锚杆挡土墙设计与计算

合集下载

基坑支护锚杆工程施工方案计算书和结算

基坑支护锚杆工程施工方案计算书和结算

基坑支护锚杆工程施工方案计算书和结算1. 引言基坑支护是指在地下工程中,通过设置支护设施来保证基坑的稳定和安全施工。

锚杆工程是基坑支护的一种常用方法,通过锚杆的固结,将基坑围护结构与地层相互连接,以增加整体的稳定性和承载能力。

本文档将对基坑支护锚杆工程的施工方案计算和结算进行详细描述。

2. 施工方案计算2.1 建立工程模型在进行基坑支护锚杆工程施工方案计算之前,首先需要建立工程模型。

工程模型包括基坑的几何尺寸、地下水位、土层性质、荷载等信息。

根据这些信息,可以确定基坑的稳定性和锚杆的布置方式。

2.2 计算基坑的稳定性根据基坑的几何尺寸和土层性质,可以进行基坑的稳定性计算。

稳定性计算包括对土体的支持力和抗滑稳定性的计算。

根据计算结果,可以确定基坑支护的类型和施工参数。

2.3 设计锚杆的布置方案根据基坑的稳定性计算结果,可以确定锚杆的布置方案。

锚杆应该布置在土体的稳定区域,以提供足够的承载力和抗滑能力。

布置方案应考虑锚杆的类型、直径、间距和布置深度等参数。

2.4 计算锚杆的承载力根据锚杆的布置方案,可以进行锚杆的承载力计算。

计算包括锚杆的单个承载力和整体承载力。

单个承载力是指锚杆所承受的单个荷载。

整体承载力是指所有锚杆共同承受的荷载。

通过计算承载力,可以确定锚杆的数量和布置方式。

3. 施工方案结算3.1 确定施工方案根据施工方案计算的结果,可以确定具体的施工方案。

施工方案包括锚杆的材料、埋设方式、锚固长度、预应力力值等。

根据施工方案,可以计算锚杆的材料消耗量。

3.2 计算施工成本根据施工方案和材料消耗量,可以计算锚杆工程的施工成本。

施工成本包括人工、材料、设备等方面的费用。

通过计算施工成本,可以评估工程的经济性和可行性。

3.3 结算工程费用根据施工方案和施工成本,可以进行工程费用的结算。

工程费用的结算包括劳务费、材料费、设备费等方面的费用。

结算工程费用是评估工程质量和计划执行情况的重要指标。

4. 结论本文档对基坑支护锚杆工程的施工方案计算和结算进行了详细描述。

锚定板挡土墙

锚定板挡土墙

也可以按库伦主动土压力理论来计算作用于墙面系上的土压力 ,再乘以 (大于/小于) 1的系数m。
5. 锚定板挡土墙恒载土压力可以简化为
(梯形/三角形/抛物线形)
6. 判断极限抗拔力的标准有三种:
抗拔力、
抗拔力

抗拔力。三种标准中应优先采用
,但由于试
验设备和时间所限,有很多试验不能达到极限稳定抗拔力,这时可采
锚定板挡土墙和锚杆挡土墙比较
锚定板挡土墙和锚杆挡土墙一样,也是依靠“拉杆”的抗拔 力来保持挡土墙的稳定。
但是,这种挡土墙与锚杆挡土墙又有着明显的区别,
锚杆挡土墙的锚杆必须锚固在稳定的地层中,其抗拔力来源于锚杆与 砂浆、孔壁地层之间的摩阻力;
而锚定板挡土墙的拉杆及其端部的锚定板均埋设在回填土中,其抗拔 力来源于锚定板前填土的被动抗力。因此,墙后侧向土压力通过墙面 传给拉杆,后者则依靠锚定板在填土中的抗拔力抵抗侧向土压力,以 维持挡土墙的平衡与稳定。
随着拉力不断增大,锚定板周围土体的塑性区继续发展,直至
塑性区连通之后,锚定板在土体中的位置将不能保持局部稳定
状态。以锚定板在土体中能够保持局部稳定状态的最大抗拔力
作为极限稳定抗拔力。
在现场试验时是以位移速率作
为判断“稳定”或“丧失稳定”的 界限。一般规定当变位速率降至 30min不超过0.1mm时即作为稳定。 当某一级拉力施加3h后仍不能达到 上述稳定标准,即认为丧失稳定。 其前一级拉力则为极限稳定抗拔力。
第七章 锚定板挡土墙
第一节 概 述 第二节 土压力计算 第三节 锚定板抗拔力计算 第四节 构件设计 第五节 结构稳定性分析
第一节 锚定板挡土墙概述
锚定板挡土结构是一种适用于填方的轻型支挡结构。 可以用作挡土墙、桥台、港口护岸工程。 锚定板结构是我国铁路部门首创的一种新型支挡结构

锚杆挡土墙施工工艺

锚杆挡土墙施工工艺

3-4 锚杆挡土墙施工工艺3-4-1 工艺概述适宜于岩石路堑和石料缺乏、地基不良以及挖基工作量大的地段,锚杆挡土墙是铁路基建工程一种轻型支挡形式,施工方便,工艺简易,施工速度快。

一、锚杆挡土墙的结构形式1. 锚杆挡土墙由立柱、挡板和钢锚杆三部分组成。

锚杆挡土墙组成部分和构造要求见图3-4.1所示。

①立柱(也叫肋柱):断面采用矩形或方形。

立柱间距根据土压力而定,一般在2~4m 之间。

②锚杆:可分为单根锚杆和多根组合锚杆。

③挡板:可分为矩形挡板,槽型挡板和拱形挡板几种。

2.锚杆与柱的联结方式①螺栓联结:用螺栓及垫板联结立柱和锚杆端部,这种联结适用于直径20~30各类粗钢筋。

②焊接联结:在立柱支点处安置钢垫板,然后在穿出钢垫板的钢筋头部焊数根8~10cm 长的短钢筋头,以代替螺帽;也可以穿过立柱和钢垫板的钢筋弯钩,以代替螺帽。

③自锚联结:在立柱支点并沿锚杆钢筋通过的位置预留一个楔形孔道,待锚杆与立柱安装就位后,用高强度混凝土填充楔形孔与钢筋周围的孔隙,形成握固锚杆的自锚头。

3.当挡土墙较高时,应布置成两级或多级挡土墙。

每级之间设1.5~2m 宽的平台,自上而下逐级施工,避免边坡坍塌。

每级挡墙不宜过高,一般为5~6m 。

为便于立柱及挡板的安装,以竖直墙背为多。

墙后应回填砂卵石等渗水材料,由下部泄水孔排入边沟内。

二、锚固有效长度计算路堑锚杆挡墙可分为岩质地段和土质地段两种。

(1)岩质地段锚杆L=σs/4u ·d L=(K-σs )/·d 式中 σs ——锚杆的极限抗拉强度(MPa )u ——砂浆对钢筋的平均握固力,一般u=2.5~4.0MPa; d ——锚杆直径(cm );K ——安全系数。

按上式应考虑岩石由于裂隙和节理的切割而有松动的可能,安全系数取1.05~1.1。

(2)土质地段锚杆(包括风化岩石、页岩、泥岩、半岩质类的地段)L=K ·T 1/τ·D(C+K 0·r ·h ·tg ρ)式中 K ——安全系数;T 1——极限拉力(N );D ——锚杆钻孔直径(cm ); C ——锚固区土层的黏聚力; ρ——土的摩擦角;r ——土层的容重量(Kn/m 2) h ——锚固段以上地层覆盖厚度;下墙排水护板肋柱上墙挡土板锚杆图3-4.1 锚杆挡土墙构造示意图K——锚固段的孔壁土压系数。

深基坑工程3-土层锚杆

深基坑工程3-土层锚杆

• 联结桩脚C点与锚固体中 心点O,假设直线CO就 是深层滑裂线;再过O点 向上作垂直线交地面与D。 这样,可能出现倾覆的 整个土体就是楔体BCOD。 • 土楔上的作用力包括: 土楔自重和地面超载G, 挡土桩的支撑力Ea (主动 土压力的反力),OD面 图4-14 Kranz假设的倾覆楔体 上的主动土压力E1 ,CO 面上的总反力Q,以及锚 杆的拉力R。
• 锚杆支护在我国也是首先用于地铁隧道的,80年代初 开始用于高层建筑基坑支护。土层锚杆以普通压力灌 浆的居多,也有二次灌浆及高压灌浆的,受拉杆件 (锚筋)有粗钢筋、高强度钢丝束、钢绞线等,层数 从一层发展到了四层,并已制定了多个行业规范。目 前土层锚杆的应用已相当普遍,并且都为预应力锚杆。 • 当然,任何技术的发展都是永恒的。锚杆技术的工艺 材料、施工机具和理论研究等还在不断发展之中。
• 土楔体处于平衡状态,上 述五个力组成闭合的力多 边形,如图4-15,以此可 以求得锚固体所能承受的 最大拉力Rmax,或它的水平 分力Rhmax。 • 需要注意的是,在E.Kranz 分析方法中,认为实际桩 墙与土体之间的摩擦角和 假想垂直破裂面OD上的摩 擦角都是。实际情况如何 需要我们去进一步研究。
4.3.2 锚杆的极限承载能力
• 锚杆极限承载力的确定是锚杆支护设计的重要内容。 • 普通灌浆锚杆(注浆压力0.3~0.5MPa)的极限承载能 力(抗拔力)可以用下式确定: Nu = LmπDτ (4-2)
式中 Nu — 锚杆极限承载能力(轴力); Lm — 锚固段长度; D — 锚杆孔径(或锚固体直径); τ — 土的抗剪强度。 • 显然:锚杆的极限承载力是锚固体的直径、长度及土 的抗剪强度的函数。
4.6 锚杆整体稳定计算
4.6.1 整体破坏模式

第六章_挡土墙设计要求

第六章_挡土墙设计要求

4、通过墙踵,假拟若干个破裂面,其中使主动土压值最大的 破裂面为最危险破裂面.dE/ds=0 求得破裂面的位置和主动土 压力值。
5、假设土压力沿墙高呈直线分布土压力作用在墙高的下三分 点处(土楔上无荷载作用时)与墙背线夹角为 (二)库仑理论适用范围: 1、概念简单明了,适用范围广。 可以解算各种墙背情况。 不同墙后填料表面形状和荷载作用情况下的主动土压力。 2、适用于砂性土,计算主动土压力与实际情况较接近。 粘性土、平面代曲面,误差较大,影响因数多,缺乏实 践经验。 3、库仑理论适用于刚性挡土墙。柱板式,锚杆式和锚定板式 柔性挡土墙需作假设。
三、挡土墙的荷载的计算方法:
1、挡土墙的荷载
2、挡土墙的计算原则 按“分项安全系数极限状态”进行。
承载能力极限状态 (1)整个或一部分挡土墙作为刚体,失去平衡
(2)构件成连接部分强度破坏或过度塑性变形
(3)变为机动体系或局部失去平衡 出现任一即认为达到正常使用极限状态: (1)、影响正常使用或外观变形 (2)、影响正常使用或耐久性局部破坏(包括裂缝) (3)、影响正常使用的其它特点状态
当路肩墙和路堤墙墙高数量相近,基础情况相似时,优 选路肩墙。(可收缩坡脚)。 2、挡土墙的纵向布置 内容: 1)确定挡土墙的起迄点和墙长,与路基或其它结构 物的衔接方式。 2)按地基及地形情况进行分段。确定伸缩缝与沉降 缝的位置。 3)布置各段挡土墙的基础。墙趾地面有纵坡时,基 底易作成不大于5%的纵坡,地基为岩石时,可做成台阶。 4)布置泄水孔的位置,包括数量、间隔和尺寸。 3、挡土墙的横向布置 选择在墙高最大处,墙身断面或基础形式变异处。确 定墙身端面,基础形式和埋置深度,布置排水设计,并 绘制挡土墙横断面图。 4、平面布置
3)基底的法向反力N及摩擦力T

挡土墙计算

挡土墙计算

引言:挡土墙是一种用于抵抗土体滑动和侧向压力的结构工程。

它广泛应用于道路、铁路、堤坝和建筑物等工程领域,其作用是保持土体的稳定性,防止土方坍塌或滑动,从而确保工程的安全和稳定。

本文将详细介绍挡土墙的计算方法,包括挡土墙的设计原理、荷载计算、稳定性分析和结构设计等。

概述:正文内容:一、荷载计算1.1持力荷载:1.2偶力荷载:1.3水荷载:1.4暂载和附加荷载:1.5地震荷载:二、稳定性分析2.1滑移稳定性:2.2倾覆稳定性:2.3声度稳定性:2.4山体稳定性:2.5基础稳定性:三、构件计算3.1墙体厚度:3.2墙体高度:3.3墙体倾角:3.4模型选择:3.5抗滑抗倾力计算:四、变形计算4.1墙体变形:4.2地基变形:4.3算例分析:4.4墙体倾斜:4.5变形控制:五、结构设计5.1构件选用:5.2墙体布置:5.3墙体连接:5.4基础设计:5.5结构施工:总结:挡土墙的计算是确保工程安全和稳定的重要环节。

荷载计算、稳定性分析、构件计算、变形计算和结构设计是挡土墙计算的核心内容。

荷载计算包括持力荷载、偶力荷载、水荷载、暂载和附加荷载以及地震荷载等。

稳定性分析涉及滑移稳定性、倾覆稳定性、声度稳定性、山体稳定性和基础稳定性等。

构件计算需要考虑墙体厚度、墙体高度、墙体倾角、模型选择和抗滑抗倾力计算。

变形计算涉及墙体和地基的变形及变形控制。

结构设计包括构件选用、墙体布置、墙体连接、基础设计和结构施工等方面。

只有综合考虑了这些因素,才能确保挡土墙的稳定性和安全性。

锚杆挡土墙.ppt

锚杆挡土墙.ppt

A 夹具抗拉
与软岩间界面粘结强度
分别计算
P DL
式中,P为锚杆的极限承载力;τ为地层与注浆体界面 上的粘结强度;D为钻孔直径;L为锚固段长度。
永久性锚杆?
锚杆的承载力 锚固体与岩土间界面粘结强度
建筑边坡工程技术规范 GB 50330-2002
式中La——锚固段长度(m); D——锚固体直径(m); frb——地层与锚固体粘结强度特征值(kPa),应通过试 验确定,当无试验资料时可按表7.2.3-1和表7.2.3-2取 值; ε1——锚固体与地层粘结工作条件系数,对永久性锚杆 取1.00对临时性锚杆取1.33。
磨擦型锚杆
• 缝管锚杆 • 水胀锚杆 • —— 适用于软弱破碎、塑性流变围岩及
受爆破震动影响的初期支护
中空锚杆
• 普通中空锚杆
• 自钻式中空锚杆
• 胀壳型中空锚杆

——适用于严重破碎成孔困难的
复杂地层
砂浆锚杆
压力型锚索简介
压力分散型锚杆示意图如图所示。压力型锚杆杆体采用
全长自由滑动的无粘结预应力钢绞线,钢绞线底端连接
• 岩质边坡:
ehk

Ehk 0.9H
• 土质边坡:
ehk

Ehk 0.875H
岩质边坡土压力 分布图
土质边 坡土压 土压力分布例子
力分布图
(单位:m)
锚杆承载力计算
锚杆的承载力 锚固体与岩土界面粘结强度
在目前的单根锚杆设计中, 一般假设粘 结应力沿锚固段全长均匀分布,极限承载力的 计算式如下:
集中型锚固段的长度
锚杆的承载力 锚固体与岩土间界面粘结强度
岩土锚杆技术规程CECS 22-2005
岩土锚杆技术规程CECS 22-2005

挡土墙计算方法

挡土墙计算方法

挡土墙计算方法挡土墙的形式多种多样,按结构特点可分为:重力式、衡重式、轻型式、半重力式、钢悬臂式、扶壁式、柱板式、锚杆式、锚定板式及垛式等类型。

当墙高<5时,采用重力式挡土墙,可以发挥其形式简单,施工方便的优势。

所以这里只介绍应用最为广泛的重力式挡土墙的设计计算方法。

一:基础资料1. 填料内摩擦角。

当缺乏试验数据时,填料的内摩擦角可参照表一选用。

表一:填料内摩擦角ψ3. 墙背摩擦角δ(外摩擦角)填土与墙背间的摩擦角δ应根据墙背的粗糙程度及排水条件确定。

对于浆砌片石墙体、排水条件良好,均可采用δ=ψ/2。

1)按DL5077-1997〈水工建筑物荷载设计规范〉及SL265-2001〈水闸设计规范〉⎪⎪⎩⎪⎪⎨⎧-=-=-=-=ϕδϕδϕδϕδ)(时:墙背与填土不可能滑动)(时:墙背很粗糙,排水良好)(:墙背粗糙,排水良好时)(:墙背平滑,排水不良时0.167.067.05.05.033.033.00 从经济合理的角度考虑,对于浆砌石挡土墙,应要求施工时尽量保持墙后粗糙,可采用δ值等于或略小于ϕ值。

ξ:填土表面倾斜角;θ:挡土墙墙背倾斜角;ϕ:填土的内摩擦角。

` 4. 基底摩擦系数基底摩擦系数μ应依据基底粗糙程度、排水条件和土质确定。

5. 地基容许承载力地基容许承载力可按照《公路设计手册·路基》及有关设计规范规定选取。

6. 建筑材料的容重根据有关设计规范规定选取。

7. 砌体的容许应力和设计强度 根据有关设计规范规定选取。

8. 砼的容许应力和设计强度 根据有关设计规范规定选取。

二:计算挡土墙设计的经济合理,关键是正确地计算土压力,确定土压力的大小、方向与分布。

土压力计算是一个十分复杂的问题,它涉及墙身、填土与地基三者之间的共同作用。

计算土压力的理论和方法很多。

由于库伦理论概念清析,计算简单,适用范围较广,可适用不同墙背坡度和粗糙度、不同墙后填土表面形状和荷载作用情况下的主动土压力计算,且一般情况下计算结果均能满足工程要求,因此库伦理论和公式是目前应用最广的土压力计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XXXX工程锚杆挡土墙计算分析报告XXXX设计院XXXX年XXX月目录第一章概述 (1)第二章锚杆挡土墙计算理论 (1)第三章锚杆挡土墙计算 (1)第一章概述锚杆挡土墙是由钢筋混凝土墙面和钢锚杆组成的支挡建筑物,它是靠锚杆锚固在稳定地层内,能承受水平拉力来维持墙的平衡,因此地基承载力一般不受控制,从而能克服不良地基的困难。

在高边坡的情况下,且可采用自上而下逐级开挖和施工的办法,可以避免边坡坍塌,有利于施工安全。

锚杆使用灌浆锚杆,采用钻机钻孔,毛孔直径一般为100~150mm,锚杆材料为HRB335钢筋和由7根钢丝构成φ12.7mm 的预应力钢绞线。

锚杆钢筋以一根或数根钢筋组成;锚杆锚索以一束或数束钢绞线组成。

锚杆插入锚孔内后再灌注水泥砂浆。

灌浆锚杆亦可用于土层,但由于土层与锚杆间的握固能力较差,尚需要加压灌浆或内部扩孔的方法以提高其抗拔能力。

锚杆挡土墙的墙面,一般用肋柱和挡土板组成,其结构布置应根据工点的地形和地质条件、墙高及施工条件等因素,考虑挡土墙是否分级和每级挡土墙的高度来决定。

当布置为两级或两级以上时,级间可留1~2米的平台,如图1。

肋柱的间距应考虑工地的起吊能力及锚杆的抗拔能力等因素,一般可选用2.0~3.5米。

每根肋柱根据其高度可布置多根锚杆。

锚杆的位置应尽可能使肋柱所受弯矩均匀分布。

肋柱视为支承于锚杆(或支承于锚杆和地基)的简支梁或连续梁。

肋柱的底端视地基的强度及埋置深度,一般设计时假定为自由或铰支端,如基础埋置较深且为坚硬的岩石时,也可以作为固定端。

当底端固定时,应考虑地基对肋柱基础的固着作用而产生的负弯矩。

图 1第二章 锚杆挡土墙计算理论锚杆挡土墙计算的主要内容有:肋柱、锚杆和挡土板的内力计算;肋柱底端的支承应力检算;肋柱、挡土板、锚杆和锚头的设计等。

a) 肋柱和锚杆的内力计算假定肋柱与锚杆联结处为一铰支点,把肋柱视为简支梁或连续梁。

锚杆为轴心受拉构件。

i. 当肋柱仅有两根锚杆,且底端为自由端时,可假定按两端悬臂的简支梁计算,如图2所示。

图 2 假定肋柱为简支梁的计算草图(1)肋柱的支点反力23)(l l Z P R A -= A b R P R -=式中 P —作用于每根肋柱上的土压力的合力L q q P H )(210+=;δσcos 00l q =;δσcos l q H H =;0σ、H σ—锚杆挡土墙墙顶及底端的单位土压力;δ—墙背摩擦角;l —肋柱间距;L —肋柱全长,αcos H L =; α—肋柱竖向倾角。

Z —土压力合力的作用点至肋柱底端的长度,HH q q q q L Z ++⋅=0023 (2)肋柱的弯矩210210)(6121l q q l q M A A ---= 3323)(3121l q q l q M B H B B ---= 令x 为任意截面至肋柱顶的长度,则3020162)(x Lq q x q l x R M H A AB ----= 取02200=---=x Lq q x q R dx dM H A AB 由上式求得x 值,代入AB M 即得AB 间m ax M 值。

(3)肋柱剪力)(2101A A q q l Q +-=上上下A A A Q R Q +=)(2021B B A q q l l R Q ++-=上上下B B B Q R Q +=ii. 视肋柱为连续梁(包括底端固定)时的内力计算(1)求肋柱的支点弯矩在求支点弯矩时,可采用弯矩分配法进行计算。

(2)解肋柱力矩、剪力、反力的一般公式算得连续梁(即肋柱)各支点弯矩之后,即可用静力平衡的条件算出各截面的弯矩、剪力以及各支点的反力。

截取连续梁的第n 及n+1跨作为简支梁,如图3所示,其支点反力为:nn n n n l M M A A 10--+= n n n n n l M M B B -+=-10在距左支点x 处的截面内,其弯矩及剪力为:110--+-+=n n n n x x M x l M M M M nn n n x l M M Q Q 10--+=图 3 连续梁某一节点的内力计算在以上各式中,00B n n A 、及00Q M x x 、系指由于测向土压力所引起的简支梁支点反力及任意截面的弯矩、剪力。

连续梁第n 支点反力等于来自该支点左右两端的剪力之差:左右n n n Q R Q -=右n Q 等于1+n l 跨度内的左端反力1+n A 。

左n Q 等于n l 跨度内的右端反力n B 的负值。

故第n 个支点反力又可用下式表示:nn n n n n n n n n n l M M B l M M A B A R -++-+=+=-++++1011011 iii. 锚杆的内力计算截取肋柱某一支点n ,如图4所示。

图 4 锚杆拉力与支点反力的关系由连续梁求得n 支点反力为n R 。

令锚杆轴向力为n N ,则)cos(αβ-=n n R N α—肋柱的竖向倾角;β—锚杆对水平向的倾角。

如βα=,则n n R N =。

b) 肋柱底端支承应力检算i. 基底应力检算(1) 支点反力沿平行于肋柱的分力为:)(αβ-∑tg R n(2) 肋柱自重abH W a γ=式中 a 、b ——肋柱的宽度及厚度H ——墙高γ——钢筋混凝土容重。

(3) 作用在肋柱基底上的诸力之和为:abH tg R N n γαβ+-∑=∑)(`(4) 基底应力为:][`σσ≤∑=abN 式中 ][σ——基底的容许应力。

ii. 基脚侧向应力为简化计算,令铰支端的反力0R 作用点在基脚埋深h 的中心。

肋柱底端视为铰支时,故要求:][cos 0V a R h σα≥][][σσV V K =V K ——视地基的坚硬程度取0.5~1.0。

c) 挡土板内力计算挡土板是以肋柱为支座的简支梁,其计算跨度lp 为挡土板两支座中心的距离,如图5。

其荷载(q )取挡土板所在位置土压力的平均值,即)(21```σσ+=h q 式中 ```σσ、——为挡土板高h 上下二边缘垂直挡土板方向的单位土压力。

跨中最大弯矩2max 81p ql M =,支座处的剪力p ql Q 21=。

图 5 挡土板弯矩剪力图 d )肋柱、挡土板的配筋计算肋柱、挡土板是受弯构件,在各项内力(弯矩、剪力)求得后,即可进行配筋计算。

d)灌注锚杆的设计一般锚杆设计的主要内容可分为锚杆截面、锚杆长度和锚头(联结)设计三部分。

锚杆截面设计、即选用钢筋的规格及所需的截面、并根据钢筋束(或钢丝束)的断面形状以及灌注管的尺寸决定钻孔直径。

为提高锚杆的承载能力,可选用低合金钢或高强度钢丝。

锚杆长度设计包括有效毛固段和非锚固段两部分,有效锚固段的长度应根据抗拔的需要而决定,非锚固段的长度按建筑物与稳定地层之间的实际距离而定。

锚杆一般是向下倾斜或接近水平方向的(一般沿水平向下倾斜不大于45°角)。

锚头设计包括选择锚杆和肋柱的连接形式以及肋柱的局部承载压计算。

1、锚杆的钢筋计算锚杆按轴心受拉杆件设计。

要求水泥沙浆(或混凝土)的裂缝不超过容许宽度,以防钢筋锈蚀。

2、锚杆的有效锚固长度计算在岩层中的灌注锚杆,由于岩层对于锚孔砂浆的单位摩阻力大于砂浆对钢筋的单位握固力,因而锚固长度取决于砂浆的握固力,为了保证砂浆有良好的握固力,一般采用不低于M30的水泥砂浆。

为了使锚杆的锚固力大于钢筋的抗拉强度,要求u dL d K a g ππσ≤)4(2即 ud K L g a 4σ≥式中 a L ——最小锚固长度; g σ——钢筋的极限抗拉强度; u ——钢筋与砂浆的粘结力; K ——安全系数,一般取2~3; d ——钢筋直径。

在半岩质或土质地层内,锚杆的抗拔能力取决于砂浆与周围地层接触面上的抗剪强度,故锚杆的有效锚固长度为:Kna D KN L τπ≥式中 K ——安全系数,一般取2~3; D ——锚孔直径;K τ——锚固段砂浆与地层间的抗剪强度,此值应与地层内的抗剪强度比较,取用小值;n N ——锚杆承受的拉力。

为了安全和稳定性的要求,锚杆的有效锚固长度除应满足公式计算的要求外,在岩层中,一般不应小于4米,在半岩质和土质地层中,一般不应小于5米。

第三章锚杆挡土墙计算(一)已知条件1、锚杆挡土墙断面如图6所示,墙身分为上、下两级,肋柱就地灌注。

间距l=3.0m。

锚杆的位置根据肋柱支点及跨中弯矩大致相等的原则布置,倾角β=15°。

2、墙厚的土体为侏罗系沙溪庙组,岩性为砂质与砂质泥岩不等厚互层,岩石单轴极限饱和抗压强度分别为28~40Mpa和5~8MPa。

采用γ=25KN/m3,0ϕ。

=553、构件按极限状态法(参照钢筋混凝土结构设计规范TJ2005)进行计算。

图6 计算图式(二)土压力计算墙背土压力按库伦公式计算,取αδ=,))()(()(2122i tg tg ctg tg tg i tg ++++-=+αψψψψθi -=ϕψ1 i --+=αδϕψ2)25.1/1(arctg i =)25.0(arctg =α求解:035.26=θ上墙:作用在肋柱单位长度上的土压力为: 在底端m KN l H q /63.5515==上上λγ 下墙:下墙的土压力按延长墙背法计算,从下墙墙背作延长线与墙背土坡延长线相交于一点,这点即为虚设的墙顶,距平台的垂直高度为12m ,见图6。

m KN l q /78.43120=⨯=γλ m KN l q /50.982715=⨯=γλ(三)肋柱的内力计算1、上墙为两端悬臂的连续梁,如图7所示,通过有限元软件计算,求得肋柱各点的弯矩和剪力,绘制弯矩图和剪力图,见图8,计算结果见表1。

弯矩单位:KN.M ,剪力单位:KN 。

1.004.004.004.002.00图 7计算结果 表 1图82、下墙视为底端简支的连续梁,如图9所示,通过有限元软件计算,求得肋柱各点的弯矩和剪力,绘制弯矩图和剪力图,见图10,计算结果见表2。

弯矩单位:KN.M,剪力单位:KN。

2.03.003.003.001.003.00图 9下墙肋柱支点计算结果 表 2图10(四)、肋柱的配筋计算1、已知条件(1)材料:C30混泥土:轴心抗压强度设计值fc=14.3N/mm2;HRB335钢筋:抗拉强度设计值fy=300N/mm2,直径为20mm。

(2)构件强度设计安全系数:K=1.4(基本安全系数)×1.2(附加安全系数)=1.7。

(3)肋柱的截面尺寸为:h ×b=500mm ×400mm 。

2、肋柱按最大弯矩Mmax =63.2KN.m ,最大剪力Qmax =123KN 配筋。

(1) 最大弯矩处截面的配筋计算 截面有效高度等于 mm h 474265000=-=0836.04744003.141044.1072620max =⨯⨯⨯==bh f KM as c 0874.00639.0211211=⨯--=--=as ξ 207903003.14*474*400*0874.0/mm f f bh A y c s ===ξ选用4φ20,22279012564/20**4mm mm A g φ==π(可)(2)检算裂缝宽度2260/1224/20447487.0102.6387.0mm N A h M s k sk=⨯⨯⨯⨯⨯==πσ 510500*4005.05.0=⨯==bh A te01256.01012565===te s te A A ρ 2020*142042=⨯⨯=eqd 2474.012201256.001.265.01.165.01.1=⨯⨯-=-=skte tkf σρψmmd c E teeqsskcr 07.0)01256.02008.0509.1(102.01222474.01.2)08.09.1(5max =⨯+⨯⨯⨯⨯⨯=+=ραψαωmm 2.0≤(3)检算截面的抗剪强度KN Q 2091237.1max =⨯=4185.14004740π==b h max 082.6776778204744003.140.125.025.0Q KN N bh f c c φ==⨯⨯⨯⨯=β满足受剪截面的要求。

相关文档
最新文档