态数据库12.3 TOS表现12.4 生成LSA12.4.1 Router-LSA12.4.1.1 描述点对点接口12.4.1.2 描述广播和NBMA接口12.4.1.3 描述虚拟通道12.4.1.4 描述点对多点接口12.4.1.5 Router-LSA示例12.4.2 Network-LSA12.4.2.1 Network-LSA示例12.4.3 Summary-LSA12.4.3.1 向存根区域生成Summary-LSA 12.4.3.2 Summary-LSA示例12.4.4 AS-external-LSA12.4.4.1 AS-external-LSA示例13 洪泛过程13.1 判定较新的LSA13.2 将LSA加入数据库13.3 洪泛过程的下一步操作13.4 接收自生成的LSA13.5 发送连接状态确认包(LSAck包)13.6 重传LSA13.7 接收连接状态确认包(LSAck包)14 老化连接状态数据库14.1 提前老化LSA15 虚拟通道16 计算路由表16.1 计算一个区域的最短路径树16.1.1 计算下一跳16.2 计算区域间路径16.3 查看传输区域的Summary-LSA 16.4 计算AS外部路径16.4.1 外部路径参数16.5 增量更新--Summary-LSA 16.6 增量更新--AS-external-LSA 16.7 路由表改变引起的事件16.8 等价多路径脚注引用A OSPF数据格式A.1 OSPF包的封装A.2 选项域A.3 OSPF包格式A.3.1 OSPF包头A.3.2 Hello包A.3.3 数据库描述包(DD包)A.3.4 连接状态请求包(LSR包)A.3.5 连接状态更新包(LSU包)A.3.6 连接状态确认包(LSAck包)A.4 LSA格式A.4.1 LSA头部A.4.2 Router-LSAA.4.3 Network-LSAA.4.4 Summary-LSAA.4.5 AS-external-LSAB 结构常量C 可配置变量C.1 全局参数C.2 区域参数C.3 路由器接口参数C.4 虚拟通道参数C.5 NBMA网络参数C.6 点对多点网络参数C.7 主机路径参数D 验证D.1 空验证D.2 简单口令验证D.3 密码验证D.4 信息生成D.4.1 生成空验证D.4.2 生成简单口令验证D.4.3 生成密码验证D.5 信息校验D.5.1 校验空验证D.5.2 校验简单口令验证D.5.3 校验密码验证E 设定LS标识的一种算法F 多接口接入同一网络/子网G 与RFC 2178的不同G.1 洪泛过程的修改G.2 外部路径优先级的改变G.3 解决不完整的虚拟下一跳G.4 路由表查找安全性考虑作者的地址完整的版权声明1. 绪论本文档描述了开放最短路径优先/Open Shortest Path First(OSPF)TCP/IP网际路由协议。

OSPF是一种典型的内部网关协议/Interior Gateway Protocol (IGP)。

这意味着其路由信息是描述属于同一个自制系统/Autonomous System (AS)中的路由器。

OSPF协议是基于连接状态或被称为SPF的技术,这与传统TCP/IP网际路由协议所使用的Bellman-Ford(一种算法)技术不同。

OSPF协议是由Internet Engineering Task Force的OSPF工作组所开发的,特别为TCP/IP网络而设计,包括明确的支持CIDR和标记来源于外部的路由信息。

OSPF也提供了对路由更新的验证,并在发送/接收更新时使用IP多播。

此外,还作了很多的工作使得协议仅用很少的路由流量就可以快速地响应拓扑改变。

1.1. 协议概述OSPF仅通过在IP包头中的目标地址来转发IP包。

IP包在AS中被转发,而没有被其他协议再次封装。

OSPF是一种动态路由协议,它可以快速地探知AS中拓扑的改变(例如路由器接口的失效),并在一段时间的收敛后计算出无环路的新路径。

收敛的时间很短且只使用很小的路由流量。

在连接状态路由协议中,每台路由器都维持着一个数据库以描述AS的拓扑结构。

这个数据库被称为连接状态数据库,所有参与的路由器都有着同样的数据库。

数据库中的各项说明了特定路由器自身的状态(如该路由器的可用接口和可以到达的邻居)。

该路由器通过洪泛/flooding将其自身的状态传送到整个AS中。

所有的路由器同步地运行完全相同的算法。

根据连接状态数据库,每台路由器构建出一棵以其自身为树根的最短路径树。

最短路径树给出了到达AS中各个目标的路径,路由信息的起源在树中表现为树叶。

当有多条等价的路径到达同一目标时,数据流量将在这些路径上平均分摊。

路径的距离值表现为一个无量纲数。

OSPF允许将一些网络组合到一起。

这样的组被称为区域/area。

区域对AS中的其他部分隐藏其内部的拓扑结构,信息的隐藏极大地减少了路由流量。

同时,区域内的路由仅由区域自身的拓扑来决定,这可使区域抵御错误的路由信息。

区域通常是一个子网化了的IP网络。

OSPF允许灵活的配置IP子网。

由OSPF发布的每条路径都包含目标和掩码。

同一个IP网络的两个子网可以有不同的大小(即不同的掩码),这常被称为变长子网/variable length subnetting。

数据包按照最佳匹配(最长匹配)来转发。

主机路径被看作掩码为“全1”(0xffffffff)的子网来处理。

OSPF协议中所有的信息交换都经过验证。

这意味着,在AS中只有被信任的路由器才能参与路由。

有多种验证方法可以被选择。

事实上,可以为每个IP子网选用不同的验证方法。

来源于外部的路由信息(如路由器从诸如BGP[引用23]的外部网关协议中得到的路径)向整个AS内部宣告。

外部数据与OSPF协议的连接状态数据相对独立。

每条外部路径可以由所宣告的路由器作出标记,在自制系统边界路由器(ASBR)之间传递额外的信息。

1.2. 常用术语的定义本节定义了贯穿本文的,在OSPF协议中有特定含义的术语。

对IP协议不熟悉的读者可使用[引用13]作为IP协议的绪论。

路由器/Router:一种三层IP包的交换设备。

在早期的IP文献中被称为网关/gateway。

自制系统/Autonomous System:一组使用相同路由协议交换路由信息的路由器,缩写为AS。

内部网关协议/Interior Gateway Protocol:被一个AS内的路由器所使用的路由协议,缩写为IGP。

每个AS使用单一的IGP,不同的AS会使用不同的IGP。

路由器标识/Router ID:一个32位的数字,用以识别每台运行OSPF协议的路由器。

在一个AS中,这个数字可以唯一地表示出一台路由器。

网络/Network:在本备忘录中,会表示IP网络/子网/超网。

一个物理网络上可能设置有多个网络/子网号,我们把它们按照独立的网络来对待。

物理点对点/point-to-point网络是个例外--无论在上面设置了多少网络/子网号(如果有的话),都将其看作是一个网络。

网络掩码/Network mask:一个32位的数字,表示IP地址的范围来说明这是一个IP网络/子网/超网。

本文以16进制来表示网络掩码。

如将C类IP地址的网络掩码显示为0xffffff00,这一掩码在其他文献中经常被表示为255.255.255.0。

点对点网络/Point-to-point networks:仅仅连接一对路由器的网络。

相关文档
最新文档