七年级数学几何图形单元测试题
人教版七年级上册数学《几何图形初步》单元检测题附答案

A.25°B.35°C.45°D.65°
8.∠1的补角是130°,∠2的余角是40°,则∠1与∠2的大小关系是( )
A.∠1>∠2B.∠1<∠2C.∠1=∠2D.不能确定
9.下列说法中正确的是( )
A.8时45分,时针与分针的夹角是30°B.6时30分,时针与分针重合
C.3时30分,时针与分针的夹角是90°D.3时整,时针与分针的夹角是90°
10.将一副直角三角尺按如图所示的不同方式摆放,则图中 与 相等的是( )
A. B. C. D.
11.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是( )
A.20°或50°B.20°或60°C.30°或50°D.30°或60°
【点睛】本题是考查正方体 展开图,培养学生的观察能力、分析判断能力和空间想象能力.最好是动手操作一下,既可解决问题,又锻炼动手操作能力.
3.如图,下列说法中正确的是( )
A.OA的方向是北偏东20°B.OB的方向是北偏西65°
C.OC的方向是东南方向D.OD的方向是南偏西55°
【答案】D
【解析】
【分析】
A.①②B.②③C.④⑤D.①③④
【答案】C
【解析】
【分析】
根据线段的MN长度,及PM+PN的长度即可判断出P的位置.
【详解】∵MN=10cm,点P满足PM+PN=20cm,
∴点P不可能在线段MN上,而P的可能在直线MN上,可能在直线MN外.
故只有④⑤说法正确.
故选C.
【点睛】本题考查比较线段长度的知识,这类题目一般不能具体确定p的位置,只是可能不能说必然.
七年级数学上学期第四单元几何图形初步测试卷5套带答案

第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分)1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱C(2)A DB2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段 D.以上都不对4.下列语句正确的是( )A.如果PA=PB,那么P是线段AB的中点;B.作∠AOB的平分线CDC.连接A、B两点得直线AB;D.反向延长射线OP(O为端点)5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ.6.5点整时,时钟上时针与分钟之间的夹角是( )A.210°B.30°C.150°D.60°7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )A.互余B.互补C.既不互余也不互补D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对9.如果∠α=3∠β, ∠α=2∠θ,则必有( )2310.如图5所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )A.8°B.4°C.2°D.1°二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°.14.已知∠a=36°42′15″,那么∠a 的余角等于________.15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.航线铁路公路(6)A B18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,____________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线.三、解答题:(21、24、25、26每题6分,22、23题每题8分)21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC;(3)反向延长OC 得射线OD;(4)分别在射线OA、OB、OD 上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG 有什么关系?∠EFG、∠EGF、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23.如图,直线AB、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).北D CA B26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.参考答案一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.2414. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°22.AM=7cm或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。
人教版数学七年级上册第4章 几何图形初步单元测试(含答案)

七年级上册第4章单元测试一.选择题(共10小题)1.一个角的余角是44°,这个角的补角是()A.134°B.136°C.156°D.146°2.下列图形能折叠成正方体的是()A .B .C .D .3.下面各图是圆柱的展开图的是()A .B .C .D .4.甲、乙两个城市,乙城市位于甲城市北偏东50°方向,距离为80km,那么甲城市位于乙城市()A.南偏东50°方向,距离为80kmB.南偏西50°方向,距离为80kmC.南偏东40°方向,距离为80km第1页(共12页)D.南偏西40°方向,距离为80km5.有一个正六面体骰子放在桌面上,将骰子如图所示顺时针方向滚动,每滚动90°算一次,则滚动第2020次后,骰子朝下一面的数字是()A.5B.4C.3D.26.下列各角中,()是钝角.A .周角B .平角C.平角D .平角7.小明家在学校的南偏西50°方向上,则学校在小明家()上.A.南偏西50°B.西偏南50°C.北偏东50°D.北偏东40°8.下列度分秒运算中,正确的是()A.48°39′+67°31′=115°10′B.90°﹣70°39′=20°21′C.21°17′×5=185°5′D.180°÷7=25°43′(精确到分)9.一个圆柱体切拼成一个近似长方体后()A.表面积不变,体积变大B.表面积变大,体积不变C.表面积变小,体积不变D.表面积不变,体积不变10.下列语句中,正确的个数是()第2页(共12页)①直线AB和直线BA是两条直线;②射线AB和射线BA是两条射线;③若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余;④一个角的余角比这个角的补角小;⑤一条射线就是一个周角;⑥两点之间,线段最短.A.1个B.2个C.3个D.4个二.填空题(共5小题)11.已知,∠A=46°28',则∠A 的余角=.12.一个长方体的高是10cm,它的底面是边长为4cm的正方形,如果底面正方形的边长增加acm,则它的体积增加了cm3.13.已知如图,C是线段AB上的一点,N是线段BC的中点,若AB=10,AC=6,则AN=.14.已知线段AB=8cm.在直线AB上画线段AC=5cm,则BC的长是cm.15.如图,将长方形ABCD纸片按如图所示的方式折叠,EF,EG为折痕,点A落在A',点B落在B',点A',B',E在同一直线上,则∠FEG=度.三.解答题(共5小题)16.如图,CD是Rt△ABC斜边上的高,请找出图中各对互余的角.第3页(共12页)17.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.18.如图,已知线段AB=12 cm,点C为线段AB上的一动点,点D,E分别是AC和BC中点.(1)若点C恰好是AB的中点,则DE =cm;(2)若AC=4 cm,求DE的长;(3)试说明无论AC取何值(不超过12 cm),DE的长不变.第4页(共12页)19.如图,已知射线OB平分∠AOC,∠AOC的余角比∠BOC小42°.(1)求∠AOB的度数:(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数.(3)在(2)的条件下,画∠AOD的角平分线OE,则∠BOE=.20.如图,平面上有四个点A,B,C,D.(1)根据下列语句画图:Ⅰ、画射线DC;Ⅱ、画直线AC与线段BD相交于点F ;(2)图中以F为顶点的角中,请写出∠AFB的补角.第5页(共12页)参考答案一.选择题(共10小题)1.解:∵一个角的余角是44°,∴这个角的度数是:90°﹣44°=46°,∴这个角的补角是:180°﹣46°=134°.故选:A.2.解:A、能折叠成正方体,故此选项符合题意;B、出现了“凹”字格,不能折叠成正方体,故此选项不符合题意;C、折叠后有两个面重合,不能折叠成正方体,故此选项不符合题意;D、出现了“田”字格,不能折成正方体,故此选项不符合题意.故选:A.3.解:由图可知,该圆柱底面直径为6,高为4,所以该圆柱的底面周长(圆柱侧面展开得到的长方形的长)为:6×3.14=18.84,故选:C.4.解:如图:第6页(共12页)∵乙城市位于甲城市北偏东50°方向,距离为80km,∴甲城市位于乙城市南偏西50°方向,距离为80km,故选:B.5.解:观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2020÷4=505,∴滚动第2020次后与第一个相同,∴朝下的数字是3的对面4,故选:B.6.解:平角=180°,钝角大于90°而小于180°,平角=×180°=120°,是钝角.故选:B.7.解:∵小明家在学校的南偏西50°方向上,∴学校在小明家北偏东50°方向上.故选:C.8.解:48°39'+67°31'=115°70'=116°10',故A选项错误;90°﹣70°39'=19°21',故B选项错误;21°17'×5=105°85'=106°25',故C选项错误;180°÷7=25°43',故D选项正确.故选:D.9.根据立体图形的切拼方法可知:圆柱体切拼成一个长方体后,体积大小不变,表面积增加了两个以圆柱的高和第7页(共12页)底面半径为边长的长方形的面积,所以表面积变大了.故选:B.10.解:①直线AB和直线BA是一条直线,原来的说法是错误的;②射线AB和射线BA是两条射线是正确的;③互余是指的两个角的关系,原来的说法是错误的;④一个角的余角比这个角的补角小是正确的;⑤周角的特点是两条边重合成射线.但不能说成周角是一条射线,原来的说法是错误的;⑥两点之间,线段最短是正确的.故正确的个数是3个.故选:C.二.填空题(共5小题)11.解:∵∠A=46°28′,∴∠A的余角=90°﹣46°28′=43°32′.故答案为:43°32′.12.解:长方体原体积为:4×4×10=160cm3.底面边长增加acm后,边长为(4+a)cm,体积为:10(4+a)2=(10a2+80a+160)cm3.体积增加为:10a2+80a+160﹣160=10a2+80a.故答案为:(10a2+80a).13.解:∵AB=10,AC=6,∴CB=10﹣6=4,第8页(共12页)∵N是线段BC的中点,∴CN=2,∴AN=AC+CN=6+2=8.14.解:当C点在线段AB上时,BC=AB﹣AC=8﹣5=3(cm);当C点在线段BA的延长线上时,BC=AB+AC=8+5=13(cm).故BC的长为3或13cm.故答案为3或13.15.解:由折叠可得∠AEF=∠A'EF,∠BEG=∠B'EG,∵∠AEB=180°,∴∠FEG=∠A'EF+∠B'EG =∠AEB=90°,故答案为90.三.解答题(共5小题)16.解:∵CD⊥AB,∴△ABC,△BCD是直角三角形,又∵△ABC是直角三角形,∴∠A与∠B,∠A与∠ACD,∠B与∠BCD互余(直角三角形的两个锐角互余),又∵∠ACB=90°,∴∠ACD与∠BCD互余.∴图中互余的角有:∠A与∠B,∠A与∠ACD,∠B与∠BCD,∠ACD与∠BCD.17.解:(1)因为点C为OP的中点,第9页(共12页)所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.18.解:(1)∵点D,E分别是AC和BC的中点,∴DC =AC,CE =CB,∴DC+CE =(AC+CB)=6cm;故答案为:6.(2)∵AC=4cm,∴CD=2cm,∵AB=12cm,AC=4cm,∴BC=8cm,∴CE=4cm,DE=DC+CE=6cm;(3)∵点D,E分别是AC和BC的中点,∴DC =AC,CE =CB,∴DC+CE =(AC+CB),即DE =AB=6cm,故无论AC取何值(不超过12 cm),DE的长不变.第10页(共12页)19.解:(1)由射线OB平分∠AOC可得∠AOC=2∠BOC,设∠BOC=x,则∠AOC=2x,依题意列方程90°﹣2x=x﹣42°,解得:x=44°,即∠AOB=44°.(2)由(1)得,∠AOC=88°,①当射线OD在∠AOC内部时,∠AOD=22°,则∠COD=∠AOC﹣∠AOD=66°;②当射线OD在∠AOC外部时,∠AOD=22°则∠COD=∠AOC+∠AOD=110°;(3)∵OE平分∠AOD,∴∠AOE =,当射线OD在∠AOC内部时,∠BOE=∠AOB﹣∠AOE=44°﹣11°=33°;当射线OD在∠AOC外部时,∠BOE=∠AOB+∠AOE=44°+11°=55°.∴∠BOE度数为33°或55°.故答案为:33°或55°20.解:(1)作图如下:第11页(共12页)(2)∠AFB的补角为∠BFC,∠AFD.第12页(共12页)。
人教版七年级上册数学第四章《几何图形》单元测试卷(Word版,含答案)

人教版七年级上册数学第四章《几何图形》单元测试卷(满分100分,时间90分钟)一、选择题(本大题共十小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是正确的.)1.下列说法不正确的是()A.用一个平面去截一个正方体可能截得五边形B.五棱柱有10个顶点C.沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱D.将折起的扇子打开,属于“线动成面”的现象2.下列图形中,经过折叠不能围成一个正方体的是()A.B.C.D.3.图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A.B.C.D.4.已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是()A.∠1=∠3B.∠1=∠2C.∠1<∠2D.∠2=∠35.如图是顺义区地图的一部分,小明家在怡馨家园小区,小宇家在小明家的北偏东约15°方向上,则小宇家可能住在()A.裕龙花园三区B.双兴南区C.石园北区D.万科四季花城6.一个正方体的展开图如图所示,将它折成正方体后,数字“0”的对面是()A.数B.5 C.1 D.学7.如图,∠AOB是一直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()A.65°B.50°C.40°D.25°8.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形,其中作法错误的为()A.B.C.D.9.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC的余角是()A.15°B.30°C.45°D.75°10.某乡镇的4个村庄A,B,C,D恰好位于正方形的4个顶点上,为了解决农民出行难问题,镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了如下四个设计方案(实线表示连接的道路)在上述四个方案中最短的道路系统是方案()A.一B.二C.三D.四二、填空题(本大题共10小题,每小题2分,共20分)11.有一正角锥的底面为正三角形.如果这个正角锥其中两个面的周长分别为27,15,则此正角锥所有边的长度和为.12.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是.13.如图是一个立方体的平面展开图形,每个面上都有一个自然数,且相对的两个面上两数之和都相等,若13,9,3的对面的数分别是a,b,c,则a2+b2+c2﹣ab﹣ac﹣bc的值为.14.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于立方分米.15.经过A,B两点的直线上有一点C,AB=10,CB=6,D和E分别是AB,BC的中点,则DE 的长是.16.上午8:30钟表的时针和分针构成角的度数是.17.下列几何体属于柱体的有个.18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,平面内不同的七个点最多可确定条直线.19.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).20.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.三、解答题(21 ~23题每题7分,25题8分,26题8分,27题8分)21.如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段BC,MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M,N分别是线段AC,BC的中点,求MN的长度.22.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,已知正方体相对两个面上的代数式的值相等.求a+的值.。
人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)

第四章几何图形初步单元测试一.选择题1.对如图所示几何体的认识正确的是()A.棱柱的底面是四边形B.棱柱的侧面是三角形C.几何体是四棱柱D.棱柱的底面是三角形2.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于()A.点动成线B.线动成面C.面动成体D.以上都不对3.下列说法正确的是()A.延长直线AB到点CB.延长射线AB到点CC.延长线段AB到点CD.射线AB与射线BA是同一条射线4.如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD 上,且EA=1,则BE的长为()A.4B.6或8C.6D.85.下列说法正确的是()A.两点之间的线段,叫做这两点之间的距离B.87'等于1.45°C.射线OA与射线AO表示的是同一条射线D.延长线段AB到点C,使AC=BC6.线段AB=9,点C在线段AB上,且有AC=AB,M是AB的中点,则MC等于()A.3B.C.D.7.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间8.如图,将一副三角板叠在一起使直角顶点重合于点O,(两块三角板可以在同一平面内自由转动),下列结论一定成立的是()A.∠BOA>∠DOC B.∠BOA﹣∠DOC=90°C.∠BOA+∠DOC=180°D.∠BOC≠∠DOA9.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离10.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.10二.填空题11.若一个六棱柱,则它有条棱,有个面.12.秒针旋转一周时,形成一个圆面,用数学知识可以理解为.13.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.14.如图,线段AB=3,延长AB到点C,使BC=2AB,则AC=.15.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF 的长度为cm.16.人们会把弯曲的河道改直,这样能够缩短航程.这样做的道理是.17.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.18.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.19.如图,C、D是线段AB上的两点,E是AC的中点,F是BD的中点,若AB=m,CD =n,则线段EF的长为.20.如图,射线OC,OD在∠AOB内,∠AOB和∠BOC互为补角,.若∠COD比∠BOD大m°(m<30),则∠AOC=°.(用含m的式子表示)三.解答题21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.22.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.23.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.24.如图,在直线AD上任取一点O,过点O做射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,求∠BOE的度数.25.如图,C是线段AB上一点,AC=5cm,点p从点A出发沿AB以3cm/s的速度匀速向点B运动,点Q从点C出发沿CB以1cm/s的速度匀速向点B运动,两点同时出发,结果点P比点Q先到3s.(1)求AB的长;(2)设点P、Q出发时间为ts,①求点P与点Q重合时(未到达点B),t的值;②直接写出点P与点Q相距2cm时,t的值.26.线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB 的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.参考答案1.解:如图所示的几何体是三棱柱,它有两个全等的三角形的底面,三个矩形的侧面,因此选项ABC均不符合题意,选项D符合题意;故选:D.2.解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.3.解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.4.解:若E在线段DA的延长线,如图1,∵EA=1,AD=9,∴ED=EA+AD=1+9=10,∵BD=2,∴BE=ED﹣BD=10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.5.解:A、应为:连结两点的线段的长度叫做这两点间的距离,故本选项错误;B、87'=60'+27'=1°+()°=1.45°,故本选项正确;C、射线OA的端点是点O,射线AO的端点是点A,所以,它们不是同一条射线,故本选项错误;D、延长线段AB到点C,则AC一定大于BC,不能使AC=BC,故本选项错误.故选:B.6.解:∵AB=9,∴AC=AB=3,∵M是AB的中点,∴AM=AB=∴MC=AM﹣AC=﹣3=故选:B.7.解:∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在A、B区之间时,设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当x=0时,即在A区时,路程之和最小,为4500米;综上,当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A区.故选:A.8.解:因为是直角三角板,所以∠AOC=∠BOD=90°,所以∠BOA+∠DOC=∠AOC+∠BOC+∠DOC=∠AOC=∠BOD=180°,故选:C.9.解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.10.解:∵OC平分∠DOA,∴∠AOC=∠COD,∵OE平分∠DOB,∴∠DOE=∠BOE,∴∠COE=90°,∴∠AOC+∠BOE=90°,∠AOC+∠DOE=90°,∠COD+∠BOE=90°,∠COD+∠DOE =90°,∠COF+∠EOF=90°,∵OF⊥AB,∴∠AOC+∠COF=90°,∠COD+∠COF=90°,∠BOE+∠EOF=90°,∠BOD+∠DOF =90°,∠DOE+∠EOF=90°,∴互余的角有10对.故选:D.11.解:因为六棱柱上下两个底面是6边形,侧面是6个长方形,所以共有18条棱,8个面;故答案为18,8.12.解:根据点、线、面、体之间的关系可得,线动成面.13.解:(1)如图1,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AM+AN=5+8=13(cm)(2)如图2,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.14.解:∵AB=3,∴BC=2AB=6,∴AC=AB+BC=3+6=9.故答案为:9.15.解:∵点F是BC的中点,且BF=40cm,∴BC=2BF=80cm,∵CD=AD=BC,∴CD=×80=16cm,AD=64cm,∴AC=AD﹣CD=48cm,∵E、F分别是AC、BC的中点,∴CE=AC=24cm,CF=BF=40cm,∴EF的长度为CE+CF=64cm,故答案为:64.16.解:由线段的性质可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.17.解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.18.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x ∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.19.解:∵AB=m,CD=n.∴AB﹣CD=m﹣n,∵E、F分别是AC、DB的中点,∴CE=AC,DF=DB,∴CE+DF=(m﹣n),∴EF=CE+DF+DC=(m﹣n)+n=m+n,故答案为:m+n.20.解:∵∠AOB和∠BOC互为补角,∴∠AOB+∠BOC=180°,∵∠BOD=,∴3∠BOD+∠BOC=180°,即∠BOC=180°﹣3∠BOD,∵∠COD+∠BOD=∠BOC,∴180°﹣3∠BOD=∠COD+∠BOD,∴∠COD+4∠BOD=180°,∵∠COD比∠BOD大m°(m<30),∴∠COD﹣∠BOD=m°,∴∠BOD=()°,∠COD=()°∴∠BOC=()°,∴∠AOB=180°﹣∠BOC=(108﹣)°,∴∠AOC=∠AOB﹣∠BOC=(108﹣)°﹣()°=(36﹣m)°.故答案为(36﹣m).21.解:(1)(1×3+2×3+1×2)×2=22(m2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm,2cm,1cm,因此体积为:1×2×3=6(m3),22.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.23.解:(1)因为点C为OP的中点,所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.24.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.25.解:(1)设AB=xcm,根据题意可得:(x﹣5)﹣=3,解得:x=12,答:AB的长为12cm;(2)①由题意可得:3t=t+5,解得:t=,故点P与点Q重合时(未到达点B),t的值为;②当点P追上点Q前相距2cm,由题意可得:3t+2=t+5,解得:t=,当追上后相距2cm,由题意可得:3t﹣2=t+5,解得:t=,总上所述:t=或t=.26.解:(1)∵AC=15cm,CB=AC,∴CB=×15=10(cm),∴AB=15+10=25(cm).∵D,E分别为AC,AB的中点,∴AE=BE=AB=12.5cm,DC=AD=AC=7.5cm,∴DE=AE﹣AD=12.5﹣7.5=5(cm);(2)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵∠MON=90°,∴6x=90°,∴x=15°,∴∠AOB=135°.。
2022-2023学年人教版七年级数学上册《第4章几何图形初步》单元达标测试题(附答案)

2022-2023学年人教版七年级数学上册《第4章几何图形初步》单元达标测试题(附答案)一.选择题(共8小题,满分32分)1.下列四个几何体中,是棱柱的是()A.B.C.D.2.已知∠α=35°40′,则∠α的补角的度数为()A.55°60′B.55°20′C.144°60′D.144°20′3.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是()A.①④B.②③C.①②④D.①③④4.将一副常规的三角尺如图放置,则图中∠ACB的度数是()A.75°B.95°C.15°D.120°5.如图,若∠1=32°,则∠2的度数是()A.32°B.58°C.48°D.68°6.如图,若∠AOB=∠COD=∠EOF=90°,且∠DOF=45°,∠AOE=30°,求∠BOC 的度数为()A.15°B.20°C.25°D.30°7.若∠1与∠2互为余角,∠1与∠3互为补角,则下列结论:①∠3﹣∠2=90°;②∠3+∠2=270°﹣2∠1;③∠3﹣∠1=2∠2;④∠3<∠1+∠2.其中正确的是()A.①B.①②C.①②③D.①②③④8.如图,∠AOB与∠COB的度数分别记为m,n(m>n),OM,ON分别是∠COB,∠AOC 的平分线,则∠MON的度数为()A.B.C.D.二.填空题(共8小题,满分32分)9.如图,已知线段AB长度为x,CD长度为y,则图中所有线段的长度和为.10.点A,B,C是同一直线上的三个点,若AB=7cm,BC=5cm,则AC=cm.11.(1)钟表上的时间是3时30分,此时时针与分针所成的夹角是度.(2)计算:24°24′=°.(3)一个角是40°,则它的补角是度.12.如图是一个底面各边都相等的六棱柱,它的底面边长为2cm,高为5cm.这个棱柱共有条棱,个面,侧面积是cm2.13.在平整的地面上,有若干个完全相同的棱长为2cm的小正方体堆成一个几何体,如图所示:这个几何体露出的表面积是cm2.14.如图,将一个三角板60°角的顶点与另一个三角的直角顶点重合,∠1=28°,∠2=°.15.如图,已知点O是直线AB上的一点,∠COE=120°,∠AOF=∠AOE.(1)当∠BOE=15°时,∠COA的度数为;(2)当∠FOE比∠BOE的余角大40°,∠COF的度数为.16.某天卢老师在数学课上,利用多媒体展示如下内容:如图,C为直线AB上一点,∠DCE 为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各学习小组经过讨论后得到以下结论:①∠ACF与∠BCH互余;②∠HCG=45°;③∠ECF与∠GCH互补;④∠ACF﹣∠BCG=45°.聪明的你认为哪些结论是正确的,请写出正确结论的序号.三.解答题(共7小题,满分56分)17.如图所示的是一个正方体的平面展开图,若将该展开图折叠成正方体后,相对面上的两个数字互为相反数,求2x+y﹣z的值.18.如图是一个食品包装盒的表面展开图.(1)该包装盒的几何体名称是;(2)根据图中所标尺寸,用a,b表示这个几何体的表面积S,并计算当a=1,b=4时,S的值.19.如图,C为线段AD上一点,点B为CD的中点,且AD=9cm,BD=2cm.(1)图中共有条线段.(2)求AC的长.(3)若点E在直线AD上,且EA=3cm,求BE的长.20.如图,点C在线段AB上,点M,N分别为AC,BC的中点.(1)若AC=6cm,MB=10cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC=2acm,MB=bcm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC=xcm,BC=ycm,M,N分别是线段AC,BC的中点,请画出图形,并用含x,y的式子表示MN的长度.21.如图1,∠AOC和∠BOD都是直角.(1)如果∠DOC=35°,则∠AOB=;(2)找出图1中一组相等的锐角为:;(3)若∠DOC变小,∠AOB将;(填变大、变小、或不变)(4)在图2中,利用能够画直角的工具在图2上再画一个与∠BOC相等的角.22.直观想象,逻辑推理已知点O为直线AB上一点.(1)如图1,过点O作射线OC,使∠AOC:∠BOC=3:2,求∠AOC与∠BOC的度数;(2)如图2,射线OC为∠AOB内部任意一条射线,射线OD、OE分别是∠AOC、∠BOC 的角平分线,求∠DOE的度数,并写出简要的推理过程;(3)写出图2中所有互余的角和互补的角.23.如图,∠AOB=m°,OC是∠AOB内的一条射线,OD、OE分别平分∠BOC、∠AOC.(1)若∠BOC=90°,∠AOC=30°,求∠DOE的度数;(2)试用含m的代数式表示∠DOE;(3)在图中,将OC反向延长,得到OP,OM、ON分别平分∠BOP、∠AOP.请将图补充完整,并用含m的代数式表示∠MON.参考答案一.选择题(共8小题,满分32分)1.解:选项A中的几何体是圆柱,因此选项A不符合题意;选项B中的几何体是三棱柱,因此选项B符合题意;选项C中的几何体是三棱锥,因此选项C不符合题意;选项D中的几何体是四棱台,因此选项D不符合题意;故选:B.2.解:∵∠α=35°40′,∴∠α的补角的度数为180°﹣35°40′=144°20′.故选:D.3.解:①④可以用“两点确定一条直线”来解释;②可以用“两点之间线段最短”来解释;③根据“作一条线段等于已知线段”的方法进行解释;故选:A.4.解:由题意得:∠ACD=45°,∠BCD=30°,则∠ACB=∠ACD﹣∠BCD=15°.故选:C.5.解:由图可得∠1+∠2+90°=180°,∵∠1=32°,∴∠2=58°.故选:B.6.解:∵∠COD=90°,∠DOF=45°,∴∠COF=45°,∵∠EOF=90°,∴∠EOC=45°,∵∠AOB=90°,∴∠AOE+∠BOC=45°,∵∠AOE=30°,∴∠BOC=15°,故选:A.7.解:根据题意得:(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴(2)﹣(1)得,∠3﹣∠2=90°,∴①正确;(1)+(2)得,∠1+∠2+∠1+∠3=270°,∴∠3+∠2=270°﹣2∠1,∴②正确;(2)﹣(1)×2得,∠3﹣∠1=2∠2,∴③正确;∵(1)∠1+∠2=90°,(2)∠1+∠3=180°,∴2(∠1+∠2)=180°,∴∠3=180°﹣∠1=2(∠1+∠2)﹣∠1=∠1+2∠2,∴∠3>∠1+∠2,∴④错误;故选:C.8.解:∵∠AOC=∠AOB+∠BOC=m+n,∵射线ON平分∠AOC,∴∠CON=∠AOC=(m+n),∵OM平分∠BOC,∴∠COM=∠BOC=n,∴∠MON=∠CON﹣∠COM=(m+n)﹣n=m;故选:A.二.填空题(共8小题,满分32分)9.解:∵线段AB长度为x,∴AB=AC+CD+DB=x,又∵CD长度为y,∴AD+CB=x+y,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=x+x+x+y=3x+y,故答案为:3x+y.10.解:①当点C在线段AB的延长线上时,AC=AB+BC=7+5=12cm.②当点C在线段AB上时.AC=AB﹣BC=7﹣5=2cm.故答案为:12或2.11.解:(1)3点30分时,时针与分针的较小夹角是2.5个大格,一个大格的度数是30°,所以30°×2.5=75°;故答案为:75;(2)24°24′=24.4°.故答案为:24.4;(3)由补角的性质,得40°角的补角是180°﹣40°=140°,故答案为:140.12.解:六棱柱有18条棱,8个面,侧面积是2×6×5=60cm2.故答案为:18,8,60.13.解:∵几何体露出的小正方体的面一共有32个,∴这个几何体露出的表面积为32×4=128(cm2),故答案为:128.14.解:∵∠BAC=60°,∠1=28°,∴∠EAC=∠BAC﹣∠1=32°,∵∠DAE=90°,∴∠2=∠DAE﹣∠EAC=58°.故答案为:58.15.解:(1)∵∠BOE=15°,∠COE=120°,∴∠COA=180°﹣120°﹣15°=45°.故答案为:45°.(2)由题意得,∠FOE=90°﹣∠BOE+40°=130°﹣∠BOE.∵∠AOF=∠AOE,∴180°﹣∠BOF=.∴180°﹣(∠EOF+∠BOE)=60°﹣.∴180°﹣130°=60°﹣.∴∠BOE=30°.∴∠EOF=90°﹣30°+40°=100°.∴∠COF=∠COE﹣∠EOF=120°﹣100°=20°.故答案为:20°.16.解:∵CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,∴∠ACF=∠FCD=∠ACD,∠DCH=∠HCB=∠DCB,∠BCG=∠ECG=∠BCE,∵∠ACB=180°,∠DCE=90°,∴∠FCH=90°,∠HCG=45°,∠FCG=135°∴∠ACF+∠BCH=90°,故①②正确,∵∠ECF=∠DCE+∠FCD=90°+∠FCD,∠FCD+∠DCH=90°,∴∠ECF+∠DCH=180°,∵∠HCG≠∠DCH,∴∠ECF与∠GCH不互补,故③错误,∵∠ACD﹣∠BCE=180°﹣∠DCB﹣∠BCE=90°,∴∠ACF﹣∠BCG=45°.故④正确.故答案为:①②④.三.解答题(共7小题,满分56分)17.解:由题意得:2与y,3与z,x与﹣2分别是相对面上的两个数,所以y=﹣2,z=﹣3,x=2,则2x+y﹣z=4﹣2+3=5.18.解:(1)由展开图知,该包装盒的几何体为长方体,故答案为:长方体;(2)由题知,S=2×2a×a+2×2a×b+2×a×b=4a2+6ab,当a=1,b=4时,S=4+6×4=28.19.解:(1)以A为端点的线段为:AC,AB,AD;以C为端点的线段为:CB,CD;以B为端点的线段为:BD;共有3+2+1=6(条);故答案为:6.(2)∵点B为CD的中点,BD=2cm.∴CD=2BD=2×2=4(cm),∴AC=AD﹣CD=9﹣4=5(cm),答:AC的长是5cm.(3)AB=AC+BC=7cm,EA=3cm,当点E在线段AD上时,BE=AB﹣AE=7﹣3=4(cm),当点E在线段DA的延长线上时,BE=AB+AE=7+3=10(cm),答:BE的长是4或10cm.20.解:(1)∵M是AC的中点,∴MC=AC=3cm,∴BC=MB﹣MC=7cm,又∵N为BC的中点,∴CN=BC=3.5cm,∴MN=MC+NC=6.5cm;(2)∵点M、N分别是AC、BC的中点,AC=2acm,MB=bcm,∴AM=AC=a cm,AC+CB=(a+b)cm,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=(a+b)cm,即线段MN的长是(a+b)cm;(3)如图:MN=(x﹣y)cm,理由是:∵点M、N分别是AC、BC的中点,AC﹣CB=(x﹣y)cm,∴CM=AC,CN=BC,∴MN=CM﹣CN=AC﹣BC=(AC﹣BC)=(x﹣y)cm,即线段MN的长是(x﹣y)cm.21.解:(1)∵∠AOC=∠DOB=90°,∠DOC=35°,∴∠COB=∠BOD﹣∠DOC=90°﹣35°=55°,∴∠AOB=∠AOC+∠COB=90°+55°=145°;故答案为:145°;(2)∵∠AOC=∠DOB=90°,∴∠AOD+∠COD=∠BOC+∠COD=90°,∴∠AOD=∠BOC;故答案为:∠AOD=∠BOC;(3)∵∠AOD+∠DOC+∠DOC+∠BOC=∠AOB+∠COD=∠AOC+∠BOD=180°,∴∠AOB=180°﹣∠DOC,∴∠DOC逐渐变小,∠AOB逐渐变大;故答案为:变大;(4)利用三角板画∠AOC=∠BOD=90°,则∠AOD=∠BOC,理由如下:∵∠AOC=∠DOB=90°,∴∠AOD+∠COD=∠BOC+∠COD=90°,∴∠AOD=∠BOC.22.解:(1)设∠AOC=3x,∠BOC=2x,∵∠AOC+∠BOC=180°,∴3x+2x=180°,∴x=36°,∴∠AOC=3×36°=108°,∠BOC=2×36°=72°;(2)∵OD、OE分别是∠AOC、∠BOC的角平分线,∴∠DOC=∠AOD=,∠COE=∠BOE=∠BOC,∵∠AOC+∠BOC=180°,∠DOE=∠DOC+∠COE,∴∠DOE====90°;(3)互余的角有,∠DOC与∠COE,∠AOD与∠COE,∠BOE与∠COD,∠BOE与∠AOD;互补的角有,∠AOD与∠BOD,∠AOC与∠BOC,∠AOE与∠BOE.23.解:(1)∵OD、OE分别平分∠BOC、∠AOC,∴∠DOE==60°;(2)由(1)知,∠DOE===;(3)补充图形如下:∵∠AOB=m°,∴∠BOP+∠AOP=360°﹣∠AOB=360°﹣m°,∵OM、ON分别平分∠BOP、∠AOP,∴∠MON=∠MOP+∠NOP==.。
人教版数学七年级(上)第4章《几何图形初步》单元综合练习卷(含答案)

人教版数学七年级(上)第4章《几何图形初步》单元综合练习卷(含答案)一.选择题1.下列说法:①直线AB和直线BA是同一条直线;②平角是一条直线;③两点之间,线段最短;④如果AB=BC,则点B是线段AC的中点.其中正确的有()A.1个B.2个C.3个D.4个2.下列四个图形中是如图展形图的立体图的是()A.B.C.D.3.如图,若CB=4,DB=7,且D是AC的中点,则AC的长为()A.3B.6C.9D.11 4.下列图形中不是正方体的平面展开图的是()A.B.C.D.5.钟表在2点半时,其时针和分针所成的角是()A.60°B.75°C.105°D.120°6.将一副三角板按如图所示的位置摆放,其中∠α和∠β一定互余的是()A.B.C.D.第 1 页共33 页7.下列说法正确的有()句.①两条射线组成的图形叫做角;②同角的补角相等;③若AC=BC,则C为线段AB的中点;④线段AB就是点A与点B之间的距离;⑤平面上有三点A、B、C,过其中两点的直线有三条或一条.A.0B.1C.2D.3 8.下列标注的图形名称与图形不相符的是()A.球B.长方体C.圆柱D.圆锥9.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB中点的是()A.AM=BM B.AB=2AM C.BM=AB D.AM+BM=AB10.如图是小明画的正方体表面展开图,由7个相同的正方形组成.小颖认为小明画的不对,她剪去其中的一个正方形后,得到的平面图就可以折成一个正方体.小颖剪去的正方形的编号是()A.7B.6C.5D.411.将一张长方形纸片按如图所示的方式折叠,EC,ED为折痕,折叠后点A′,B′,E在同一直线上,则∠CED的度数为()第 2 页共33 页A.90°B.75°C.60°D.95°12.一个六棱柱模型如图所示,底面边长都是5cm,侧棱长为4cm,这个六棱柱的所有侧面的面积之和是()A.20cm2B.60cm2C.120cm2D.240cm2二.填空题13.一个棱柱有20个顶点,每条侧棱长6cm,底面每条边长是2m,则所有侧棱长是.14.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于.15.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是.16.已知线段AB,在AB的延长线上取一点C,使AC=2BC,若在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的倍.17.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c= .第 3 页共33 页18.已知:如图,B,C两点把线段AD分成2:4:3三部分,M是AD的中点,CD=6cm,则线段MC的长为.三.解答题19.如图,已知A、O、B三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.20.有一个养鱼专业户,在如图所示地形的两个池塘里养鱼,他每天早上要从住处P分别前往两个池塘投放鱼食,试问他怎样走才能以最短距离回到住地?(请用尺规作图,保留作图痕迹,不写作法)第 4 页共33 页21.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.观察并回答下列问题:(1)其中三面涂色的小正方体有个,两面涂色的小正方体有个,各面都没有涂色的小正方体有个;(2)如果将这个正方体的棱n等分,所得的小正方体中三面涂色的有个,各面都没有涂色的有个;(3)如果要得到各面都没有涂色的小正方体125个,那么应该将此正方体的棱等分.22.已知,如图,点C在线段AB上,且AC=6cm,BC=14cm,点M、N分别是AC、BC的中点.(1)求线段MN的长度;(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.23.读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;第 5 页共33 页(2)过点P作PR⊥CD,垂足为R.24.数学课上,李老师出示了如下框中的题目.如图1,在∠AOB的内部有一条射线OC把∠AOB分成两个角,射线OM、ON分别平分∠AOC、∠BOC,试探究∠MON与∠AOB之间的数量关系,并说明理由.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论:①请你在下表中填上当∠AOB为60°、90°、120°时∠MON的大小:②探索发现:无论∠AOB的度数是多少,∠MON与∠AOB的数量关系是不变的,请你直接写出结论:∠MON ∠AOB.(2)特例启发,解答题目:如图2,如果∠AOB=α,请你求∠MON的大小(用α表示).(3)拓展结论,设计新题:如图3,把一张报纸的一角斜折过去,使A点落在E点处,BC为折痕,BD是∠EBM的平分线,求∠CBD的度数.第 6 页共33 页第7 页共33 页参考答案一.选择题1.解:①∵直线AB和直线BA是同一条直线,∴①正确;②∵角是角,线是线,∴平角是一条直线,∴②错误;③两点之间,线段最短,∴③正确;④∵如果A、B、C三点不共线,则AB=BC不能得出点B是线段AC的中点,∴④错误.故选:B.2.解:因为含小黑正方形的面不能与含大黑正方形的面相邻,两个小黑正方形不能在同一行,所以B,C不是左边展形图的立体图;两个小黑正方形在大黑正方形的对面”,那么A图中,正好是大黑正方形在上面,那么小黑正方形就在底面,A符合;故选:A.3.解:∵CB=4,DB=7,∴DC=DB﹣CB=7﹣4=3,∵D是AC的中点,∴AC=DC×2=3×2=6.故选:B.4.解:A、是正方体的展开图,不合题意;B、是正方体的展开图,不合题意;C、不能围成正方体,故此选项正确;D、是正方体的展开图,不合题意.故选:C.第8 页共33 页5.解:时针转过的角度是(2+)×30°=75°,分钟转过的角度是30×6°=180°,所以钟表在2点半时,其时针和分针所成的角是180°﹣75°=105°,故选:C.6.解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β互余,故本选项正确;C、∠α与∠β不互余,故本选项错误;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:B.7.【解答】解:①由一个点出发的两条射线组成的图形叫角,故①错误;③若AC=BC,此时点C在线段AB的垂直平分线上,故③错误;④线段AB的长度是点A与点B之间的距离,故④错误;故选:C.8.解:长方体是立体图形,选项B中缺少遮挡的虚线,所以B图形名称与图形不相符.故选:B.9.解:A、由AM=BM可以判定点M是线段AB中点,所以此结论正确;B、由AB=2AM可以判定点M是线段AB中点,所以此结论正确;C、由BM=AB可以判定点M是线段AB中点,所以此结论正确;D、由AM+BM=AB不可以判定点M是线段AB中点,所以此结论不正确;因为本题选择不能判定点M是线段AB中点的说法,故选:D.10.解:根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5.故选:C.11.解:由题意知∠AEC=∠CEA′,∠DEB=∠DEB′,则∠A′EC=∠AEA′,∠B′DE=∠B′EB,第9 页共33 页所以∠CED=∠AEB=×180°=90°,故选:A.12.解:六棱柱的侧面积为:4×5×6=120(cm2).故选:C.二.填空题(共6小题)13.解:∵一个棱柱有20个顶点,每条侧棱长6cm,∴底面为10边形,有10条侧棱,∴所有侧棱长的和是10×6=60cm,故答案为:60cm.14.解:∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2﹣∠1=12°,可得:5x﹣12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°15.解:∵点B、O、D在同一直线上,∠COD=150°,∴∠COB=180°﹣150°=30°,∵OB平分∠AOC,∴∠AOC=2×30°=60°,故答案为:60°.16.解:如下图所示:设AB=1,则DA=2,AC=2,∴可得:DB=3,AC=2,∴可得线段AC是线段DB的倍.故答案为:.第10 页共33 页17.解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“﹣1”相对,面“c”与面“2”相对,“﹣3”与面“b”相对,∵相对面上的两个数都互为相反数,∴a=1,b=3,c=﹣2,则(a+b)c=(1+3)﹣2=.故答案为:.18.解:∵B,C两点把线段AD分成2:4:3三部分,∴设AB=2x,BC=4x,CD=3x,∵CD=6cm,即3x=6cm,解得x=2cm,∴AD=2x+4x+3x=9x=9×2=18cm,∵M是AD的中点,∴MD=AD=×18=9cm,∴MC=MD﹣CD=9﹣6=3cm.故答案为:3cm.三.解答题(共6小题)19.解:(1)∵A、O、B三点共线,∠AOD=42°,∴∠BOD=180°﹣∠AOD=138°;(2)∵∠COB=90°,∴∠AOC=90°,∵∠AOD=42°,∴∠COD=48°,∵OE平分∠BOD,∴∠DOE=∠BOD=69°,∴∠COE=69°﹣48°=21°.20.解:如图所示:PD→DE→EP才能以最短距离回到住地.第11 页共33 页21.解:(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有8个,两面涂色的有12个;各面都没有涂色的有1个,故答案为:8,12,1;(2)根据正方体的棱三等分时三面被涂色的有8个,有1个是各个面都没有涂色的,正方体的棱四等分时三面被涂色的有8个,有8个是各个面都没有涂色的,∴正方体的棱n等分时三面被涂色的有8个,有(n﹣2)3个是各个面都没有涂色的,故答案为:8,(n﹣2)3;(3)由(2)得将这个正方体的棱n等分,有(n﹣2)3个是各个面都没有涂色的,即(n﹣2)3=125,n﹣2=5,n=7,故答案为7.22.解:(1)∵AC=6cm,BC=14cm,点M、N分别是AC、BC的中点,∴MC=3cm,NC=7cm,∴MN=MC+NC=10cm;第12 页共33 页(2)MN=(a+b)cm.理由是:∵AC=acm,BC=bcm,点M、N分别是AC、BC的中点,∴MC=cm,NC=cm,∴MN=MC+NC=(a+b)cm.23.解:每对一问得(3分)如图,直线CD与直线AB相交于C,根据下列语句画图(1)过点P作PQ∥CD,交AB于点Q;(3分)(2)过点P作PR⊥CD,垂足为R.(6分)24.解:(1)①∵∠MOC=∠AOC,∠NOC=∠BOC,∴∠MON=∠MOC+∠NOC=∠AOC+∠BOC=∠AOB,当∠AOB=60°时,∠MON=×60°=30°,当∠AOB=90°时,∠MON=×90°=45°,当∠AOB=120°时,∠MON=×120°=60°;②由①知,∠MON=∠AOB,故答案为:①30°,45°,60°;②;第13 页共33 页(2)由(1)②知,∠MON=∠AOB,∴∠MON=α;(3)∵A点落在E点处,BC为折痕,∴∠CBA=∠CBE=∠ABE,∵D是∠EBM的平分线,∴∠EBD=∠DBM=∠MBE,∴∠CBE+∠EBD=(∠ABE+∠MBE)=∠ABM=×180°=90°.第14 页共33 页第 15 页 共 33 页人教版七年级上册第四章几何图形初步单元检测试题(含答案)一、单选题(共10题;共30分)1.如图,图中的长方形共有( )个.A. 9B. 8C. 5D. 4 2.如图所示几何图形中,是棱柱的是( )A. B. C. D.3.如图,是一个几何体的表面展开图,则该几何体是( ) A. 正方体 B. 长方体 C. 三棱柱 D. 四棱锥4.如图,∠AOC >∠BOD ,则( )A. ∠AOB >∠CODB. ∠AOB=∠CODC. ∠AOB <∠CODD. 以上都有可能5.如图所示,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC 的度数为( )A. 30°B. 40°C. 50°D. 60°6.如图,线段CD 在线段AB 上,且CD=2,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A. 28B. 29C. 30D. 317.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是( )度. A.45 B.60 C.90 D.1208.若∠AOB=90°,∠BOC=40°,则∠AOC 的度数为( )A. 50°B. 50° 或120°C. 50°或130°D. 130° 9.直棱柱的侧面都是( )A. 正方形B. 长方形C. 五边形D. 菱形 10.如果时钟上的时针、分针和秒针都是匀速地转动,那么从3时整(3:00)开始,在1分钟的时间内,3根针中,出现一根针与另外两根针所成的角相等的情况有 ( ) A. 1次 B. 2次 C. 3次 D. 4次二、填空题(共8题;共24分)11.已知∠α=36°14′25″,则∠α的余角的度数是________.12.如果一个六棱柱的一条侧棱长为5cm ,那么所有侧棱之和为________ cm13.(1)102°43′32″+77°16′28″=________;(2)98°12′25″÷5=________.14.如图,∠AOB 中,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,若∠AOB=135°,则∠EOD=________°.15.(1)32°43′30″=________°;(2)86.47°=________ °________′________″16.已知:点A、B、C在同一直线上,若AB=12cm,BC=4cm,且满足D、E分别是AB、BC的中点,则线段DE的长为________cm.17.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露.的面涂上颜色,那么涂颜色面的面积之和是________cm218.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B(________);C(________);D(________);E(________).三、解答题(共6题;共42分)19.如图,OC平分∠BOD,∠AOD=110°,∠COD=35°,求∠AOB的度数.20.直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2与∠3的度数。
七年级数学上册《第一章 基本的几何图形》单元测试卷及答案

七年级数学上册《第一章 基本的几何图形》单元测试卷及答案一、精心选一选(每小题3分,共30分)1.六棱柱由几个面围成( )A.6个B.7个C.8个D.9个2.下面形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是( )3.下列说法错误的是( ) A.若AP=BP,则点P 是线段的中点 B.若点C 在线段AB 上,则AB=AC+BCC.若AC+BC>AB,则点C 一定在线段AB 外D.两点之间,线段最短4.一个五棱锥的面数、棱数和顶点数分别是( )A.6,10,5B.6,10,6C.5,10,6D.5,6,55.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是( )6.在八面体顶点数V 、面数F 、棱数E 中,V+F -E=( )A.16B.6C.4D.2 7.如图,直线AB 、CD 相交于点O ,在这两条直线上,与点O 的距离为3cm 的点有( )A. 2个B.3个C.4个D.5个B A D CA B C DD B A8.如图所示,图中共有几条线段( )A. 4B. 5C. 10D.159.已知AB=21cm ,BC=9cm ,A 、B 、C 三点在同一条直线上,那么AC 等于( )A.30cmB. 15cmC. 30cm 或15cmD. 30cm 或12cm10.一个画家有14个边长为1cm 的正方体,他在地面上把它们摆成如图所示的形状,然后他们把露出的表面都涂上颜色,那么被涂上颜色的总面积是( )A.19cm 2B.21cm 2C.33cm 2D.34cm 2二、细心填一填(每小题3分,共30分)11.填名称:如图,图(1)是 ,图(2) ,图(3) 。
12.图甲能围成 ;图乙能围成 ;图丙能围成 。
13.写出你所熟悉的、由三个面围成的几何体的名称是14.直角三角形绕一条直角边旋转一周得到的几何体是15.如图,在正方形ABCD 中,点P 在对角线BD 上运动,当点P 运动到何处时,PA+PC 最小,在图中画出此时点P 的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学单元测试题
一、精心选一选
1.下列说法中错误的是().
A.A、B两点之间的距离为3cm
B.A、B两点之间的距离为线段AB的长度
C.线段AB的中点C到A、B两点的距离相等
D.A、B两点之间的距离是线段AB
2.下列说法中,正确的个数有().
(1)射线AB和射线BA是同一条射线(2)延长射线MN到C
(3)延长线段MN到A使NA==2MN (4)连结两点的线段叫做两点间的距离
A.1 B.2 C.3 D.4
3.下列说法中,错误的是().
A.经过一点的直线可以有无数条 B.经过两点的直线只有一条
C.一条直线只能用一个字母表示 D.线段CD和线段DC是同一条线段
4.如图4,C是线段AB的中点,D是CB上一点,下列说法中错误的是().
A.CD=AC-BD B.CD=BC
C.CD=AB-BD D.CD=AD-BC
5.如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是( ).
A.M点在线段AB上
B.M点在直线AB上
C.M点在直线AB外
D.M点可能在直线AB上,也可能在直线AB外
6.下列图形中,能够相交的是( ).
7.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C 之间的距离是().
A.8cm B.2cm C.8cm或2cm D.4cm
二、填空
8. 笔尖在纸上快速滑动写出了一个又一个字,这说明了_________;车轮旋转时,看起来像一个整体的圆面,这说明了_________;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了_____________.
9.如图,三棱锥有________个面,它们相交形成了________条棱, 这些棱相交形成了________个点.
0.如图5,各图中的阴影图形绕着直线I旋转360°,各能形成怎样的立体图形?
11.如图1-4,A,B,C,D是一直线上的四点,则 ______ + ______ =AD
-AB,AB+CD= ______ - ______ .
12.如图1-5,OA反向延长得射线 ______ ,线段CD向 ______ 延长得直线CD.
13.四条直线两两相交,最多有 ______ 个交点.
14.经过同一平面内的A,B,C三点中的任意两点,可以作出 ______ 条直
线.
三.解答题
15、右面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别
填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数。
16.读下面的语句,并按照这些语句画出图形.
(1)点P在直线AB上,但不在直线CD上。
(2)点Q既不在直线l1上,也不在直线l2上。
(3)直线a、b交于点,直线b、c交于点,直线c、a交于点。
(4)直线a、b、c两两相交。
(5)直线a和b相交于点P;点A在直线a上,但在直线b外.
17.过一点能确定几条直线?两点呢?三点呢?四点呢?
18.如图8,C为线段AB的中点,N为线段CB的中点,CN=1cm.求线段CB、线段AC、线段AB的长.
19. 如图4,AB=24cm,C、D点在线段AB上,且CD=10cm,M、N分别是AC、BD的中点,求线段MN的长.。