(数控机床设计)4.2刀具半径补偿
数控加工的补偿方法

数控加工的补偿方法在20世纪六七十年代的数控加工中没有补偿的概念,所以编程人员不得不围绕刀具的理论路线和实际路线的相对关系来进行编程,这样容易产生错误。
补偿的概念出现以后,大大地提高了编程的工作效率。
在数控加工中有刀具半径补偿、刀具长度补偿和夹具补偿。
这三种补偿方法基本上能解决在加工中因刀具形状而产生的轨迹问题。
1、刀具半径补偿在数控机床进行轮廓加工时,由于刀具有一定的半径(如铣刀半径),因此在加工时,刀具中心的运动轨迹必须偏离实际零件轮廓一个刀具半径值,否则实际需要的尺寸将与加工出的零件尺寸相差一个刀具半径值或一个刀具直径值。
此外,在零件加工时,有时还需要考虑加工余量和刀具磨损等因素的影响。
有了刀具半径补偿后,在编程时就可以不过多考虑刀具直径的大小了。
刀具半径补偿一般只用于铣刀类刀具,当铣刀在内轮廓加工时,刀具中心向零件内偏离一个刀具半径值;在外轮廓加工时,刀具中心向零件外偏离一个刀具半径值。
当数控机床具备刀具半径补偿功能时,数控编程只需按工件轮廓进行,然后再加上刀具半径补偿值,此值可以在机床上设定。
程序中通常使用G41/G42指令来执行,其中G41为刀具半径左补偿,G42为刀具半径右补偿。
根据ISO标准,沿刀具前进方向看去,当刀具中心轨迹位于零件轮廓右边时,称为刀具半径右补偿;反之,称为刀具半径左补偿。
在使用G41、G42进行半径补偿时,应采取如下步骤:设置刀具半径补偿值;让刀具移动来使补偿有效(此时不能切削工件);正确地取消半径补偿(此时也不能切削工件)。
当然要注意的是,在切削完成且刀具补偿结束时,一定要用G40使补偿无效。
G40的使用同样遇到和使补偿有效相同的问题,一定要等刀具完全切削完毕并安全地退出工件后,才能执行G40命令来取消补偿。
2、刀具长度补偿根据加工情况,有时不仅需要对刀具半径进行补偿,还要对刀具长度进行补偿。
程序员在编程的时候,首先要指定零件的编程中心,才能建立工件编程的坐标系,而此坐标系只是一个工件坐标系,零点一般在工件上。
数控车床刀尖半径补偿的原理和应用介绍

数控车床刀尖半径补偿的原理和应用分析(2011—11-07 19:39:41)分类:工程技术标签:杂谈摘要:分析了数控车削中因刀尖圆弧产生误差的原因,介绍了纠正误差的思路及半径补偿的工作原理,明确了半径补偿的概念。
结合实际,系统介绍了刀具半径补偿的应用方法,及使用中的注意事项。
Abstract: Analyzed the error's reason in numerical control turning because of arc of cutting tool ,introduced the correction error’s mentality and the radius compensation principle of work,cleared about the radius compensation concept. Union reality,introduced the cutting tool radius compensation application method, and in use matters needing attention..关键词:数控车床;假想刀尖;半径补偿;程序轮廓;原理;应用;Key word:CNC lathe;immaginary cutting tool point; radius compensation; procedure outline;principle; using1、前言在数控车床的学习中,刀尖半径补偿功能,一直是一个难点。
一方面,由于它的理论复杂,应用条件严格,让一些人感觉无从下手;另一方面,由于常用的台阶轴类的加工,通过几何补偿也能达到精度要求,它的特点不能有效体现,使一些人对它不够重视.事实上,在现代数控系统中,刀尖半径补偿,对于提高工件综合加工精度具有非常重要的作用,是一个必须熟练掌握的功能。
2、刀尖圆弧半径补偿的原理(1)半径补偿的原因在学习刀尖圆弧的概念前,我们认为刀片是尖锐的,并把刀尖看作一个点,刀具之所以能够实现复杂轮廓的加工,就是因为刀尖能够严格沿着编程的轨迹进行切削。
数控机床刀具补偿功能

刀具补偿功能(实际生产步骤)在数控编程过程中,一般不考虑刀具的长度与刀尖圆弧半径,而只考虑刀位点与编程轨迹重合。
但在实际加工过程中,由于刀尖圆弧半径与刀具长度各不相同,在加工中会产生很大的误差。
因此,实际加工时必须通过刀具补偿指令,使数控机床根据实际使用的刀具尺寸,自动调节各坐标轴的移动量,确保实际加工轮廓和编程轨迹完全一致。
数控机床根据刀具实际尺寸,自动改变机床坐标轴或刀具刀位点位置,使实际加工轮廓和编程轨迹完全一致的功能,称为刀具补偿功能。
1.刀具半径补偿:(G40,G41,G42)G40:取消半径刀补G41:刀具左补偿(沿着刀具前进的方向看,刀具在工件的左边)G42:刀具右补偿(·································右边)数控机床加工时以刀具中心轴的坐标进行走刀,依据G41或G42使刀具中心在原来的编程轨迹的基础上伸长或缩短一个刀具半径值,即刀具中心从与编程轨迹重合过渡到与编程轨迹偏离一个刀具半径值,如图刀具补偿指令是模态指令,一旦刀具补偿建立后一直有效,直至刀具补偿撤销。
在刀具补偿进行期间,刀具中心轨迹始终偏离编程轨迹一个刀具半径值的距离。
刀具半径补偿仅在指定的2D 坐标平面内进行。
而平面由G 指令代码G17( xy平面)、G18( zx平面)、G19( yz平面)确定。
刀具半径值则由刀具号H(D)确定2.刀具长度补偿所谓刀具长度补偿,就是把工件轮廓按刀具长度在坐标轴(车床为x、z轴)上的补偿分量平移。
对于每一把刀具来说,其长度是一定的,它们在某种刀具夹座上的安装位置也是一定的。
刀具半径补偿原理及补偿规则

刀具半径补偿原理及补偿规则在加工过程中,刀具的磨损、实际刀具尺寸与编程时规定的刀具尺寸不一致以及更换刀具等原因,都会直接影响最终加工尺寸,造成误差。
为了最大限度的减少因刀具尺寸变化等原因造成的加工误差,数控系统通常都具备有刀具误差补偿功能。
通过刀具补偿功能指令,CNC系统可以根据输入补偿量或者实际的刀具尺寸,使机床自动加工出符合程序要求的零件。
1.刀具半径补偿原理(1)刀具半径补偿的概念用铣刀铣削工件的轮廓时,刀具中心的运动轨迹并不是加工工件的实际轮廓。
如图所示,加工内轮廓时,刀具中心要向工件的内侧偏移一定距离;而加工外轮廓时,同样刀具中心也要向工件的外侧偏移一定距离。
由于数控系统控制的是刀心轨迹,因此编程时要根据零件轮廓尺寸计算出刀心轨迹。
零件轮廓可能需要粗铣、半精铣和精铣三个工步,由于每个工步加工余量不同,因此它们都有相应的刀心轨迹。
另外刀具磨损后,也需要重新计算刀心轨迹,这样势必增加编程的复杂性。
为了解决这个问题,数控系统中专门设计了若干存储单元,存放各个工步的加工余量及刀具磨损量。
数控编程时,只需依照刀具半径值编写公称刀心轨迹。
加工余量和刀具磨损引起的刀心轨迹变化,由系统自动计算,进而生成数控程序。
进一步地,如果将刀具半径值也寄存在存储单元中,就可使编程工作简化成只按零件尺寸编程。
这样既简化了编程计算,又增加了程序的可读性。
刀具半径补偿原理(2)刀具半径补偿的数学处理①基本轮廓处理要根据轮廓尺寸进行刀具半径补偿,必需计算刀具中心的运动轨迹,一般数控系统的轮廓控制通常仅限于直线和圆弧。
对于直线而言,刀补后的刀具中心轨迹为平行于轮廓直线的一条直线,因此,只要计算出刀具中心轨迹的起点和终点坐标,刀具中心轨迹即可确定;对于圆弧而言,刀补后的刀具中心轨迹为与指定轮廓圆弧同心的一段圆弧,因此,圆弧的刀具半径补偿,需要计算出刀具中心轨迹圆弧的起点、终点和圆心坐标。
②尖角处理在普通的CNC装置中,所能控制的轮廓轨迹只有直线和圆弧,其连接方式有:直线与直线连接、直线与圆弧连接、圆弧与圆弧连接。
刀具半径补偿指令

刀具半径补偿指令在进行数控编程时,除了要充分考虑工件的几何轮廓外,还要考虑是否需要采用刀具半径补偿,补偿量为多少以及采用何种补偿方式。
数控机床的刀具在实际的外形加工中所走的加工路径并不是工件的外形轮廓,还包含一个补偿量。
一、补偿量包括:1、实际使用刀具的半径。
2、程序中指定的刀具半径与实际刀具半径之间的差值。
3、刀具的磨损量。
4、工件间的配合间隙。
二、刀具半径补偿指令:G41、G42、G40G41:刀具半径左补偿G42:刀具半径右补偿G40:取消补偿格式:G41/G42 X Y H ;H:刀具半径补偿号:范围H01—H32;也就是输入刀具补偿暂存器编号,补偿量就通过机床面板输入到指定的暂存器编号里,例:G41 X Y H01;刀具直径为10㎜,这时在暂存器编号“1”里补偿量就输入“5”。
1、G41:(左补偿)是指加工路径以进给方向为正方向,沿加工轮廓左侧让出一个给定的偏移量。
2、G42:(右补偿)是指加工路径以进给方向为正方向,沿加工轮廓右侧让出一个给定的偏移量。
3、G40:(取消补偿)是指关闭左右补偿的方式,刀具沿加工轮廓切削。
G40(取消补偿)G41(左补偿)G42(右补偿)切削方向G40(取消补偿)G42(右补偿)切削方向G41(左补偿)工件轮廓三、刀具半径补偿量由数控装置的刀具半径补偿功能实现。
采用这种方式进行编程时,不需要计算刀具中心运动轨迹坐标值,而只按工件的轮廓进行编程,补偿量输入到控制装置寄存器编号的数值给定,编程简单方便,大部份数控程序均采用此方法进行编制。
加工程序得到简化,可改变偏置量数据得到任意的加工余量。
即对于粗加工和精加工可用同一程序、同一刀具。
刀具半径补偿是通过指明G41或G42来实现的。
为了能够顺利实现补偿功能,要注意以下问题:1、G41、G42通常和指令连用(也就是要激活),激活刀具偏置不但可以用直线指令G01,也可以通过快速点定位指令G00。
但一般情况下G41和G42和G02、G03不能出现在同一程序段内,这样会引起报警。
数控机床:刀具半径补偿原理

第三节 刀具半径补偿原理
伸长型:矢量夹角90°≤α<180° 刀具中心轨迹长于编程轨迹的过
渡方式。
第三节 刀具半径补偿原理
插入型:矢量夹角α<90° 在两段刀具中心轨迹之间插入一段直线
的过渡方式。
缩短型:180°≤α<360° 伸长型:90°≤α<180°
插入型:α<90°
缩短型:180°≤α<360° 伸长型:90°≤α<180°
学习目标:
1 刀具半径补偿的基本概念
2 刀具半径补偿的工作原理
第三节 刀具半径补偿原理
一、刀具半径补偿的基本概念
1.为什么是刀具半径补偿? 数控机床在轮廓加工过程中,它所控制的是刀
具中心的轨迹,而用户编程时则是按零件轮廓编制的, 因而为了加工所需的零件,在进行轮廓加工时,刀具中 心必须偏移一个刀具半径值。
数控装置根据零件轮廓编制的程序和预先设定 的刀具半径参数,能实时自动生成刀具中心轨迹的功能 称为刀具半径补偿功能。
第三节 刀具半径补偿原理
2.刀具半径补偿功能的主要用途 ① 实现根据编程轨迹对刀具中心轨迹的控制。 ② 实现刀具半径误差补偿。 ③ 减少粗、精加工程序编制的工作量。
①
第三节 刀具半径补偿原理
3.刀具半径补偿的常用方法
B刀补
相邻两段轮廓的刀具中心 轨迹之间用圆弧连接。
C刀补
相邻两段轮廓的刀具中心 轨迹之间用直线连接。
第三节 刀具半径补偿原理
(1)B刀补 优点: √算法简单,容易实现 缺点: ×在外轮廓尖角加工时,由于轮廓尖角处,始终处于切削 状态,尖角加工的工艺性差。 ×在内轮廓尖角加工时,编程人员必须在零件轮廓中插入 一个半径大于刀具半径的圆弧,这样才能避免产生过切。
刀具半径补偿

通过自动计算并调整刀具中心轨迹, 可以减少人工干预,提高加工效率。
刀具半径补偿的基本原理
刀具半径补偿的实现方式
在数控加工中,通常通过数控编程软 件或控制系统中的补偿功能来实现刀 具半径补偿。
刀具半径补偿的计算方法
根据刀具半径大小和加工要求,通过 计算确定刀具中心轨迹的偏移量。
刀具半径补偿的步骤
在加工过程中,根据实际需要选择开 启或关闭刀具半径补偿,并根据需要 调整补偿参数。
在航空航天制造中,刀具半径补偿技术可 以用于控制飞机零部件和航天器零件的加 工精度,提高产品的可靠性和安全性。
04 刀具半径补偿的优点与局 限性
提高加工精度和表面质量
提高加工精度
通过补偿刀具半径,能够减小因刀具 半径而引起的加工误差,从而提高工 件的加工精度。
优化表面质量
刀具半径补偿技术能够减小刀具半径 对切削过程的影响,从而降低表面粗 糙度,提高工件表面质量。
高精度补偿技术
高精度补偿技术
采用高精度测量设备和算法,实现刀具 半径的高精度测量和补偿,提高加工零 件的表面质量和尺寸精度。
VS
精细化加工
通过高精度补偿技术,实现精细化加工, 减少加工余量和材料浪费,提高加工效率 和经济效益。
THANKS FOR WATCHING
感谢您的观看
根据刀具半径大小,在加工过程中自动计算并调整刀具中心轨迹,以保证加工 出的零件尺寸符合要求。
刀具半径补偿的重要性
提高加工精度
通过补偿刀具半径,可以减小因刀具 半径而引起的误差,提高加工精度。
提高加工效率
降低对操作人员技能要求
使用刀具半径补偿技术,可以降低对 操作人员技能水平的要求,使操作更 加简单易行。
数控机床刀补怎么算

数控机床刀补的计算方法在数控机床加工中,刀补是关键的参数之一,它能够保证加工精度和表面质量。
正确的刀补设置可以有效地提高加工效率和产品质量。
下面我们来讨论一下数控机床刀补的计算方法。
1. 刀补的基本概念刀补是指为了弥补数控机床坐标系原点与实际刀具刀尖之间的距离差,调整数控程序中的切入点,使加工精度得以提高。
通常情况下,刀补分为半径刀补和刃补两种类型。
2. 半径刀补计算方法半径刀补是指刃部在工件上下表面的投射点在工件上痕的投影点。
假设刀尺寸为D,工件轮廓为R,切入角为α,刀尖位置与轨迹间距为Y,则半径刀补计算方法如下:刀补=1/2∗(D/2−R)/sin(α)3. 刃补计算方法刃补是刃部在工件表面上的投射点与该表面在刀具中心的垂直距离,也叫C刃补。
假设切削深度为ap,工件曲率半径为R,刃部与轨迹间的距离为Y,则刃补的计算方法如下:刃补=R−√(R2−Y2)±ap其中,±ap表示刃补的正负符号取决于刀具切削进给的方向。
4. 刀补的实际应用在数控加工中,刀补是非常重要的,尤其对于高精度加工来说。
通过正确调整刀补参数,可以提高加工精度,降低刀具磨损,减少废品率。
因此,操作人员在进行数控加工时,要根据实际情况合理设置刀补参数,以确保加工质量和效率。
总的来说,数控机床刀补的计算方法是一个复杂而重要的课题。
只有深入理解刀补的概念和计算方法,才能够在实际的加工过程中更好地运用刀补技术,保证产品质量和加工效率。
希望以上内容对数控机床刀补的计算方法有所帮助,让大家更好地理解和运用刀补技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图所示,被加工圆弧的圆心坐标在坐标原点O,圆弧半径为R, 圆弧起点A,终点B,刀具半径为r。
假定上一个程序段加工结束后刀具中心为A′,其坐标已知
。那么圆弧刀具半径补偿计算的目的,就是计算出刀具中心轨迹
的 为
终点
X ,
坐标
Y
B′
则
X
b
,Yb
。 设 BB′ 在 两 个 坐 标 上 的 投 影
X b Xb X
Yb YbY
BO x B BK
B′(Xb′,Yb′) ΔY B(Xb,Yb) R
A(Xa,Ya) x
X r cos r X b
R
Y r sin r Yb
R
X b
Xb
rX b R
Y b
Yb
rY b R
B′(Xb′,Yb′) ΔY B(Xb,Yb) K ΔX
C功能刀补更为完善,这种方法能根据相邻轮廓段的信息自动处 理两个程序段刀具中心轨迹的转换,并自动在转接点处插入过渡圆 弧或直线从而避免刀具干涉和断点情况。
缓冲寄存区 BS
缓冲寄存区 BS
工作寄存区 AS
刀补缓冲区 CS
输出寄存区 OS
工作寄存区 AS
输出寄存区 OS
a)
b)
两种数控系统的工作流程
C刀补的基本设计思想
刀心轨迹
编程轨迹
G41
G42
(c)
(四) 刀具半径补偿的步骤
1 建立刀补 2 执行刀补 3 取消刀补
起始点
编程轨迹
1 建立刀补
刀具从起刀点接近 工件,在原来的程 序轨迹基础上伸长 或缩短一个刀具半 径值,即刀具中心 从与编程轨迹重合 过渡到与编程轨迹 距离一个刀具半径 值。
起始点
r 刀补建立
编程轨迹
刀具半径补偿是在译码之后进行,译码译出一段并不立即进行刀 补,译出的若是下一段,则对本段进行刀补,而正在插补加工的 是上一段。 CNC系统专门设立了刀补缓冲区CS. 刀补过程是:
Pi+1
Pi-1
Pi
r r
r r
BS 缓冲寄存器
PPii-1
CS 刀补缓冲区
Pi-1
AS 工作寄存器
OS 输出寄存器
Pi
刀补建立 起始点
刀补撤销
编程轨迹 刀补进行
(五) 左刀补和右刀补
ISO标准规定,当刀具中心轨迹在编程轨迹前进方向的左 侧时,称为左刀补,用G41表示。反之,当刀具处于轮廓 前进方向的右侧时称为右刀补,用G42表示,如图所示。 G40为取消刀具补偿指令。
B
C
A
D
B
C
A
D
a) G41 左刀补
b) G42右刀补
1 建立刀补 2 执行刀补
刀具轨迹中心
刀具补偿进行 期间,刀具中 心轨迹始终偏 离编程轨迹一 个刀具半径的 距离。
起始点
r 刀补建立
编程轨迹 刀补进行
1 建立刀补 2 执行刀补 3 取消刀补
刀具轨迹中心
刀具撤离工件, 返回原点。即刀 具中心轨迹从与 编程轨迹相距一 个刀具半径值过 渡到与编程轨迹 重合。
刀具补偿方向
(六)刀具半径补偿的常用方法
B刀补
根据本段程序的轮廓尺寸进行刀具半径补偿。 采用读一段、算一段、再走一段的控制方法。 A) B功能刀具半径补偿算法 1. 直线刀具补偿计算
对直线而言,刀具补偿后的轨迹是与原直线平行的直线,只需 要计算出刀具中心轨迹的起点和终点坐标值。
被加工直线段的起点在坐标原点,终点坐标为A。假定上一程序段加工完 后,刀具中心在O′点坐标已知。刀具半径为r,现要计算刀具右补偿后 直线段O′A′的终点坐标A′。设刀具补偿矢量AA′的投影坐标为,则
β O
r A′(Xa′,Ya′) R
A(Xa,Ya) x
B刀补示例
加工如图外部轮廓零件ABCD时,由AB直线段开始,接着
加工直线段BC,根据给出的两个程序段,按B刀补处理后 可求出相应的刀心轨迹A1B1、B2C1、 C2D1 及D2A2 。
事实上,加工完第一个程序
段,刀具中心落在B1点上,而 第二个程序段的起点为B2,两 个程序段之间出现了断点,只 有刀具中心走一个从B1至B2的 附加程序,即在两个间断点之
Pi-1
r
r
r
BS 缓冲寄存器
Pi
BS 缓冲寄存器
CS 刀补缓冲区
Pi-1
CS 刀补缓冲区
Pi
Pi
r
AS 工作寄存器
Pi-1
OS 输出寄存器
AS 工作寄存器
Pi-1
OS 输出寄存器
Pi-1
Pi-1
r r
BS 缓冲寄存器
Pi+1
BS 缓冲寄存器
CS 刀补缓冲区
PPPiii
CS 刀补缓冲区
Pi+1
AS 工作寄存器
B 算出点A.B.C.D的坐 标,按这些点编程。 人工预刀补编程
A
C
粗加工刀补半径 R r = R + d
精加工刀心轨迹
粗加工刀心轨迹 D
d 精加工余量
按轮廓ABCD编程
再加上刀补引入 和刀补取消的指令
B
C
机床自动刀补
A
D
刀补引入
刀补取消
(a)
粗铣实用刀具半径 R 刀心轨迹
R 精铣刀具及刀补半径
d
(b) 编程轨迹
X X X
Y Y Y
xOA AAK
X r sin r
Y
y
X2 Y2
Y r cos r
X
X2 Y2
X X rY
α
X2 Y2
O
Y Y rX X2 Y2
O′
A(X,Y) y
ΔY α K A′
r ΔX
x
2. 圆弧刀具半径补偿计算
对于圆弧而言,刀具补偿后的刀具中心轨迹是一个与圆弧同
刀具半径补偿
(三)刀具半径补偿功能的主要用途
1.由于刀具的磨损或因换刀引起的刀具半径变化, 不必重新编程,只须修改相应偏置参数。
2.加工余量的预留可通过修改偏置参数实现, 而不必为粗、精加工各编制一个程序。
刀具半径补偿应用
利用同一个程序、同一把刀具,通过设置不同大小的刀具补偿半径值而逐步减少切 削余量的方法来达到粗、精加工的目的。
Pi-1
AS 工作寄存器
Pi
OS 输出寄存器
Pi-1
OS 输出寄存器
Pi-1
Pi+1
Pi
Pi-1
r r
r r
程序间转接
在CNC装置中,处理的基本廓形是直线和圆弧,它们之间的 相互连接方式有,
1.直线与直线相接; 2.直线与圆弧相接; 3.圆弧与直线相接; 4.圆弧与圆弧相接。 在刀具补偿执行的三个步骤中,都会有转接过渡,以直线与 直线转接为例来讨论刀补建立、刀补进行过程中可能碰到的三种 转接形式。
间增加一个半径为刀具半径的 过渡圆弧B1B2,才能正确加工 出整个零件轮廓。
可见,B刀补采用了读一 段,算一段,再走一段的控制
方法,这样,无法预计到由于
刀具半径所造成的下一段加工
轨迹对本程序段加工轨迹的影 响。
y
D1
D2 D
A2 A A1
O
C2 C C1
B B2 B1
x
C刀补
在计算本程序段轨迹后,提前将下一段程序读入,然后根据它 们之间转接的具体情况,再对本段的轨迹作适当修正,得到本段正 确加工轨迹。