计算机图形学-实验报告3-透视投影算法

合集下载

计算机图形学中的透视和投影变换

计算机图形学中的透视和投影变换

计算机图形学中的透视和投影变换计算机图形学是机器图像处理和计算机视觉的理论基础,主要研究计算机生成的三维图形的数学表示和渲染技术。

在计算机生成的三维图形中,透视和投影变换是非常重要的技术,它们可以使三维图形更加直观逼真地呈现出来。

本文将对透视和投影变换进行详细讲解。

一、透视变换透视变换是一种三维立体图像转换为二维平面图像的方法,它可以模拟出现实中的透视效果。

在透视变换中,被变换的三维场景需要经过以下几个步骤:1. 建立三维场景模型。

在建立三维场景模型时,需要确定物体的位置、大小、形状和材质等参数,并将这些参数用数学公式表示出来。

2. 确定观察点位置和视线方向。

观察点是放置在场景外的假想点,用于观察场景中的物体。

视线方向是从观察点指向场景中的物体。

3. 定义投影平面。

投影平面是垂直于视线方向的平面,它用于将三维物体投影到二维平面上。

4. 进行透视变换。

在透视变换中,需要用到透视投影矩阵,它可以将三维图形投影到二维平面上,并使得远离观察点的物体变得更小。

透视变换可以使得生成的二维平面图像更加逼真,同时也可以减少计算量,提高渲染效率。

但是透视变换也有一些缺点,例如不能完全保持原图像的形状和大小,因此在实际应用中需要进行调整。

二、投影变换投影变换是一种将三维物体投影到二维平面上的方法,它可以用于生成平面图像、制作立体影像和建立虚拟现实等应用。

在投影变换中,被变换的三维场景需要经过以下几个步骤:1. 建立三维物体模型。

在建立三维物体模型时,需要确定物体的位置、大小、形状和材质等参数,并将这些参数用数学公式表示出来。

2. 确定相机位置和视线方向。

相机位置是放置在场景外的假想点,用于观察场景中的物体。

视线方向是从相机指向场景中的物体。

3. 定义投影平面。

投影平面是垂直于视线方向的平面,它用于将三维物体投影到二维平面上。

4. 进行投影变换。

在投影变换中,需要用到投影矩阵,它可以将三维图形投影到二维平面上,并保持原图形的形状和大小。

透视投影矩阵 公式

透视投影矩阵 公式

透视投影矩阵:原理、公式与应用透视投影矩阵是计算机图形学中的核心概念,用于在三维空间中模拟人眼看世界的方式。

本文将详细阐述透视投影矩阵的原理、公式及其在各种应用中的作用。

一、透视投影矩阵的原理透视投影,又称远心投影,是计算机图形学中实现三维场景到二维屏幕映射的重要方法。

透视投影的原理与人眼看世界的方式相似:物体离观察者越远,它们显得越小。

这种投影方式能够产生近大远小的视觉效果,使得生成的图像更加逼真。

在透视投影中,观察者位于一个被称为“投影中心”的点,投影线从这个点出发,穿过三维场景中的物体,相交于一个被称为“投影平面”的二维平面。

投影线与投影平面的交点即为物体在二维屏幕上的像素位置。

通过这种方式,三维空间中的物体被映射到了二维平面上。

二、透视投影矩阵的公式透视投影矩阵的公式如下:M = [ m11 m12 m13 m14m21 m22 m23 m24m31 m32 m33 m34m41 m42 m43 m44 ]其中,mij(i, j = 1, 2, 3, 4)为矩阵的元素。

这个4x4的矩阵包含了透视投影所需的所有参数,如视场角(Field of View, FOV)、宽高比(Aspect Ratio)、近裁剪面距离(Near Clipping Plane Distance)和远裁剪面距离(Far Clipping Plane Distance)等。

通过设定这些参数,我们可以得到一个特定的透视投影矩阵。

这个矩阵随后将应用于三维场景中的每一个顶点,将其从视图空间变换到裁剪空间。

裁剪空间是一个中间坐标系,用于判断哪些顶点位于视锥体内,即哪些顶点最终会被绘制到屏幕上。

三、透视投影矩阵的应用1. 游戏开发:在游戏开发中,透视投影矩阵是实现3D游戏视觉效果的关键。

通过调整透视投影矩阵的参数,游戏开发者可以控制玩家的视野范围、游戏的视角效果等,从而营造出不同的游戏氛围和体验。

2. 电影制作:在电影特效制作中,透视投影矩阵也发挥着重要作用。

计算机图形学课程设计 透视投影图 三视图

计算机图形学课程设计 透视投影图 三视图

计算机图形学程序课程设计题目:分别在四个视区内显示空间四面体的三视图、透视投影图。

学院:信息科学与技术学院专业:计算机科学与技术姓名:oc学号:oc电话:oc邮箱:oc目录一、设计概述(1)设计题目。

2(2)设计要求。

2(3)设计原理。

2(4)算法设计。

5(5)程序运行结果。

9二、核心算法流程图。

10三、程序源代码。

12四、程序运行结果分析。

24五、设计总结分析。

25六、参考文献。

26一.设计概述•设计题目计算机图形学基础(第二版)陆枫何云峰编著电子工业出版社P228-7.16:利用OpenGL中的多视区,分别在四个视区内显示图7-41所示空间四面体的主视图、俯视图、侧视图、透视投影图。

•设计要求设计内容:1. 掌握主视图、俯视图、侧视图和透视投影变换矩阵;2. 掌握透视投影图、三视图生成原理;功能要求:分别在四个视区内显示P228-图7-41所示空间四面体的主视图、俯视图、侧视图、透视投影图。

•设计原理正投影正投影根据投影面与坐标轴的夹角可分为三视图和正轴测图。

当投影面与某一坐标轴垂直时,得到的投影为三视图,这时投影方向与这个坐标轴的方向一致,否则,得到的投影为正轴测图。

1.主视图(V面投影)将三维物体向XOZ平面作垂直投影,得到主视图。

由投影变换前后三维物体上点到主视图上的点的关系,其变换矩阵为:Tv=Txoz= [1 0 0 0][0 0 0 0][0 0 1 0][0 0 0 1]Tv为主视图的投影变换矩阵。

简称主视图投影变换矩阵。

2.侧视图(W面投影)将三维物体向YOZ平面作垂直投影,得到侧视图。

为使侧视图与主视图在一个平面内,就要使W面绕Z轴正向旋转90°。

同时为了保证侧视图与主视图有一段距离,还要使W面再沿X方向平移一段距离x0,这样即得到侧视图。

变换矩阵为:Tv=Tyoz= [ 0 0 0 0 ][-1 0 0 0 ][ 0 0 1 0 ][-x0 0 0 1]Tv为主视图的投影变换矩阵。

计算机图形学实验报告

计算机图形学实验报告

计算机图形学实验报告
在计算机图形学课程中,实验是不可或缺的一部分。

通过实验,我们可以更好地理解课程中所学的知识,并且在实践中掌握这些
知识。

在本次实验中,我学习了如何使用OpenGL绘制三维图形,并了解了一些基本的图形变换和视图变换。

首先,我们需要通过OpenGL的基本命令来绘制基本图形,例
如线段、矩形、圆等。

这些基本的绘制命令需要首先设置OpenGL 的状态,例如绘制颜色、线段宽度等,才能正确地绘制出所需的
图形。

然后,在实验中我们学习了图形的变换。

变换是指通过一定的
规则将图形的形状、位置、大小等进行改变。

我们可以通过平移、旋转、缩放等变换来改变图形。

变换需要按照一定的顺序进行,
例如先进行旋转再进行平移等。

在OpenGL中,我们可以通过设
置变换矩阵来完成图形的变换。

变换矩阵包含了平移、旋转、缩
放等信息,通过矩阵乘法可以完成图形的复合变换。

最后,视图变换是指将三维场景中的图形投影到二维平面上,
成为我们所见到的图形。

在实验中,我们学习了透视投影和正交
投影两种方式。

透视投影是指将场景中的图形按照视点不同而产
生不同的远近缩放,使得图形呈现出三维感。

而正交投影则是简单地将场景中的图形按照平行投影的方式呈现在屏幕上。

在OpenGL中,我们可以通过设置视图矩阵和投影矩阵来完成视图变换。

通过本次实验,我对于计算机图形学有了更深入的了解,并掌握了一些基本的图形绘制和变换知识。

在今后的学习中,我将继续学习更高级的图形绘制技术,并应用于实际的项目中。

计算机图形学课程设计透视投影图三视图

计算机图形学课程设计透视投影图三视图

计算机图形学程序课程设计题目:分别在四个视区内显示空间四面体的三视图、透视投影图。

学院:信息科学与技术学院专业:计算机科学与技术姓名:oc学号:oc电话:oc邮箱:oc目录一、设计概述(1)设计题目。

2(2)设计要求。

2(3)设计原理。

2(4)算法设计。

5(5)程序运行结果。

9二、核心算法流程图。

10三、程序源代码。

12四、程序运行结果分析。

24五、设计总结分析。

25六、参考文献。

26一.设计概述•设计题目计算机图形学基础(第二版)陆枫何云峰编著电子工业出版社P228-7.16:利用OpenGL中的多视区,分别在四个视区内显示图7-41所示空间四面体的主视图、俯视图、侧视图、透视投影图。

•设计要求设计内容:1. 掌握主视图、俯视图、侧视图和透视投影变换矩阵;2. 掌握透视投影图、三视图生成原理;功能要求:分别在四个视区内显示P228-图7-41所示空间四面体的主视图、俯视图、侧视图、透视投影图。

•设计原理正投影正投影根据投影面与坐标轴的夹角可分为三视图和正轴测图。

当投影面与某一坐标轴垂直时,得到的投影为三视图,这时投影方向与这个坐标轴的方向一致,否则,得到的投影为正轴测图。

1.主视图(V面投影)将三维物体向XOZ平面作垂直投影,得到主视图。

由投影变换前后三维物体上点到主视图上的点的关系,其变换矩阵为:Tv=Txoz= [1 0 0 0][0 0 0 0][0 0 1 0][0 0 0 1]Tv为主视图的投影变换矩阵。

简称主视图投影变换矩阵。

2.侧视图(W面投影)将三维物体向YOZ平面作垂直投影,得到侧视图。

为使侧视图与主视图在一个平面内,就要使W面绕Z轴正向旋转90°。

同时为了保证侧视图与主视图有一段距离,还要使W面再沿X方向平移一段距离x0,这样即得到侧视图。

变换矩阵为:Tv=Tyoz= [ 0 0 0 0 ][-1 0 0 0 ][ 0 0 1 0 ][-x0 0 0 1]Tv为主视图的投影变换矩阵。

计算机图形学中的透视变换算法研究

计算机图形学中的透视变换算法研究

计算机图形学中的透视变换算法研究计算机图形学是一门应用广泛且发展迅速的学科,其中透视变换算法是其中的重要内容之一。

透视变换算法是用于将三维场景投影到二维平面上的一种技术,可以用于制作三维建模、游戏开发、虚拟现实等诸多场景。

本文将对透视变换算法进行深入探讨。

一、透视变换的基本原理透视变换是一种投影变换,实际上是将原本三维的场景投影到一个二维平面上,使得相机所看到的场景保持透视关系。

我们以一个简单的场景为例,来说明透视变换的基本原理。

图一:一个简单的场景如图一所示,我们需要将这个三维场景投影到一个平面上。

我们假设相机位置在(0,0,0),相机朝向为Z轴正方向。

首先,我们需要将相机坐标系转换为世界坐标系。

我们可以通过相机的位置、视线方向、以及上方向来得到相机坐标系的X、Y、Z轴方向向量,进而得到相机矩阵(Camera Matrix)。

接下来,我们需要将物体坐标系转换为相机坐标系。

我们可以通过将物体的顶点坐标乘以一个变换矩阵(Model Matrix),将物体从模型空间转换到世界空间,然后将其乘以相机矩阵,将其从世界空间转换到相机空间。

最后,我们对相机空间中的坐标进行透视变换,得到最终的图像。

透视变换的过程如下:(1) 将相机空间中的坐标投影到相机平面上。

这一步称作投影变换(Projection transformation),通常使用投影矩阵(Projection Matrix)来实现。

(2) 对投影后的坐标进行归一化(Normalization)处理,使得所有坐标的Z值都等于1。

(3) 将归一化后的坐标变换到屏幕空间(Screen Space)。

屏幕空间是二维的,并且以屏幕左上角为原点,以屏幕右下角为坐标系的正方向。

这一步通常使用视口变换(Viewport Transformation)来实现。

二、透视变换算法的具体实现透视变换算法是计算机图形学中的重要内容之一,其核心在于将三维场景转换为二维图像。

计算机图形学-实验报告3-透视投影算法

计算机图形学-实验报告3-透视投影算法
七.实验结果及分析:
实验地点
软件实验室
指导教师
李丽亚
在屏幕客户区中心绘制立方体的透视投影线框模型使用工具栏的动画图标按钮或键盘上的方向键旋转视点观察立方体生成立方体的旋转动画
实验报告
课ห้องสมุดไป่ตู้名称
班级
班级学号
姓名
实验日期
成绩
实验题目
透视投影算法
一、实验目的:
观察变换矩阵
透视投影变换矩阵
一点透视
二点透视
三点透视
二、实验内容:
在屏幕客户区中心绘制立方体的透视投影线框模型,使用工具栏的“动画”图标按钮或键盘上的方向键旋转视点观察立方体,生成立方体的旋转动画。选择工具栏的123图标按钮分别绘制立方体线框模型的一点透视图,二点透视图,三点透视图。
三、实验步骤:
(1)读入立方体8个顶点构成的顶点表与6个表面构成的表面表。
(2)使用透视投影矩阵在屏幕坐标系绘制立方体的透视投影。
(3)旋转视点观察立方体的透视投影。
(4)使用鼠标左键增加视径,缩小立方体的透视投影。
(5)使用鼠标左键减小视径,放大立方体的透视投影。
(6)使用双缓冲技术绘制立方体旋转动画。

CAD绘图中的透视投影原理与应用

CAD绘图中的透视投影原理与应用

CAD绘图中的透视投影原理与应用CAD(Computer-Aided Design)是计算机辅助设计的缩写,是一种通过计算机系统进行设计和绘图的工具。

在CAD软件中,透视投影是一种常用的绘图技术,它能够以逼真的方式呈现三维物体的立体感。

在本文中,我们将探讨CAD绘图中的透视投影原理与应用。

透视投影是一种模拟人眼观察的投影方式,可以在平面上绘制出具有深度和立体感的图形。

它基于透视原理,通过模拟物体离观察者的距离和观察角度来产生真实的立体效果。

透视投影实质上是将三维空间中的物体映射到二维平面上。

在CAD软件中使用透视投影可以使设计师更加准确和直观地理解设计。

例如,在建筑设计中,透视投影可以帮助设计师预测建筑物在现实世界中的外观。

通过绘制透视图,设计师可以更好地评估建筑物的比例、尺寸和空间感。

在CAD软件中实现透视投影的方法有多种。

一种常用的方法是使用相机视角。

设计师可以在CAD软件中设置相机的位置和角度,以模拟透视效果。

通过移动相机位置和调整观察角度,设计师可以从不同的角度观察和绘制三维模型。

另一种方法是使用透视投影工具。

CAD软件通常提供了一些专门用于透视投影的工具和功能,设计师可以使用这些工具轻松地创建透视图。

通过指定观察点和观察角度,软件会自动计算出相应的透视效果。

与透视投影相关的一个重要概念是消失点。

消失点是在透视图中,平行线在远离观察者的方向上似乎汇聚在一点。

CAD软件通常会自动计算出消失点,并将其用于绘制透视图。

设计师可以利用消失点来判断平行线的方向和长度。

通过合理地运用消失点,设计师可以更好地表现物体的透视效果,并使其更加真实。

除了用于设计呈现,透视投影在CAD软件中还具有其他应用。

例如,在建筑设计中,透视投影可以用于制作虚拟漫游和可视化效果。

通过使用透视投影方式,设计师可以在CAD软件中创建一个可以模拟真实场景的环境,以便用户可以更好地理解和体验设计。

透视投影在产品设计中也有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七.实验结果及分析:
实验地点
软件实验室
指导教师
李丽亚
三、实验步骤:
(1)读入立方体8个顶点构成的顶点表与6个表面构成的表面表。
(2)使用透视投影矩阵在屏幕坐标系绘制立方体的透视投影。
(3)旋转视点观察立方体的透视投影。
(4)使用鼠标左键增加视径,缩小立方体的透视投影。
(5)使用鼠标左键减小视径,放大立方体的透视投影。
(6)使用双缓冲技术绘制立方体旋转动画。
实验报告
课程名称
Байду номын сангаас班级
班级学号
姓名
实验日期
成绩
实验题目
透视投影算法
一、实验目的:
观察变换矩阵
透视投影变换矩阵
一点透视
二点透视
三点透视
二、实验内容:
在屏幕客户区中心绘制立方体的透视投影线框模型,使用工具栏的“动画”图标按钮或键盘上的方向键旋转视点观察立方体,生成立方体的旋转动画。选择工具栏的123图标按钮分别绘制立方体线框模型的一点透视图,二点透视图,三点透视图。
相关文档
最新文档