北师大版七年级数学上册教案第二章复习

合集下载

新北师大版七年级数学上册第二章复习

新北师大版七年级数学上册第二章复习

(5) 互为相反数的绝对值相等.即 a a . (6) a b a b或a b
5.绝对值:
在数轴上,一个数所对应的点与原点的距离叫做 该数的绝对值.
3 2 -3 –2 –1 0 1
4 2 3 4
1)数a的绝对值记作︱a︱;
2) 对任何有理数a,总有︱a︱≥0.
正数的绝对值是它本身,负数的绝对 值是它的相反数,0的绝对值是0.即
20、已知|a|=5,|b|=2, ab<0.
求:(1). a-b的值; (2). ab的值.
±5 解:(1) ∵|a|=5,∴a=_______
∵|b|=2,∴b=_______ ±2 ∵ab<0 ∴当a= 5 时,b= -2 , 此时 a-b=___ 7 当a= -5 时,b= 2 ,此时 a-b=___ -7
有 理 数
有 理 数

整数

正整数:如 1、2、3……
零:
0
负整数:如-1、-2、-3…
分数
正分数: 如 1/2 、1/3、5.2 负分数:如 -1/5、-3.5、-5/6
正有理数 0 负有理数
1、数轴:带箭头直线、原点、单位长度 -3 –2 –1 0 1 2 3 4
1)在数轴上表示的两个数, 右边的数总比左边的数 大 ;
4


1 5
4
4. 2 3

2

1 2007 1 1 0.5 3
1 解.原式 2 9 1 1 6
11 77 7 6 6
=11+(-22) – ( - 33 ) =11+(-22) + 33 =22

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

第二章有理数及其运算1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,知道|a|的含义(这里a表示有理数).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).4.理解有理数的运算定律,能运用运算律简化计算.5.能运用有理数的运算解决简单的问题.1.在求一个数的相反数和绝对值的过程中,让学生掌握求有理数的相反数和绝对值的方法.2.能按照有理数的运算法则进行有理数的加、减、乘、除及混合运算,掌握计算的方法和技巧.3.能用科学记数法表示数,以及用四舍五入法取近似数,掌握其表示的方法.1.在认识数的过程中,体验知识之间的必然联系,激发学生爱数学、学数学的兴趣.2.培养学生养成认真做题的良好习惯,认识数学是解决实际问题和进行交流的重要工具.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.对于负数的引入,教材借助生活中的实例,引进负数,让学生在活动中体会数概念的扩张,了解负数的本质意义,然后再指出可以用正负数表示现实生活中具有相反意义的量,使学生感受到负数的引入源自实际生活的需要,体会数学知识与现实世界的联系.就学生的学习而言,负数的概念、意义有一定的抽象性,为什么要引进负数正是学生理解的困难所在.从数学的发展进程来看,数的出现的主要原因更多的是由于对实际现象(事物)“表示”的需要.所以教材遵循历史发展的过程,采用这样的线索展开:产生的实际背景——有理数的意义——数的表示.对于有理数运算法则的获得,教材没有采用直接给出的方式而是设置了丰富的现实背景,如足球比赛中的净胜球数、气温变化等,以直观形象地解释、归纳、探索的方式,寻求有理数运算法则和运算律.如有理数的加法法则,仅仅借助数轴理解,学生会有一定的困难,所以教材先从知识竞赛中的答对题数与答错题数入手,使学生首先理解(+1)+(- 1)=0和(- 1)+(+1)=0,然后利用“正负抵消”的思想,讨论整数加法的几种情形,最后再由特例归纳出有理数的加法法则,并借助数轴加深理解.基于有理数运算的学习重点是对法则和运算律的理解,所以为了避免因为小数、分数运算的复杂性而冲淡学习的重点,有理数的运算以整数运算的学习为出发点,然后过渡到含有小数、分数的运算.【重点】理解有理数的意义,掌握有理数的运算法则和运算律,会用科学记数法表示较大的数.【难点】利用有理数的加、减、乘、除、乘方等运算解决简单的实际问题.1.负数是一个比较抽象的概念.在教学中应该让学生充分了解引入负数的必要性和实际背景,通过生活中具有相反意义的量的讲解,让学生接受负数的概念.2.本章的重点内容是有理数的运算,所以一定要让学生有足够的练习的机会,只有通过一定量的计算实践,才能真正体会并熟练掌握有理数计算的一些技巧.让学生通过计算、观察、猜测、归纳等数学活动,自己总结出有理数的运算律.3.对绝对值概念的学习也要有一个循序渐进的过程,与绝对值相关的知识,如数轴上两点之间的距离的表示、绝对值不等式等,都是在后续学习中要专门安排的,因此这里不要涉及.本章安排绝对值概念,目的是为有理数的运算作准备,会求一个数的绝对值就达到了本章的要求.教材中用字母表示求一个数的绝对值的结论,只是给出一个数的绝对值的符号表示,教学时不要对这个符号表示进行变式训练,更不要在绝对值中出现字母并加以讨论.4.计算器是一个既简便又实用的计算工具,让学生通过实际操作,掌握计算器的基本用法.5.在本章的学习中,要注意数形结合思想、转化与化归思想、分类讨论思想的运用.1有理数1课时2数轴1课时3绝对值1课时4有理数的加法2课时5有理数的减法1课时6有理数的加减混合运算3课时7有理数的乘法2课时8有理数的除法1课时9有理数的乘方2课时10科学记数法1课时11有理数的混合运算1课时12用计算器进行运算1课时本章概括整合1课时1有理数1.通过实例理解引入负数的必要性和负数应用的广泛性,理解有理数的含义,体会有理数应用的广泛性.2.能用正数和负数表示具有相反意义的量.3.培养逻辑思维能力,以及按一定规律对事物进行分类整理的能力.会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,能把有理数合理分类和把具体数正确归类.1.通过实例,使学生深刻体会到有理数和负数的实用性,加深对数的理解.2.让学生体会到数学中的基本概念都来源于实际需要.3.让学生进一步了解学习数学对于解决实际生活中各种问题的必要性,增强学习数学知识的兴趣.【重点】负数的意义、特点及实际应用,有理数的概念,能够对学过的数进行分类.【难点】正确用正、负数表示生活中具有相反意义的量,正确理解有理数的概念,会合理进行有理数的分类和把具体数归类到相应的数集.【教师准备】多媒体课件.【学生准备】预习教材P23~24.导入一:师:同学们小学都学过哪些数?生:整数、小数、分数、奇数、偶数……师:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确,小数也属于分数.那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?[设计意图]通过介绍数的产生与发展,向学生渗透“实践第一”的辩证唯物主义观点,使同学们感到数的每一次发展都是为了满足社会生产与生活的需要,也为讲述有理数概念及其分类做好铺垫.导入二:观察课本P22的图片.珠穆朗玛峰高出海平面8844 m,记作:+8844 m;吐鲁番盆地低于海平面155 m,记作: - 155 m.教师出示图片,并提出问题:1.生活中我们会遇到用负数表示的量,你能说出一些例子吗?2.你在小学的学习中对负数有什么样的认识?3.有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题.[设计意图]通过提供学生熟悉的情境引导学生回顾小学有关负数的知识,三个问题不仅为本节课成功引入,也为本章的学习做了铺垫.学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了学生学习本章内容的兴趣.(出示课件1)(例题讲解)请同学们完成以下问题,并与同伴交流.某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个队答题情况如下表:答题情况第一队第二队如果答对题所得的分数用正数表示,那么你能写出每个队答题得分的情况吗?思路一试完成下表:答对题的得分答错题的得分未回答题的得分第一队+6第二队- 2思路二提出思考问题:(1)第一队答对几题?是如何表示的?答错几题?又是如何表示的?(2)第二队答对几题?是如何表示的?答错几题?又是如何表示的?(3)如何理解+6和- 2?(出示课件2)(教材议一议)生活中你见过其他用负数表示的量吗?与同伴进行交流.想一想:根据上面各队分数的计算及2010年全国居民消费价格的上涨情况及温度计上的温度,你能知道正、负数和零的大小关系吗?[处理方式]学生思考交流,完成后再展示说明,学生之间互相补充,教师适时点评.师生总结:“加分与扣分”“上涨量与下跌量”“零上温度与零下温度”等都是具有相反意义的量.为了表示具有相反意义的量,我们把其中一个量规定为正的,用正数来表示,而把与这个意义相反的量规定为负的,用负数来表示.[设计意图]本活动的设计意在引导学生通过自主探究、合作交流,用知识竞赛得分的情境启发学生用正、负数表示相反意义的量.通过练习引导学生举一反三地找出身边可以用正、负数表示的量,从而体会学习负数的必要性.从学生熟悉的情境讨论问题,学生积极参与,在教师的引导下寻找生活实例的过程中充分体会学习负数是生活的需要.探究活动2用正、负数表示生活中具有相反意义的量(出示课件3)(教材例题)(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02 g,那么- 0.03 g 表示什么?(3)某大米包装袋上标注着“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示什么?[处理方式]学生先独立思考,再小组交流如何用正、负数表示生活中具有相反意义的量.思路一如果用+5圈表示沿逆时针方向转了5圈,那么和逆时针方向具有相反意义的量是,所以沿顺时针方向转了12圈可表示为;一只乒乓球超出标准质量0.02 g记作+0.02 g,那么和超出标准质量具有相反意义的量是,所以- 0.03 g可以表示为;综上所述,“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示.思路二(1)想一想:什么是具有相反意义的量?(2)品一品:如何表示具有相反意义的量?(3)考一考:和逆时针方向具有相反意义的量是,和超出标准质量具有相反意义的量是.【师生活动】学生讨论,教师巡视发现问题,并及时解决.解:(1)沿顺时针方向转了12圈记作- 12圈.(2) - 0.03 g表示乒乓球的质量低于标准质量0.03 g.(3)每袋大米的标准质量应为10 kg,但实际每袋大米可能有150 g的误差,即每袋大米的净含量最多是10 kg+150 g,最少是10 kg - 150 g.反馈练习(出示课件4) (1)在知识竞赛中如果用“+10”表示加10分,那么扣20分记作什么? (2)东、西为两个相反方向,如果 - 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?(3)某粮库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作什么?议一议:你能选定一个高度为标准,用正、负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.通过例题和练习题的分析,让学生知道用正、负数表示相反意义的量时要明确“基准”.教材例题中各题的基准分别是“转盘静止不动”“一只乒乓球的标准质量”“10 kg ”. “议一议”则联系生活实际让学生学会如何选定“基准”.学生认识当用正、负数表示相反意义的量时要考虑“基准”.“0”是常用的基准,但不是所有的基准都必须为0.探究活动3 有理数的概念及分类1.新的整数、分数概念:引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数.整数和分数统称为有理数.(有理数分类结构图如下)有理数{整数{正整数0负整数分数{正分数负分数 2.有理数的分类.问题:为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法呢?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:对有理数的分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.[设计意图] 使学生在原有认知结构的基础上,将数扩充到了有理数的范围.通过练习使学生加深理解有理数的意义.[知识拓展] 对正数和负数的理解要注意以下几点:(1)并不一定必须将某一种量规定为正,若将其中的一种量规定为正,则与其意义相反的量即为负.(2)零既不是正数,也不是负数,这个数十分特殊,随着我们的学习,对于零这个数将有更深刻的认识.(3)负数前面的“一”号,表示这个数的性质,是性质符号,读作“负”号,但正数前面的“+”可以省略.即时巩固将下列各数填入到相应的数集中: - 2015, - 13,14,12, - 513, - 7.3,3,369,0.1,92, - 374.正数集合{ …}; 负数集合{ …}; 正整数集合{ …}; 负整数集合{ …}; 分数集合{ …}; 负分数集合{ …}; 负有理数集合{ …}; 有理数集合{ …}.〔解析〕 小数 - 7.3,0.1都属于分数,369=4不属于分数.(学生口述解答过程,师总结、板演)1.正数与负数都来自于生活实际,用正、负数可以表示实际问题中具有相反意义的量.2.正数前面添上“ - ”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3.有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.1.如果将汽车向东行驶3千米记为+3千米,那么记为 - 3千米表示的是 ( )A.向西行驶3千米B.向南行驶3千米C.向北行驶3千米D.向东南方向行驶3千米解析:先根据向东行驶3千米记为+3千米,可确定向西为负,而 - 3千米表示的应是向西行驶3千米.故选A .2.在0,2, - 7, - 513,3.14, - 317, - 3,+0.75中,负数共有 ( )A.1个B.2个C.3个D.4个解析:在正数的前面加上“ - ”号的数即是负数,本题中的 - 7, - 513, - 317, - 3是负数.故选D .3.飞机上升了 - 80米,实际上是 ( ) A.上升80米 B.下降 - 80米C.先上升80米,再下降80米D.下降80米解析:解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.负号表示与上升意义相反,即下降.故选D .4.举一个能用正数、负数表示生活中的量的实例,并解释其中相关数量的含义.解:本题答案不唯一,只要满足题意即可,如:河道中第一天的水位是 - 0.2米,第二天的水位是+0.3米,其中 - 0.2米表示比正常水位低0.2米,+0.3米表示比正常水位高0.3米.1有理数1.认识生活中的负数.2.用正、负数表示生活中具有相反意义的量.3.有理数的概念及分类.一、教材作业【必做题】教材第26页习题2.1的2,3题.【选做题】教材第26页习题2.1的4,5题.二、课后作业【基础巩固】1.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数2.向东运动记作“+”,向西运动记作“- ”,下列说法正确的是()A. - 5米表示向东运动了5米B.向西运动5米表示向东运动了- 5米C.+5米表示向西运动了5米D.向西运动5米也可以记作向西运动- 5米3.武汉市夏季气温比较高,若以30 ℃为标准,高出标准的为正,低于标准的为负,则38 ℃与28 ℃分别记作()A.+8 ℃- 2 ℃B.+8 ℃+2 ℃C. - 8 ℃- 2 ℃D. - 8 ℃+2 ℃4.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在温度范围内保存才合适.5.请指出下列各数中哪些是正数,哪些是负数.- 18,+227,3.1416,0.2011, - 35, - 0.1010…, - π, - 2,99%.【能力提升】6.如果海平面的高度为0 m,一潜水艇在海平面以下40 m处航行,一条鲨鱼在潜水艇上方10 m 处游动,试用正、负数分别表示潜水艇和鲨鱼的高度.7.用正数和负数表示下列具有相反意义的量.(1)钟表的指针逆时针方向旋转20°记作- 20°,顺时针方向旋转30°记作;(2)运进200箱记作,运出150箱记作- 150箱.【拓展探究】8.某日小明在一条南北方向的公路上跑步,他从A地出发,如果把向北跑1100 m记作- 1100 m,那么他向北跑1100 m时向后转又继续跑了1200 m是什么意思?这时他停下来休息,此时他在A地的什么方向?距A地多远?【答案与解析】1.D(解析:根据0既不是正数,也不是负数,可以判断A,B,C都错误,D正确.故选D.)2.B(解析:A. - 5米表示向西运动了5米,故A错误;C.+5米表示向东运动了5米,故C错误;D.向西运动5米记为- 5米,故D错误.故选B.)3.A (解析:因为以30 ℃为标准,高出标准的为正,低于标准的为负,所以38 ℃与28 ℃分别记作:+8 ℃, - 2 ℃.故选A.)4.18~22 ℃(解析:温度是20 ℃±2 ℃,表示最低温度是20 ℃- 2 ℃=18 ℃,最高温度是20 ℃+2 ℃=22 ℃,即18~22 ℃之间是合适温度.)5.解:正数有:+227,3.1416,0.2011,99%;负数有: - 18, - 35, - 0.1010…, - π, - 2.6.解:因为海平面的高度为0 m,所以低于海平面的高度为负数,由于潜水艇和鲨鱼的高度都在海平面的下方,故分别为- 40 m和- 30 m.7.(1)+30°(2)+200箱8.解:如果把向北跑1100 m 记作 - 1100 m ,那么他向北跑1100 m 时向后转又继续跑了1200 m ,说明小明又向南跑了1200 m ,此时他在A 地的南边,距A 地的距离=1200 - 1100=100(m ).本节课从学生较熟悉的珠穆朗玛峰、气温开始,接下来从具体问题情境出发,使学生感受到现有的数确实不够用了,唤起学生的好奇心和求知欲,然后引出负数、正数和零的概念和实际意义,接着引导学生回顾、总结学过的数,告诉学生有理数的意义,和学生一起探讨有理数的分类,这样学生易于接受,在学习过程中,学生经历了观察、比较、归纳、总结,学会了研究问题、解决问题的方法,加深了对所学知识的理解,完成了从数不够用到数可以表示具有相反意义的量的成长过程。

北师大版数学七年级上册《 第二章 有理数及其运算 》教案

北师大版数学七年级上册《 第二章 有理数及其运算 》教案

北师大版数学七年级上册《第二章有理数及其运算》教案一. 教材分析《第二章有理数及其运算》这一章主要介绍了有理数的概念、分类及有理数的运算规则。

内容涵盖了有理数的概念、分类、加减乘除运算、乘方运算等。

这部分内容是整个初中数学的基础,对于学生理解和掌握后续知识具有重要意义。

二. 学情分析学生在学习这一章内容时,已经具备了初步的数学运算能力,对数学概念有一定的理解。

但部分学生可能对有理数的概念和分类理解不深,对于有理数的运算规则容易混淆。

因此,在教学过程中,需要注重对学生概念的理解和运算规则的训练。

三. 教学目标1.理解有理数的概念,掌握有理数的分类。

2.掌握有理数的加减乘除运算规则,能够熟练进行计算。

3.理解有理数的乘方运算规则,能够进行相应的计算。

4.培养学生的运算能力和逻辑思维能力。

四. 教学重难点1.有理数的概念和分类。

2.有理数的运算规则,特别是乘方运算。

五. 教学方法采用讲解、示例、练习、讨论等教学方法,通过引导学生自主探究、合作交流,让学生在实践中掌握知识,提高能力。

六. 教学准备1.准备相关的教学课件和教学素材。

2.准备练习题,包括基础题和拓展题。

七. 教学过程1.导入(5分钟)通过复习小学学过的加减乘除运算,引出有理数的概念和分类。

2.呈现(15分钟)讲解有理数的概念和分类,示例说明有理数的运算规则。

3.操练(15分钟)让学生进行有理数的加减乘除运算,引导学生掌握运算规则。

4.巩固(10分钟)让学生进行一些有关有理数的运算题目,巩固所学知识。

5.拓展(10分钟)讲解有理数的乘方运算规则,让学生进行相关的计算。

6.小结(5分钟)对本节课的主要内容进行总结,强调重点和难点。

7.家庭作业(5分钟)布置一些有关有理数运算的题目,让学生课后巩固。

8.板书(课后整理)整理本节课的主要板书内容,方便学生复习。

教学过程每个环节所用时间共计50分钟,剩余10分钟用于学生自主学习和教师解答疑问。

针对以上教案对教学情境和教学活动的分析如下:一、教学情境本节课的主题是有理数及其运算,我通过创设生动有趣的教学情境,激发学生的学习兴趣。

2024秋七年级数学上册第2章有理数及其运算2.9有理数的乘方教案(新版)北师大版

2024秋七年级数学上册第2章有理数及其运算2.9有理数的乘方教案(新版)北师大版
5.教学工具:确保教师能够使用投影仪、电脑、白板等教学工具,以便进行多媒体教学和互动式教学。
6.学习平台:如果可能,准备在线学习平台或教学管理系统,以便进行在线教学、布置和批改作业,以及进行学生学习情况的跟踪和评估。
7.教学资源库:建立教学资源库,收集与本节课相关的教学资源,如教案、课件、练习题、案例分析等。这些资源将有助于教师进行教学设计和教学活动的实施。
④有理数乘方的注意事项:
1.防止乘方运算中的错误。
2.注意负数的乘方运算规则。
⑤有理数乘方的练习题:
1.计算a^n,其中a是任意有理数,n是正整数。
2.计算a^(-n),其中a是任意有理数,n是正整数。
3.计算(-a)^n,其中a是任意有理数,n是正整数。
⑥有理数乘方的拓展:
1.有理数的乘方在生活中的应用。
3.重点难点解析:在讲授过程中,我会特别强调乘方的运算法则和零指数幂、负指数幂这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘方相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示有理数乘方的基本原理。
3.实验器材:本节课可能需要一些简单的实验器材,如计算器、纸张、铅笔等,以确保学生能够进行乘方运算的实践练习。另外,如果有条件,可以准备一些物理实验器材,如测量工具、计时器等,以便进行与乘方相关的实验。
4.教室布置:根据教学需要,对教室进行适当的布置。将学生分组,设置讨论区,以便学生进行小组讨论和合作学习。同时,布置一些展示区,用于展示学生的学习成果和作品。
3.学生可能遇到的困难和挑战:学生在学习有理数的乘方时可能遇到的困难和挑战包括:理解乘方的概念和意义,如何将乘方运用到具体的计算中,以及如何解决与乘方相关的实际问题。学生可能对于乘方的计算规则不太理解,或者在实际操作中容易出错。此外,学生可能对于如何将乘方应用到解决实际问题中感到困惑,不知道如何运用乘方的知识来解决具体的问题。

北师大版初中数学七年级上册《第二章 有理数及其运算 3 绝对值》 公开课教案_4

北师大版初中数学七年级上册《第二章 有理数及其运算 3 绝对值》 公开课教案_4

第二章有理数及其运算3.绝对值一、学生起点分析上的点来表示有理数,也已经知道数轴上的一个点与原点的距离,会比较这些距离的大小。

并初步体会到了数形结合的思想方法。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了归纳、比较、交流等一些活动,解决了一些简单的现实问题,感受到了数学活动的重要性;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、学习任务分析1.地位和内容相反数的概念是学习绝对值知识的基础,绝对值知识是解决有理数比较大小、距离等知识的重要依据,同时它也是我们后面学习有理数运算的基础。

本节课借助数轴引出相反数、绝对值的概念,并通过计算、观察、交流,发现绝对值的性质特征,利用绝对值来比较两个负数的大小。

应让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和字母,多鼓励学生通过观察、归纳、验证,加深对绝对值的理解。

2.教学重点和难点教学重点:理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

教学难点:利用绝对值比较两个负数的大小。

3. 教学目标(1)借助数轴,理解绝对值和相反数的概念(2)知道|a|的含义以及互为相反数的两个数在数轴上的位置关系。

(3)能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小。

(4)通过应用绝对值解决实际问题,体会绝对值的意义和作用。

三、教学过程设计第一环节创设情境,导入新课活动内容1: 3和-3有什么相同点与不同点?3/2与-3/2,5和-5呢?活动内容2:点将游戏一。

A 同学任意说出一个有理数,再随意地点另一个同学B 回答它的相反数。

B 同学回答后,也任意说出一个有理数,再点另一个同学C 回答它的相反数……以此类推,约有一半的学生参与后,游戏结束。

活动内容3:将上面三组数用数轴上的点表示出来,每组数所对应的点在数轴上的位置有什么关系?第二环节 合作交流,探索新知活动内容:让学生观察图画,并回答问题,“两只狗分别距原点多远?”1.引入绝对值概念在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。

北师大七年级数学第二章教案文案

北师大七年级数学第二章教案文案

北师大七年级数学第二章教案文案教学重点是教材中举足轻重、关键性的、最基本的、最重要的中心内容,是课堂结构的主要线索,掌控了这部分内容,对于巩固旧知识和学习新知识都起着决定性作用。

今天作者在这里整理了一些北师大七年级数学第二章教案202X文案,我们一起来看看吧!北师大七年级数学第二章教案202X文案1相反数教学目标 1,掌控相反数的概念,进一步知道数轴上的点与数的对应关系;2,通过归纳相反数在数轴上所表示的点的特点,培养归纳能力;3,体验数形结合的思想。

教学难点归纳相反数在数轴上表示的点的特点知识重点相反数的概念教学进程(师生活动) 设计理念设置情境引入课题问题1:请将下列4个数分成两类,并说出为何要这样分类4, -2,-5,+2答应学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特点的分法。

(引导学生视察与原点的距离)摸索结论:教科书第13页的摸索再换2个类似的数试一试。

归纳结论:教科书第13页的归纳。

以开放的情势创设情境,以学生进行讨论,并培营养类的能力培养学生的视察与归纳能力,渗透数形思想深化主题提炼定义给出相反数的定义问题2:你怎样知道相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为何?学生摸索讨论交换,教师归纳总结。

规律:一样地,数a的相反数可以表示为-a摸索:数轴上表示相反数的两个点和原点有什么关系?练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特点做准备。

深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

强化互为相反数的数在数轴上表示的点的几何意义给出规律解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?学生交换。

分别表示+5和-5的相反数是-5和+5练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法小结与作业课堂小结 1,相反数的定义2,互为相反数的数在数轴上表示的点的特点3,怎样求一个数的相反数?怎样表示一个数的相反数?本课作业 1,必做题教科书第18页习题1.2第3题2,选做题教师自行安排本课教育评注(课堂设计理念,实际教学成效及改进假想)1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特别数的特点.这两个特别数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的运用.所以本教学设计环绕数量和几何意义展开,渗透数形结合的思想.2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并视察它们的特点,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的知道;问题2能帮助学生准确掌控相反数的概念;问题3实际上给出了求一个数的相反数的方法.3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,视察归纳,重视学生的思维进程,并给学生留有发挥的余地.北师大七年级数学第二章教案202X文案2教学目标1,掌控绝对值的概念,有理数大小比较法则.2,学会绝对值的运算,会比较两个或多个有理数的大小.3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.教学难点两个负数大小的比较知识重点绝对值的概念教学进程(师生活动) 设计理念设置情境引入课题星期天黄老师从学校动身,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,运算这天汽车共耗油多少升?学生摸索后,教师作以下说明:实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;视察并摸索:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,视察图形,说出朱家尖黄老师家与学校的距离.学生回答后,教师说明以下:数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一样地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|例如,上面的问题中|20|=20,|-10|=10明显,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.由于绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此视察与摸索,为建立绝对值概念作准备.合作交换探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?、-3,5,0,+58,0.6要求小组讨论,合作学习.教师引导学生利用绝对值的意义先求出答案,然后视察原数与它的绝对值这两个数据的特点,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).巩固练习:教科书第15页练习.其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判定能力有较高要求,要注意摸索的周密性,要让学生体会出不同说法之间的区分. 求一个数的绝时值的法则,可看做是绝对值概念的一个运用,所以安排此例.学生能做的尽量让学生完成,教师在教学进程中只是组织者.本着这个理念,设计这个讨论.结合实际发觉新知引导学生看教科书第16页的图,并回答相干问题:把14个气温从低到高排列;把这14个数用数轴上的点表示出来;视察并摸索:视察这些点在数轴上的位置,并摸索它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?学生交换后,教师总结:14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.要求学生在头脑中有清楚的图形. 让学生体会到数学的规定都来源于生活,每一种规定都有它的公道性数在大小比较法则第2点学生较难掌控,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习,加强数与形的想象。

北师大版七年级数学上册第二章有理数及其运算全章教案

北师大版七年级数学上册第二章有理数及其运算全章教案
在实践活动和小组讨论环节,学生们表现出了很高的热情。他们能够将所学知识应用到解决实际问题中,这让我感到很欣慰。不过,我也注意到,有些学生在小组讨论中不够积极主动,可能是因为他们对问题的理解还不够深入。在接下来的课程中,我会尝试提供更多的引导,鼓励每个学生都参与到讨论中来,提高他们的参与度和思考能力。
五、教学反思
今天在教授有理数及其运算这一章节时,我发现学生们对有理数的概念和分类掌握得相对较好,但在具体的运算规则上,尤其是负数的乘除法则上,还存在一些困难。在课堂上,我尝试通过生动的例子和实际操作来帮助学生理解,但效果似乎并不如预期。
我意识到,有理数的乘除法对于刚接触负数的学生来说确实是一个挑战。在今后的教学中,我需要更加耐心地引导学生,通过更多的实际例题和练习,帮助他们逐步克服这个难点。同时,我也应该鼓励学生多提问,及时解答他们的疑惑,确保他们对这些概念有清晰的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数的基本概念。有理数是可以表示为两个整数之比的数,包括正整数、负整数、零以及分数。它是数学运算的基础,广泛应用于日常生活和科学研究。
2.案例分析:接下来,我们来看一个具体的案例。通过温度变化的例子,展示有理数在实际中的应用,以及如何帮助我们解决问题。
-乘法中,两个负数相乘得正数的规则需要通过实例反复强化。
-除法中,理解“除以一个负数等于乘以它的倒数”的概念,并通过具体计算加深理解。
-通过具体的例子(如-2的平方和-2的立方),让学生观察和总结规律。
-难点三:在实际问题中的应用,如何将实际问题转化为有理数的运算问题。
此外,我也在思考如何让总结回顾环节更加高效。今天的总结回顾可能过于简单,没有充分激发学生的思考。未来,我打算在这一环节加入一些互动性强的活动,比如让学生自己总结今天学到的知识点,并尝试用他们自己的语言解释给其他同学听。这样既能检验他们的掌握程度,也能促进他们的表达能力。

新北师大版七年级数学上册第二章教案:有理数及其运算

新北师大版七年级数学上册第二章教案:有理数及其运算

新北师大版七年级数学上册第二章教案:有理数及其运算一、教学目标:知识与技能:了解正数与负数是从实际需要中产生的;理解正数与负数的概念,会判断一个数是正数还是负数;会用正负数表示具有相反意义的量;掌握有理数的分类,能将给出的有理数进行分类。

过程与方法:通过生活中的实例,体会负数引入的必要性和有理数应用的广泛性;培养学生对问题分析抽象概括能力,提高学生语言表达能力,培养学生的数感和符号意识,渗透分类讨论思想和集合思想。

情感态度价值观:通过有趣的富有挑战性的生活中的实际问题,激发学生学习的兴趣和探索知识的欲望,培养学生学习的自信心和探索精神.通过小组活动培养学生合作精神及团队精神。

二、教学重难点:教学重点:学生能从生活的需要和运算的需要理解负数的产生,理解正数与负数的概念,会判断一个数是正数还是负数;会用正负数表示具有相反意义的量;掌握有理数的分类,能将给出的有理数进行分类。

教学难点:体会分类的数学思想。

三、教学方法:自主探索式学习法、谈论法。

四、教学过程:(一)课前研究:1.自主学习教材p22-24,要求:(1)书中提到的问题请把你认为的答案写在书上;(2)把你认为重要的词句勾画(不同颜色、不同符号)出来。

2.前测:完成教材p25,随堂练习1、2(做在书上)3.思考:(1)通过学习,你认为“负数”是怎样产生的?(2)你认为“分类”时要注意什么?把有理数分类,除了书中的分类方式,你还可以怎样对有理数分类?4.你知道有关“负数产生”的历史吗?请把你所了解的讲给我们听。

(二)课中展示:1.在小组中解决“课前研究”1、2、3,让小组长把疑惑的问题写出来(黑板展示);2.疑惑的问题解决:组间交流,老师解惑;展示过程老师总结知识点:定义1:像5,3,1,0.68, 53 ,…,这样比0大的数叫做正数; 在正数前面加上“-”号的数叫做负数,如-1,-3,-53,…,负数比0小。

定义解读——关键词:正数前面,加上“-”号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 有理数及其运算小结与复习一、有理数的意义 1.有理数的分类知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,11或2.数轴知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a )右边的数总比左边的数大,b )正数都大于零,c )负数都小于零,d )正数大于一切负数 3. 相反数知识点: 只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。

4. 绝对值知识点: 一个数a 的绝对值就是数轴上表示数a 的点与原点的距离,数a 的绝对值记作∣a ∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a >0,则∣a ∣=a. 若a =0,则∣a ∣=0. 若a <0,则∣a ∣=﹣a ;绝对值越大的负数反而小;两个点a 与b 之间的距离为:∣a -b ∣。

二、有理数的运算 1. 有理数的加法知识点:有理数的加法法则:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。

加法交换律:a+b=b+a ; 加法结合律:a+b+c=a+(b+c )多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。

2. 有理数的减法知识点:有理数的减法法则:减去一个数等于加上这个数的相反数,即 a -b=a+(-b )。

注意:运算符号“+”加号、“-”减号与性质符号“+”正号、“-”负号统一与转化,如a -b 中的减号也可看成负号,看作a 与b 的相反数的和:a+(-b );一个数减去0,仍得这个数;0减去一个数,应得这个数的相反数。

3. 有理数的加减混合运算知识点:有理数的加减法混合运算可以运用减法法则统一成加法运算;加减法混合运算统一成加法运算以后,可以把“+”号省略,使算式变得更加简洁。

4. 有理数的乘法知识点:乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和0相乘都得0。

几个不等于0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

几个数相乘,有一个因数为0,积就为0。

乘法交换律:ab=ba 乘法结合律:abc=a (bc ) 乘法分配律:a (b+c )=ab+bc 5. 有理数的除法知识点:除法法则1:除以一个数等于乘上这数的倒数,即a ÷b=ba=a ·b1(b ≠0即0不能做除数)。

除法法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

倒数:乘积是1的两数互为倒数,即a ·a1=1(a ≠0),0没有倒数。

注意:倒数与相反数的区别 6. 有理数的乘方知识点:乘方:求n 个相同因数的积的运算。

乘方的结果叫幂,a n中,a 叫做底数,n 叫做指数。

乘方的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何次幂都为0。

7. 有理数的混合运算知识点:运算顺序:先乘方,再乘除,最后算加减,遇到有括号,先算小括号,再中括号,最后大括号,有多层括号时,从里向外依次进行。

技巧:先观察算式的结构,策划好运算顺序,灵活进行运算。

【巩固练习1】一.选择题1. 关于数“0”,以下各种说法中,错误的是 ( )A. 0是整数B. 0是偶数C. 0是自然数D. 0既不是正数也不是负数 2. –3.782: ( )A. 是负数,不是分数B. 不是分数,是有理数C. 是分数,不是有理数D. 是分数,也是负数二、将下列各数填入相应的集合中。

71,-1,12,0,-3.01,0.62,-15,-218,180,-42,-45%,π,1。

整数:______________________ 自然数:___________________________ 正数:______________________ 负数: ___________________________ 偶数:______________________ 奇数: ___________________________分数:______________________ 非负数:___________________________ 非负整数: _________________ 非正分数:_________________________ 非负有理数:________________ 有理数: __________________________ 三、填空题1、一个数的绝对值是 6 ,这个数是 。

2、绝对值小于3的整数有 个。

3、119-的相反数的倒数是 。

4、计算:20022(1)(2)0-⨯-⨯= 。

5、如果216a =,那么 a= 。

6、如果规定上升8米记作8米,那么-7米表示 ______________。

7、最小的正整数是____,最大的负整数是_____,绝对值最小的有理数是_______ 8、 河道中的水位比正常水位低0.2m 记作-0.2m ,那么比正常水位高0.1m 记作________。

9、一潜艇所在深度是-80米,一条鲨鱼在艇上30m 处,鲨鱼所在的深度是________。

【巩固练习2】一.填空题1. 数轴上与表示﹣2点相距3个单位的点所表示的数是________。

2. 数轴表示+3和﹣3的点离开原点的距离是______个单位,这两个点的位置分别在_______点右边和左边。

3. 在有理数中最大的负整数是________, 最小的正整数是________, 最大的非正数是________, 最小的非负数是________.4. 用“>”或“<”号填空:1)3.5 ____ 0 ; 2) ﹣2.8 ____ 0 ; 3) ﹣1.95 ____ 1.59 ; 4) ____ ;5) ____ ﹣0.3 ; 6) ﹣0.67 ____ ; 7) ____ ;8) ﹣π ____ ﹣3.14 ; 9) ﹣1.6 ____ ﹣1.6 ; 10) ﹣( ) ____ ﹣(﹣∣ ∣) .【巩固练习3】一.填空题1. 如果一个数的相反数是它本身, 则这个数是________.2. 如果一个数的相反数是最小的正整数, 则这个数是________.3. 若1=b a , 则a 与b________; 若1-=ba, 则a 与b________; 若a+b=0, 则a 与b________.4. 在数轴上与-3距离4个单位的点表示的数是5.写出大于-4且小于3的所有整数为______________; 二、求下列各数的相反数 0.26 ;52-;π-3 ;﹣a ;﹣x+1 ; m+1 ;2xy ;a -b 。

三、在数轴上表示出下列各数的相反数的点,并比较大小。

213-,4,﹣1.5,212,0,1,8,﹣2,﹣(﹣4.5),∣41-∣【巩固练习4】一.选择题1. ﹣∣﹣3∣是 ( ) A. 正数 B. 负数 C. 正数或0 D. 负数或02. 绝对值最小的整数是 ( ) A. 0 B. 1 C. –1 D. 1和-1二、填空题 1.若a =213-, 则∣a ∣=________; 若∣a ∣=3, 则a =________. 2.﹣∣﹣324∣=______; ∣﹣413∣-∣﹣321∣=______; ∣﹣0.77∣÷∣+432∣=_______;3.绝对值小于4的负整数有 个,正整数有 个,整数有 个 三、解答题1. 已知∣x+y+3∣=0,求∣x+y ∣的值。

2. 已知 A ,B 是数轴上两点,A 点表示﹣1,B 点表示3.5,求A ,B 两点间的距离。

3. 已知:∣a +2∣+∣b -3∣=0,求2a 2-b +1的值。

【巩固练习5】计算:1) ﹣31-21+65-(43-); 2) 1-2+3-4+5-6+…+99-100;3) ﹣(﹣8)-∣﹣6∣-∣+8∣-(+7); 4))434000()321999()652000(-+---。

【巩固练习6】计算:1)(215-)×313; 2) 512-×1132÷(212-); 3)252449×(-5);4)(12787431+-)÷)241(-; 5))241(-÷(12787431+-) ; 6))7229(-÷(-5);【巩固练习7】1.计算:(-5)3; -53;2)43(-;432-;(-1)2001; )211(-3。

2. 若∣x +1∣+(2x -y +4)2= 0 ,求代数式x 5y +xy 5的值。

【巩固练习8】计算:(1)3)(31-⨯; (2)⎪⎭⎫ ⎝⎛-÷71215 (3) ()2332-- (4)3520(4)-⨯+÷-(5)322)8.0()32(3÷-⨯- (6)()⎪⎭⎫⎝⎛+⨯-654360 (7)⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-÷5637310 (8)⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫⎝⎛-⨯-232232(9)18.0)35()5(124-+-⨯-÷- (10)–32-∣(-5)3∣×2)52(--18÷∣-(-3)2∣;(11) -3-3)211(×92-6÷∣32-∣3; (12)(-1)5×[324÷(-4)+)411(-×(-0.4)]÷)31(-;(13)如果()()0132122=-+-++c b a ,求333c a abc -+的值.一、 选择题(10小题,每小题3分,共30分,答案填入表格中)1. 在下列各数中,-3.8,+5,0,- 1 2 , 35,-4,中,属于负数的个数为( )A .2个B .3个C .4个D .5个 2. 计算:-6+4的结果是( )A .2B .10C .-2D .-10 3. 一个数的倒数等于它本身的数是( )A .1B .1-C .±1D .0 4. 下列判断错误的是( )A .任何数的绝对值一定是非负数;B .一个负数的绝对值一定是正数;C .一个正数的绝对值一定是正数;D .一个数不是正数就是负数; 5. 有理数a 、b 、c 在数轴上的位置如图所示则下列结论正确的是( )A .a >b >0>cB .b >0>a >cC .b <a <0<D .a <b <c <06.两个有理数的和是正数,积是负数,则这两个有理数( )A .都是正数;B .都是负数;C .一正一负,且正数的绝对值较大;D .一正一负,且负数的绝对值较大。

相关文档
最新文档