设计2000立方米热风炉的炼铁课程设计

合集下载

炼铁课程设计说明书

炼铁课程设计说明书

炼铁厂工程设计说明书姓名:***班级:冶103学号:*********目录一、设计要求 (4)1.1、设计任务:设计一座年产300万吨制钢生铁的高炉 (4)1.2、设计内容 (4)(2)炉体设计 (4)1.3、时间、地点安排 (4)二、工艺计算 (4)2.1 配料计算 (4)2.1.1原料成分计算 (4)2.1.2参数设定 (5)2.1.3预定生铁成分 (6)2.1.4矿石需求量的计算 (7)2.1.5生铁成分校核 (7)2.1.6渣量及炉渣成分计算 (8)2.1.7炉渣性能及脱硫能力的计算 (9)2.2物料平衡计算 (9)2.2.1风量计算 (9)2.2.2炉顶煤气成分及数量计算 (10)2.2.3编制物料平衡表 (11)2.3热平衡计算 (12)2.3.1热收入 (12)2.3.2热支出 (14)2.3.3编制热量平衡表 (17)三、炉体设计 (17)3.1设定有关参数 (18)3.2高炉内型设计 (18)3.3高炉内衬 (21)3.3.1炉底设计 (21)3.3.2炉缸设计 (22)3.3.3炉腹设计 (22)3.3.4炉腰设计 (23)3.3.5炉身设计 (23)3.3.6炉喉设计 (23)3.4 炉体冷却 (23)3.4.1冷却目的 (23)3.4.2炉底冷却形式选择 (23)3.4.3冷却设备选择 (24)3.4.4冷却水耗量的计算 (25)3.4.5供水水压 (26)3.5高炉承重结构设计 (27)一、设计要求1.1、设计任务:设计一座年产300万吨制钢生铁的高炉1.2、设计内容:(1)工艺计算(包括配料计算、物料平衡计算和热平衡计算);(2)炉体设计(包括炉型设计、炉衬和冷却系统设计等);(3)CAD绘制高炉本体图一张;(4)编写设计说明书一份。

1.3、时间安排:(1)12月30日~1月8日:工艺计算和炉体设计;地点:教三604(2)元月9日~元月17日:CAD绘图、编写设计说明书;二、工艺计算2.1 配料计算2.1.1原料成分计算表2-1 原料成分原始资料表2-2 校核后原料成分资料表2-3焦炭成分表2-4煤粉成分2.1.2参数设定焦比:350kg/t 煤比:150kg/t (燃料比:350+150=500kg/t) 铁水温度:1500℃炉渣温度:1550℃炉尘吹出量:18Kg/t炉顶煤气温度:200℃鼓风温度:1200℃入炉烧结矿温度:80℃直接还原度:0.40 炉渣碱度:1.2鼓风湿度:1.5% 综合冶炼强度:1.0t/d·m3[Si]:0.40% [S]:0.03%×10-3+0.04[Mn]-0.35[P]-0.03[Si]-0.54[S] C=1.30+2.57t铁水2.1.3预定生铁成分表2-5元素在生铁、炉渣与煤气中的分配率假设冶炼一吨生铁烧结矿的用量为1450kg,天然矿的用量是150kg。

2000m3高炉开炉方案

2000m3高炉开炉方案

2000m3⾼炉开炉⽅案2000m3⾼炉开炉⽅案根据⾼炉⼯程进度和公司安排,定于#年#⽉#⽇点⽕开炉,为实现安全顺利开炉和迅速达产,特制定开炉⽅案如下:⼀、成⽴开炉领导⼩组开炉前的准备⼯作⼆、开炉前的准备⼯作1、对上料系统、炉顶设备、送风系统、煤⽓系统、煤粉喷吹系统和炉前设备等进⾏全⾯、认真的检查,并进⾏12⼩时以上的联动试车,运转正常,确保⽆误后⽅可开炉。

2、蒸汽和通重⼒除尘器氮⽓管路试汽(⽓),炉前⽤压缩空⽓、氧⽓和烘烤⽤途的焦炉煤⽓管道正常要求管路畅通⽆泄漏,汽(⽓)压>0.4MPa。

3、⾼炉各种计算机监控系统、仪表、仪器安装校对完毕,运转正常。

4、上料电⼦秤安装校对完毕,准确可靠。

5、制作临时炭包,铺好并烤⼲所有渣铁沟。

6、准备好备⽤的风⼝⼩套、吹管各⼀套(风⼝∮120mm×450mm 20个,∮110mm×450mm 8个),风⼝⼆套6个。

备件科准备,7#⾼炉领取。

提前烧好热风炉,要求风温⼤于900℃,为⾼炉点⽕做好准备。

7、准备烧铁⼝氧⽓40瓶,氧⽓管1000kg,氧⽓瓶周转使⽤,氧⽓带和卡⼦2套,同时联系管道氧⽓正常供⽓。

8、准备好⽑渣罐(⼤罐)4个和铁罐6个第⼀次铁使⽤。

准备加长钻杆20根。

9、准备好开炉需要的⽆⽔炮泥和有⽔泡泥,⾼炉提供⽤量和规格。

10、准备⽊柴350m3,∮200~300mm,L=500~800mm左右,不能使⽤带油的腐烂⽊柴。

开炉前3天供应科负责送到炉台。

11、准备好开炉料,料仓上料前认真检查每个料仓,把杂物彻底清理⼲净。

(1)烧结矿⽤400m2直过料,保证所有烧结矿仓满仓(装料前24⼩时以内⼊仓,不能提前)(2)使⽤5#、6#焦炉⽣产的焦炭,提前1~2天⼊仓装满。

(3)硅⽯满仓,灰⽯ 100t,萤⽯80t。

(灰⽯不能多上,另上临时通知)开炉料要有分析并报给技术科。

12、风⼝⾯积确定开炉⽤20个∮120×450mm和8个∮110×450mm的风⼝,前期⽤西铁⼝出铁,均匀堵8个风⼝(3#、6#、10#、13#、15#、19#、23#、27#),开20个风⼝送风。

炼铁课程设计指导书

炼铁课程设计指导书

炼铁课程设计指导书冶金工程专业1.炼铁课程设计目的炼铁课程设计属于钢铁冶金专业的实践性教学环节,以高炉炼铁工艺计算为主要内容。

学生通过查阅相关资料,在指导教师的具体指导下,合理选择确定工艺参数,通过配料、物料平衡、热平衡、焦比等的工艺计算,可提高工程实践及独立分析解决问题的能力,培养创新意识,同时加深对炼铁原理、炼铁工艺等专业知识的理解,提高专业水平。

2.炼铁课程设计内容及要求需完成六部分计算内容:原料成分的整理计算;配料计算;物料平衡计算;热平衡计算(I)——全炉热平衡的计算;热平衡计算(Ⅱ)——高温区热平衡的计算;炼铁焦比的计算3.炼铁工艺计算过程提要(1)关于原料成分的整理计算原料条件有两种:宝山地区原料条件和包头地区原料条件,包括矿石及熔剂成分表、焦炭成分表和煤粉成分表,原料条件及含铁原料(球团矿、烧结矿、生矿)配比由指导教师给定。

进行原料成分的补齐及平衡计算,首先要了解那树人教授编著的《炼铁工艺计算》第一章“原料成分的整理计算”的第一节、第二节内容。

首先要明确物料中各种元素的存在形态,比如S元素,在人造富矿(烧结矿和球团矿)中,以FeS形态存在,而在天然矿中多以FeS2存在;再如Mn元素,在人造富矿(烧结矿和球团矿)中,以MnO形态存在,而在天然矿中以MnO2形态存在;对于包头矿中的特殊元素F,以CaF2形式存在,应折算成CaF2,因化学分析时将CaF2中的Ca看作CaO中的Ca了,在这需将多算的那部分CaO扣除:CaO=CaO’-1.473F2(式中CaO’为化学分析出的CaO含量)。

进行原料成分的补齐计算,可参照《炼铁工艺计算》第4页“矿石成分的补齐计算”例题。

补齐后的矿石成分之和往往不等于100%,如果用这样的成分作后面的工艺计算,会产生较大的误差,故需将其平衡成100%,将矿石成分进行平衡计算可参照第5页的“矿石各组分均衡扩大或缩小”法。

(2)关于配料计算作配料计算,首先要了解《炼铁工艺计算》第二章“配料计算”的第一节、第二节、第三节内容。

炼铁厂课程设计.

炼铁厂课程设计.

炼铁厂课程设计姓名:XXX学号:XXX班级:冶XXX指导老师:XXX目录1物料计算...................................................................................................................................... - 3 -1.1原燃料成分的整理............................................................................................................ - 3 -1.2主要技术经济指标............................................................................................................ - 4 -1.3预定钢水成分.................................................................................................................... - 5 -1.4矿石配比的确定................................................................................................................ - 5 -1.5铁矿石的用量.................................................................................................................... - 5 -1.6渣量和炉渣成分的计算.................................................................................................... - 5 -1.7生铁成分的校对................................................................................................................ - 6 -2.1物料平衡................................................................................................................................... - 6 -2.1.1 风量的计算.................................................................................................................. - 6 -2.1.2煤气量的计算................................................................................................................. - 7 -2.1.3 物料平衡表.................................................................................................................. - 9 - 2.2 热平衡.................................................................................................................................... - 10 - 2.2.1 热收入的计算................................................................................................................... - 10 -2.2.2 热支出的计算....................................................................................................................- 11 -3.高炉本体设计............................................................................................................................ - 15 -3.1高炉总容积的确定.......................................................................................................... - 15 -3.2 炉型设计......................................................................................................................... - 15 - 4炉型图........................................................................................................................................ - 20 -1物料计算1.1原燃料成分的整理表1-1 原料成分表表1-2炉尘成分(%)TFe Mn P S Fe 2O 3 FeO MnO CaO 41.35 0.23 0.025 0.46 42.61 14.63 0.30 7.94 MgO SiO 2 Al 2O 3 P 2O 5 FeS ∑ 1.905.551.250.060.23C=24.82100表1-3 焦碳成分 固定碳 灰分挥发分全硫CO 2CO CH 4 H 2 N 2 87.3310.900.270.270.040.240.360.59表1-4灰分成分SiO 2 Al 2O 3 CaO MgO Fe 2O 3 P 2O 5 FeO 5.653.840.170.100.670.0090.46表1-5煤粉成分CHONS灰分:(10.50%)原料 TFeFeO Fe 2O 3 SiO 2 Al 2O 3 CaO MgO MnO P 2O 5 S/2 Mn P S ∑ 烧结 58.149 8.052 74.123 4.634 1.864 8.909 2.013 0.219 0.179 0.006 0.169 0.079 0.012 100 球团 65.686 0.817 92.928 4.086 1.124 0.613 0.204 0.153 0.072 0.0025 0.123 0.032 0.005 100 块矿64.701 1.555 90.702 4.7251.646 0.772 0.3150.2240.051 0.01 0.1730.0220.022100混合矿 59.840 6.404 78.369 4.579 1.749 6.937 1.592 0.212 0.1510.0060.164 0.067 0.012 100SiO2Al2O3CaO MgO Fe2O381.21 5.25 2.15 0.44 0.44 6.42 3.08 0.22 0.26 0.53表1-6主要元素的分配系数项目Fe Mn P S生铁0.998 0.5 1.0 0.0炉渣0.002 0.5 0.0 0.0煤气0.0 0.0 0.0 0.051.2主要技术经济指标焦比350Kg/t煤比160Kg/t℃燃料比490Kg/t铁水温度1500℃炉渣温度1520℃炉尘吹出量18Kg/t炉顶煤气温度2000C鼓风温度12000C入炉烧结温度800C直接还原进度0.4炉渣碱度 1.17鼓风湿度 1.2%综合冶炼强度 1.1 t/m3·dSi 0.39S 0.035、参考数据1)焦比:320~360kg/t;2)煤比:150~180 kg/t(燃料比:490-510kg/t);3)铁水温度:1490~1510℃;4)炉渣温度:1520~1550℃;5)炉尘吹出量:15~20 kg/t ; 6)炉顶煤气温度:180~220℃; 7)鼓风温度:1150~1200℃;8)入炉烧结矿温度:60~80℃; 9)直接还原度:0.40~0.42; 10)炉渣碱度:1.15~1.2;11)鼓风湿度:1.2~1.8%; 12)综合冶炼强度:1.0~1.1 t/d.m3;13)[Si]:0.35~0.40 % ;[S]:0.03% 。

2000m3高炉炉型设计及物料平衡计算

2000m3高炉炉型设计及物料平衡计算

2000m3高炉炉型设计及物料平衡计算摘要:本设计要求建2000m3炼铁高炉。

设计主要内容包括高炉炉型设计计算及高炉本体立剖图,同时对所设计高炉的特点进行简述。

设计高炉有效容积为2000m3,高径比取,高炉利用系数取值为,据此设计高炉炉型。

设计本着优质、高产、低耗和对环境污染小的宗旨,为日产生铁4000t的高炉提供高炉内型设计。

并对2000m3炼铁高炉进行物料平衡计算,物料平衡计算是炼铁工艺计算中重要组成部分,它是在配料计算的基础上进行的。

整个物料平衡计算有配料计算和物料衡算两部分构成。

在配料计算过程中,进行了原料和燃料的全分析,渣铁成分及含量分析;在物料衡算过程中计算了包括鼓风量、煤气量以及物料收支总量等项内容的计算,并制作物料平衡表。

关键词:高炉发展;高炉炉型;炉型计算;物料平衡配料计算物料衡算物料平衡表绪论最近二十年来,日本和欧盟区的在役高炉座数由1990年的65座和92座下降到28座和58座,下降幅度分别为%和37%,但是高炉的平均容积却分别由1558m3和1690m3上升到4157m3和2063m3,上升幅度为%和22%,这基本代表了国外高炉大型化的发展状况。

高冶炼强度、高富氧喷煤比和长寿命化作为大型高炉操作的主要优势受到大家越来越高的关注和青睐,但是高炉大型化作为一项系统工程,它在立足自身条件的基础上仍须匹配的炼钢、烧结和炼焦能力。

我国近年推出的《钢铁产业发展政策》中规定高炉炉容在300m3以下归并为淘汰落后产能项目,且仍存在扩大小高炉容积的淘汰范围的趋势。

同时国内钢铁产业的快速发展均加速了世界和我国高炉大型化的发展进程。

由于大型化高炉具备的单位投资省、效能高和成本低等特点,从而有效地增强了其竞争力。

20世纪高炉容积增长非常快。

20世纪初,高炉炉缸直径4-5m,年产铁水约100000吨左右,原料主要是块矿和焦炭。

20世纪末,最大高炉的炉缸直径达到14-15m,年产铁水300-400万吨。

1号2000m3高炉球式热风炉设计特点及应用

1号2000m3高炉球式热风炉设计特点及应用

1 'O0 古炉球式热风炉设计特点及应用 -2 0m3  ̄
闭立钢 摘 张海峰 要 :介 绍柳 钢 1 0 m  ̄ 号20 0 3 _ , E高炉 配套 的球 式热风 炉 的设 计 与改进 、应 用效果 ,以及 相应 的干
法 除尘、 热风 炉操作优 化 措施 。
关 键词 :球 式 热风 炉 ;20 0 0 m 高炉 ;干 法除尘 ;球 床 ;操 作制度
耐火 球 直径 :7 m 5 m,6 m 0 m,5 m 0 m; 球床 全 高度 :95 .m; 耐火 球重 量 :117 ; 7t 总蓄热 面 积 :4 6 m ; 35 4
大容积高炉 。本文 阐述了柳钢 l 0 m高炉球 号2O0 3
式 热 风炉 的设 计 特 点 ,通 过 实 施优 化 操 作 制度 , 采 用PD I 控制 自动烧 炉 ,使 高炉 风 温 长 期稳 定 在 I10 8 ℃左右 ,为 高炉 强化 冶炼 提供 了有 力保 证 。
De e o v l pm e nd Ap i a i n o . nta plc H tSt v
BILi a g -g n ZHANG i・e Ha—fng
Ab t a t T e d s n a d i r v me t a d t e a p i ai n e f c f l g n ' No 1 0 m B . sr c : h e i n mp o e n n h p l t f t o i a g s g c o e u . 2 0 0 F P b l o tv a n r d c d t e c re p n ig d y d s n o t v p r t n o t z t n me s r s e b e h tso e w s i to u e . h o r s o d n r u ta d h tso e o e ai p i ai a u e o mi o wa n r d c d si t u e o Ke yW o d : P b l Ho S o e 2 0 m。 r s e b e t tv ; O 0 BE; Dr Du t o lc in P b l B d O e a i g S se y s C l t ; e b e e ; p r t y t m e o n

柳钢2000m 3高炉开炉实践


时 l ,h 司
图 l 热风炉 烘炉 曲线
32 高炉 烘炉 .
( N 等高熔点化合物 ,沉积在炉缸炉底 ,对 C、 ) 其形成保护层 ;铁 口部位堆积一定量枕木 ,有 高炉烘炉采用热风炉热风烘炉。7 字型装好 助于加快铁 口部位焦炭燃烧 ;风 口带圆周方向 1 根烘炉导管 ( 3 间隔 1 个风 口 1 )保 证炉底 斜架长枕木保护 ,避免下料时将风 口打坏 ,另 根 和炉缸重点烘烤 ,出口为喇叭状向下 ,距炉底 有助于风 口带燃烧 。铁 口采用特制富氧枪 ,保 08 . m;铁 口各 安 装 1 煤 气 导 出管 。烘 炉 时 间 证铁口通道畅通及加速炉缸焦炭的燃烧。 根
Ab t a t Ne . B a tF r a e o 0 0 s r c w No 1 l s u n c f2 0 m i i g n d p s c r mi u o o i e h oo y n L u a g a o t e a c c p c mp s e tc n lg , t a d d me t o hsi ae q ime t,s c s f u e o o u t n p b l t v s c o s b a tm— n o si s p it t d e u p n s u h a o r n w tp c mb si e b e so e , r s e m e c c o p r t r a u i gu i e . T e b o i p r t n e p r n e f a t u n c r n r d c d man y e au e me s r n t t h lw- n o e ai x ei c so s F r a e we e i t u e i l. n . o e Bl o Ke o d B a tF r a e Dr i g O t Blw- n Io ma i g T r e O tu aiai n yW r s l s u c n yn u o i rn kn ag t up t Re l t z o

炼铁课程方案设计书

课程设计说明书设计题目:设计一座年产制钢生铁(L08)220万吨的高炉1物料计算1.1原燃料成分的整理表一原燃料成分的整理表二燃料工业分析及挥发份成分煤粉成分(%)表三元素分配1.2主要技术经济指标1.3预定钢水成分表三预定铁水成分1.4矿石配比的确定烧结矿:球团矿:混合矿=76:10:141.5铁矿石的用量设生产每吨生铁所用的复合矿和石灰石分别为 X , Y 单位 : Kg 根据铁平衡0.5808X+400×0.1217×0.0505+150×0.1496×0.0572=945.16+945.16×0.003/0.997+20×0.4851碱度平衡2.128604.515.18%2048.06%14.96%15046.43%12.17%4000.0124Y 0.0547X 4.68%203.28%14.96%1506.24%12.17%4000.5346Y 0.0746X =⨯-⨯-⨯⨯+⨯⨯++⨯-⨯⨯+⨯⨯++解得:X=1642.5kg Y=14.08kg烧结矿:1248.3kg 球团矿:164.25kg 澳矿:229.95kg1.6渣量和炉渣成分的计算1、S原燃料带入的S :1642.5×0.0005+400×0.005+150×0.0058=3.69Kg 进入生铁的S : 0.28 Kg进入煤气的S : 3.69×0.05=0.18Kg 进入炉尘的S :20 ×0.0012=0.024 Kg炉渣中的S : 3.69-0.28-0.18-0.024=3.21 Kg 2、FeO 66.35672997.0003.016.945=⨯⨯Kg 3、MnO 2.675.05571)0145.0205.16420027.0(=⨯⨯⨯-⨯ Kg 4、SiO 2 碱度平衡中的分母 kg 75.110 5、CaO 碱度平衡中的分子 kg 89.1326、MgO 1642.5×0.023+14.08×0.0052-20×0.0143+400×0.1217×0.0099+150×0.1496×0.016=38.5 Kg7、Al 2O 3 1642.5×0.0178+14.08×0.0132+400×0.1217×0.3969+150×0.1496×0.3971-200.0143=57.37 Kg表四 炉渣成分表1.7生铁成分的校对[S]=0.028% [Si]=0.45% [Fe]=94.516% [Mn]=2.67×55/71×100/1000=0.21%[P]=(1642.5×0.0011-20×0.011)×62/142×100/1000=0.07% [C]=100-0.028-0.45-94.516-0.07-0.21=4.72%2.1物料平衡2.1.1 风量的计算直接还原度rd=0.45 鼓风湿度f=1.2% C 燃=C 焦+C 煤-C 直-C 生铁-C CH4-C 尘进入高炉C 总=400×0.8563+150×0.7461=454.44Kg C CH4=0.7%C 总=454.44×0.007=3.18 Kg C 生铁=1000×4.72%=47.2Kg C直=24/28×4.5+12/55×2.1+0.7×60/62+945.16×0.45×12/56=96.14C 尘=20×0.0162×12/44=0.09 KgC 燃=454.44-3.18-47.2-96.14-0.09=307.83 Kg W O2=0.21×(1-0.012)+0.5×0.012=0.2135 V O2=307.83×22.4/24=287.31 m 3煤粉提供的氧气=150×0.0415×22.4/32=4.38 m 3组元 CaO SiO 2 Al 2O 3 MgO MnO FeO S/2 ∑ kg 132.89 110.75 57.37 38.5 2.67 3.66 1.61 347.45 %38.2531.8816.5111.080.771.050.46100鼓风V O2=287.31-4.38=282.93 m3风量V风=282.93/0.2135=1325.2 m3鼓风重量=1325.2×1.28=1696.26 Kg2.1.2煤气量的计算1、CH4⑴炭生成的CH4=3.18×22.4/12=5.94 m3⑵焦炭挥发的CH4=400×0.0033×22.4/16=1.85 m3⑶生成总量=5.94+1.85=7.79 m32、H2⑴鼓风带入H2=1325.2×0.012=15.9 m3⑵煤粉带入H2=150×0.0446×22.4/2=74.93 m3⑶焦炭带入H2=400×0.0006×22.4/2=2.69 m3⑷还原消耗H2=(15.9+74.93+2.69)×0.4=37.41 m3⑸生成CH4H2=5.94×2=11.88 m3⑹炉顶H2=(15.9+74.93+2.69)×0.6-11.88=44.23 m33、CO2Fe2O3+CO→FeO+CO2CO2=(1642.5×0.7295) ×22.4/160=167.75 m3FeO+H2→Fe+HO2 rH2=72×44.23×56/(22.4×945.16×72)解得:rH2=0.123 FeO+CO→Fe+CO2CO2=945.16×(1-0.45-0.123) ×22.4/56=161.43 m3石灰石分解CO2=14.08×0.4346×22.4/44=3.12 m3焦炭带入CO2=400×0.0033×22.4/44=0.67 m3进入炉顶CO2=167.75+161.43+3.12+0.67=332.97 m34、CO⑴燃烧生成CO=307.83×22.4/12=574.62 m3⑵直接还原CO=96.14×22.4/12=179.46 m3⑶焦炭挥发份CO=400×0.0033×22.4/28=1.06 m3⑷间接还原CO=167.75+161.43=329.18 m3⑸炉顶CO=574.62+179.46+1.06-329.18=425.96 m35、N2⑴鼓风N2=1325.2×(1-0.012)×0.79=1034.35 m3⑵焦炭带入N2=400×0.004×22.4/28=1.28 m3⑶煤粉带入N2=150×0.0043×22.4/28=0.52 m3⑷炉顶带入N2=1034.35+1.28+0.52=1036.15 m36、炉顶煤气成分表五煤气成分表CH4CO N2H2CO2总体积m³7.79 425.96 1036.15 44.23 332.97 1847.1% 0.26 23.06 56.09 2.39 18.02 100⑴煤气密度=(0.0026×16+0.2306×28+0.5609×28+0.0239×2+0.1802×44)/22.4=1.35 Kg/m3⑵煤气重量=1847.1×1.35=2493.59 Kg⑶氢还原生成H2O=37.41×18/22.4=30.06 Kg2.1.3 物料平衡表表六物料平衡表收入项支出项名称数量 kg 百分比 % 名称数量 kg 百分比 % 复合矿1642.5 42.08 铁水1000 25.7石灰石14.08 0.36 炉尘20 0.51 焦炭400 10.25 水分30.06 0.77煤粉150 3.84 煤气(干)2493.59 64.08鼓风1696.26 43.47 炉渣347.45 8.94总计3902.84 100 总计3891.1 100绝对误差=3902.84-3891.1=11.74误差校核:11.74/3902.84.61=0. 29%<0.3%,符合要求。

2000m3高炉炉型设计

1
2000m3 高炉炉型设计说明书
摘要:本设计要求建 2000m3 炼铁高炉。设计主要内容包括高炉炉型设计计算及高炉本体立 剖图,同时对所设计高炉的特点进行简述。设计高炉有效容积为 2000m3,高径比取 2.3,高 炉利用系数取值为 2.0,据此设计高炉炉型。设计本着优质、高产、低耗和对环境污染小的 宗旨,为日产生铁 4000t 的高炉提供高炉内型设计。设计说明书对 2000m3 高炉内型进行了 的详细的计算,并结合国内外相同炉容高炉的先进生产操作经验及相关的数据,力求设计的 高炉达到高度机械化、自动化和大型化,达到最佳的生产效益。 关键词:高炉发展;高炉炉型;炉型计算;
3
②炉缸 高炉炉型下部的圆筒部分为炉缸,炉缸的上、中、下部位分别没有 风口、渣口与铁口,现代大型高炉多不设渣口。炉缸下部容积盛装液态渣铁,上 部空间为风口的燃烧带。
(1)炉缸直径 炉缸直径过大和过小都直接影响高炉生产。直径过大将导 致炉腹角过大,边缘气流过分发展,中心气流不活跃而引起炉缸堆积,同时加速 对炉衬的侵蚀;炉缸直径过小限制焦炭的燃烧.影响产员的提高。炉缸截面积应 保证一定数量的焦炭和喷吹燃料的燃烧,炉缸截面燃烧强度是高炉冶炼的一个重 要指标,它是指每 1h 每 1m3 炉缸截面积所烧侥的焦炭的数量,一般为 1.00~ 1.25t/(m 2·h)。炉缸截面燃烧强度的选择,应与风机能力和原燃料条件相适应, 风机能力大、原料透气性好、燃料可燃性好的燃烧强度可选大些,否则选低值。
(1)无型阶段-又称生吹法。在土坡挖洞,四周砌行块,以木炭冶炼,这 是原始的方法。
(2)大腰阶段-炉腰尺寸过大的炉型。出于当工业不发达,高炉冶炼以人 力、蓄力、风力、水力鼓风,鼓风能力很弱,为了保证整个炉缸截面获得高温, 炉缸直径很小,冶炼以木炭或无烟煤为燃料,机械强度很低,为了避免高炉下部 燃料被压碎,从而影响料柱透气性,故有效高度很低;为了人工装料方便并能够 将炉料装到炉喉中心.炉喉直径也很小,而大的炉腰直径减小了烟气流速度,延 长了烟气在炉内停留时间,起到焖住炉内热量的作用。因此,炉缸和炉喉直径小, 有效高度低,而炉腰直径很大。这类高炉生产率很低,一座 28m3 高炉日产量只 有 1.5 t 左右。

毕业设计2000立方米高炉设计

第一章绪论 (4)1概述 (4)1.2 高炉生产主要经济技术指标 (4)1.3高炉冶炼现状及其发展 (5)1.4本设计采用的新技术。

(5)第二章高炉车间设计 (5)2.1厂址的选择 (5)2.2 高炉炼铁车间平面布置应遵循的原则 (6)2.3 车间布置形式 (6)第三章高炉本体设计 (7)3.1高炉数目及总容积的确定 (7)3.2 炉型设计 (7)3.3参数 (9)3.4炉衬设计 (9)3.4.1炉底炉缸的炉衬设计 (9)3.4.2炉腹,炉腰和炉身下部的炉衬设计 (10)3.4.3炉身上部和炉喉砌筑 (10)3.5高炉冷却 (10)3.5.1高炉冷却设备的作用及冷却介质 (10)3.5.2高炉冷却设备设计 (11)3.5.3冷却设备工作制度 (11)3.6高炉钢结构及高炉基础 (11)3.6.1高炉钢结构 (11)3.6.2高炉基础 (12)第4章高炉车间原料系统 (12)4.1贮矿槽及贮焦槽的设计 (13)4.1.1贮矿槽的设计 (13)4.1.2副矿槽 (13)4.1.3贮焦槽设计 (13)4.1.4矿槽的结构形式 (13)4.2给料器,槽下筛分与称量设计 (14)4.2.1给料器 (14)4.2.2槽下筛分 (14)4.2.3槽下称量 (14)4.3胶带机的设计 (15)4.4炉顶装料设备 (15)4.5探料装置 (16)第5章高炉送风系统 (16)5.1高炉鼓风机 (16)5.1.1高炉冶炼对鼓风机的要求: (16)15.1.2鼓风机出口风量的计算 (17)5.1.3鼓风机出口风压的计算 (17)5.1.4鼓风机的选择 (17)5.2高炉热风炉设计 (18)5.2.1热风炉基本结构形式 (18)5.3燃烧器及阀门 (20)5.3.1燃烧器 (20)5.3.2热风炉阀门 (20)5.4提高风温途径 (20)5.5余热回收装置 (20)第6章高炉喷煤系统 (20)6.1煤粉的制备 (21)6.1.1原煤的贮存 (21)6.1.2煤的干燥 (21)6.1.3磨煤机 (21)6.1.4粗粉分离器 (22)6.1.5旋风分离器 (22)6.1.6锁气器 (22)6.1.7布袋收集器 (22)6.2煤粉喷吹系统 (22)6.2.1喷吹设备的确定 (23)6.3安全措施 (23)6.3.1煤粉爆炸条件 (24)6.3.2采取的安全措施 (24)第7章高炉煤气除尘系统 (24)7.1概述 (24)7.1.1高炉煤气除尘的目的 (24)7.1.2评价煤气除尘装置的主要指标 (24)7.2高炉煤气除尘设备 (25)7.2.1荒煤气管道 (25)7.3重力除尘器 (26)7.3.1重力除尘器原理: (26)7.3.2主要尺寸—圆筒部分直径和高度 (26)7.4文氏管 (26)7.4.1文氏管除尘原理: (26)7.4.2半精细除尘设计 (26)7.4.3精细除尘设计 (27)7.5布袋除尘 (27)7.6煤气除尘系统附属设备 (27)7.6.1煤气遮断阀 (27)7.6.2煤气放散阀 (27)7.6.3煤气切断阀 (27)7.6.4调压阀组 (28)7.7炉顶余压发电 (28)2第8章渣铁处理系统 (28)8.1 概述 (28)8.2 风口平台和出铁场 (28)8.2.1 风口平台 (28)8.2.2 出铁场 (29)8.3 渣铁沟和撇渣器 (29)8.3.1 主铁沟 (29)8.3.2 撇渣器 (29)8.3.3 支铁沟和支沟 (29)8.3.4 摆动流嘴 (30)8.4 炉前主要设备 (30)8.4.1 开铁口机 (30)8.4.2 堵铁口泥炮 (30)8.4.4 堵渣口机 (30)8.5 铁水处理设备 (30)8.5.1 铁水罐车 (31)8.5.2 铸铁机 (31)8.6 炉渣处理 (31)3第一章绪论1概述高炉冶炼是获得生铁的主要手段,它以铁矿石(天然富矿,烧结矿,球团矿)为原料,焦碳,煤粉,重油,天然气等为燃料和还原剂,以石灰石等为溶剂,在高炉内通过燃料燃烧,氧化物中铁元素的还原以及非氧化物造渣等一系列复杂的物理化学过程,获得生铁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附件一湖南工业大学课程设计资料袋冶金工程学院(系、部)2010 ~ 2011 学年第 2 学期课程名称炼铁课程设计指导教师刘竹林职称教授学生姓名夏雨专业班级冶金091 学号01234567题目设计向2000立方米高炉提供热风的热风炉成绩起止日期2011 年5月16 日~2011 年5 月29 日目录清单附件二湖南工业大学课程设计任务书2010 —2011 学年第 2学期冶金工程学院(系、部)冶金技术专业冶金091 班级课程名称:炼铁课程设计设计题目:设计向2000立方米高炉提供热风的热风炉完成期限:自2011 年 5 月16 日至2011 年 5 月29 日共 2 周指导教师(签字):年月日系(教研室)主任(签字):年月日(课程设计名称)设计说明书向2000立方米高炉提供热风的热风炉起止日期:2011 年 5 月16 日至2011 年5 月29 日学生姓名夏雨班级冶金091学号01234567成绩指导教师(签字)冶金工程学院(部)2011年月日湖南工业大学冶金工程学院课程设计答辩评价表湖南工业大学冶金工程学院课程设计评阅表前言从冶炼角度看,风是高炉冶炼的重要原料之一。

高炉发展史充分说明改进鼓风对高炉的发展有着极其重要的作用。

风也是强化高炉冶炼的最积极因素,就现在已采用的新技术来看,风的含义不仅与鼓风机有关,还和热风温度、喷吹、富氧、脱湿等技术的应用即风的质量有关。

热风炉为主的热风系统是综合鼓风系统的重要内容。

1828年美国开始使用热风。

实践和理论均证明:热风不仅是降焦、增产和提高生铁质量的重要措施之一,也为提高所喷吹燃料的燃烧率,为改善喷吹效果和加大喷吹量提供有利条件。

因此国内外高炉均致力于提高风温。

热风炉系统的重要作用就是加热冷风,降低焦比,提高生产效益。

现代高炉普遍采用蓄热式热风炉,由于热烧(即加热格子砖)和送风(即冷却格子砖)是交替工作的,为保证向高炉连续供风,故每座高炉至少配置两座热风炉,一般配置三座,大型高炉配置四座为宜。

目前蓄热式热风炉有三种基本结构形式,即内热式热风炉(含传统型和改进型)、外燃式热风炉、顶燃式热风炉。

本设计指导书所设计的类型是内热式热风炉。

在设计过程中也可广泛地查阅各种参考资料,设计目前国内外比较先进的改进型和外燃式热风炉。

本次设计的主要目的是培养学生理论联系实际,分析问题、解决问题的能力。

本热风炉设计的重点在了解热工计算,其热工计算主要包括三个方面的内容,即燃烧计算,简易计算,砖量计算。

设计过程中尽可能应用较成熟技术,充分考虑合理性和先进性的要求。

目录1热风炉本体结构设计 (2)1.1炉基的设计 (3)1.2炉壳的设计 (3)1.3炉墙的设计 (4)1.4拱顶的设计 (5)1.5蓄热室的设计 (6)1.6燃烧室的设计 (6)1.7炉箅子与支柱的设计 (7)2燃烧器选择与设计 (8)2.1金属燃烧器 (8)2.2陶瓷燃烧器 (8)3格子砖的选择 (10)4管道与阀门的选择设计 (15)4.1管道 (15)4.2阀门 (16)5热风炉用耐火材料 (18)5.1硅砖 (18)5.2高铝砖 (18)5.3粘土砖 (18)5.4隔热砖 (18)5.5不定形材料 (19)6热风炉的热工计算 (22)6.1燃烧计算 (22)6.2简易计算 (29)6.3砖量计算 (31)7参考文献 (32)1热风炉本体结构设计热风炉的原理是借助煤气燃烧将热风炉格子砖烧热,然后再将冷风通入格子砖。

冷风被加热并通过热风管道送往高炉。

目前蓄热式热风炉有三种基本结构形式,即内燃式热风炉、外燃式热风炉、顶燃式热风炉。

传统内燃式热风炉(如图1-1所示)包括燃烧室和蓄热室两大部分,并由炉基、炉底、炉衬、炉箅子、支柱等构成。

热风炉主要尺寸(全高和外径)决定于高炉有效容积、冶炼强度要求的风温。

图1-1内燃式热风炉1-煤气管道;2-煤气阀;3-燃烧器;4-燃烧室;5-热风管道;6-热风阀;7-大墙;8-炉壳;9-拱顶;10-蓄热室;11-隔墙;12-热风管;13-冷风阀;14-烟道管;15-支柱;16-炉箅子我国实际的热风炉尺寸见表1-1。

表1-1我国设计的热风炉尺寸表1.1炉基的设计由于整个热风炉重量很大又经常震动,且荷重将随高炉炉容的扩大和风温的提高而增加,故对炉基要求严格。

地基的耐压力不小于2.0~2.5kg/cm2,为防止热风炉产生不均匀下沉而是管道变形或撕裂,将三座热风炉基础做成一个整体,高出地面200~400mm,以防水浸基础由A3F或16Mn钢筋和325号水泥浇灌成钢筋混泥土结构。

土壤承载力不足时,需打桩加固。

生产实践表明,不均匀下沉未超过允许值时,可将热风炉基础又做成单体分离形式,如武钢、鞍钢两座大型高炉,克节省大量钢材。

1.2炉壳的设计热风炉的炉壳由8~20mm厚的钢板焊成。

对一般部位可取:δ=1.4D(mm)。

开孔多的部位可取:δ=1.7D(mm), δ为钢板厚度(mm),D为炉壳内径(m),钢板厚度主要根据炉壳直径、内压、外壳温度、外部负荷而定。

炉壳下部是圆柱体,顶部为半球体。

为确保密封炉壳连同封板焊成一个不漏气的整体。

由于炉内风压较高,加上炉壳耐火砖的膨胀,使热风炉底部承受到很大的压力,为防止底板向上抬起,热风炉炉壳用地脚螺栓固定在基础上,同时炉底封板与基础之间进行压力灌浆,保证板下密实,也可以把地脚螺栓改成锚固板,并在底封板上灌上混泥土。

将炉壳固定使其不变形,或把平底封板加工成蝶形底,使热风炉成为一个手内压的气罐,减弱操作应力的影响。

在施工过程中对焊接必须进行X光探伤检验,要求炉壳椭圆度不大于直径的千分之二,整个中心线的倾斜(炉顶中心与炉底中心差)不大于30mm。

为了保证炉壳和炉内砌砖的密封性,在砌砖前后要试漏、试压,检查砌砖前试验压力为0.3~1.5kg/cm2,砌砖后工作压力的1.5倍试压,每小时压力降<=1.5%.蓄热室、燃烧室的拱顶和连接管处采用(韧性耐龟裂钢板)含锰、铝的镇静钢。

高温区炉壳外侧用0.5mm铝板包覆,铝板与炉壳间填充后3mm保温毡,使炉壳温度控制在150~250℃,防止内表面结露,也防止突然降温(暴雨)使炉壳急冷而产生应力。

炉壳内表面涂硅氨基甲酸乙醋树脂保护层,防止NO X与炉壳接触。

1.3炉墙的设计炉墙一般由耐火层、绝热层和隔热层组成。

作用是保护炉壳和减少热损失。

各层厚度应根据炉壳温度和所用耐火材料的界面温度确定。

如图1-2所示。

因炉墙温度自上而下逐渐升高、所以不同高度耐火层和绝热层厚度不同。

一般下部区域温度低、荷重大,宜选用较厚耐火砖,减薄的绝热层,所留膨胀缝可小。

上部高温区,荷重小,但为了减少热损失,应增加绝热层的厚度,耐火层可较薄。

炉墙通常由345mm耐火砖砌筑,一般风温水平的热风炉和炉壳接触的是65mm 后的硅藻土砖绝热层,绝热层和耐火砖之间是60~145mm后的干水渣填料层,用以缓冲膨胀。

两层绝热砖之间填以50~90mm后的干水渣或硅藻土或石粉。

隔墙上部由于燃烧室位置在热风炉内的一侧,靠格子砖的隔墙为两面加热,而靠热风炉大墙一侧的隔墙为一面加热。

因此,前者的温度比后者高,产生的高温蠕变大,而耐火材料不适应高温时,就使燃烧室向格子砖方向倾斜,并进而使上部格砖严重错孔。

a -多用与燃烧室侧b -多用于蓄热室侧图1-2 炉墙的组成1.4拱顶的设计拱顶是连接燃烧室和蓄热室的砌筑结构,它长期处于高温状态工作,应选用优质的内火材料,并保证砌体结构的稳定性,燃烧时高温烟气流均匀地进入蓄热室。

内燃式热风炉拱顶有半球形,锥型,抛物线形和悬链形,目前国内传统内燃式热风炉一般多采用半球形。

它可使炉壳免受侧向推力,拱顶荷重通过拱脚正压在墙上,以保持结构稳定性。

应加强热风炉上部与拱顶的绝热保护,鉴于拱顶支在大墙上,大墙受热膨胀,受压易于破坏,故将拱顶与大墙分开,支在环形梁上,使拱顶砌成独立的支撑结构。

采用抛物线形拱顶和悬链形拱顶稳定性较好,悬链形拱顶的气流也较均匀,但结构较复杂。

图1—3 热风炉锥形拱顶结构在拱顶内衬的内火砖材质,决定拱顶温度水平,为了减少结构质量和提高拱顶的稳定性,应尽量缩小拱顶的直径,并适当减薄砌体的厚度。

拱顶砌体厚度减薄后,其内外温度差降低,热应力减少,可相当延长拱顶寿命。

中型热风炉砖厚以300~500mm为宜,大型高炉热风炉砖厚以350~400mm为宜。

但是砖型过多制造麻烦,过少则施工困难。

国内部颁标准以有了3组9种拱顶定型砖适用于砌筑内部半径为2100~3900mm的半球形拱顶。

拱顶的下部第一层砖为拱脚砖。

常用钢圈加固,使炉壳少受水平力作用。

在拱顶的正中为特制的炉顶盖砖,上有安装测拱顶温度的电热偶孔。

为了提高热效率,减少热损失好保护炉壳,拱顶的隔热是十分重要的。

高风温热风炉拱顶隔热砖的厚度为400~500mm,一般由2~3层隔热砖组成。

表1-2 热风炉拱顶耐火衬材质与炉顶温度的关系材质粘土砖高铝砖硅砖标号RN-38 RL-48 L2-65 DG-95炉顶温度1250 1350 1450 15501.5蓄热室的设计蓄热室是热风炉进行热交换的主体,它由格子砖砌筑而成。

砖的表面就是蓄热室的加热面,格子砖块作为贮热介质,所以蓄热室的工作既要传热快又要贮热多,而且要有尽可能高的温度。

格子砖的特性对热风炉的蓄热能力,换热能力以及热效率有直接影响。

蓄热室断面积,一般是从选定的热风炉直径扣除燃烧室断面积而得到的,它应该用填满格子砖的通道面积中的气流速度来核算。

为了保证传热速度,要求气流在紊流状态流动,即雷诺数大于2300。

由于气体在高温下粘度增大,而且格孔小不易引起紊流,故现代高风温热风炉要求有较高的流速以满足传热的要求,在生产中常有这样的情况,蓄热面积不少,顶温很高,但风温上不去,烟道温度却上升很快,其原因主要是流速低造成的。

蓄热室工作的好坏,风温和传热效率如何,与格孔大小、形状、砖量等也有很大的关系。

但在燃烧室两侧蓄热室狭窄处存在死角,烟气在蓄热室断面上分布不均,相对的减少了蓄热室面积。

眼镜形燃烧室结构稳定性差,热应力小,当量直径小,不利于煤气燃烧:但蓄热室死角小,烟气流分布均匀,有效面积利用较好。

复合型兼备上述两种形状的优点,设计上采用多。

1.6燃烧室的设计燃烧室是煤气燃烧的空间,位于颅内的一侧,它的断面形状有三种,即圆形、眼睛形、复合型。

圆形燃烧室形状简单,稳定性好,热应力小,当量直径大有利于煤气燃烧:1-燃烧室 2-蓄热室图1-4 燃烧室断面形状燃烧室隔墙一般由两层互不错缝的高铝砖砌筑,大型高炉用一层345mm和一层230mm高铝砖砌成,中小高炉用两层230mm高铝砖砌成。

两层之间彼此无约束,在受热膨胀时互不受阻碍。

燃烧室比蓄热室要高出300~~500mm,目的是使烟气流在蓄热室内分布均匀一些。

相关文档
最新文档