《-整式乘除与因式分解》知识点归纳总结

合集下载

《-整式乘除与因式分解》知识点归纳总结精编版

《-整式乘除与因式分解》知识点归纳总结精编版

《整式乘除与因式分解》知识点归纳总结一、幕的运算:1、同底数幕的乘法法则:a m・a n=a mn( m, n都是正整数)同底数幕相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

女口:(a b)2 *(a b)3二(a b)52、幕的乘方法则:(a m)n“mn(m,n都是正整数)幕的乘方,底数不变,指数相乘。

口:(一35)2=310幕的乘方法则可以逆用:即a mn =(a m)n =(a n)m女如: 4^(42)^(43)23、积的乘方法则:(ab)n=a n b n( n是正整数)。

积的乘方,等于各因数乘方的积。

女口:( -2x3y2z)5=(-2)5・(x3)5・(y2)5・z5 =-32x15y10z54、同底数幕的除法法则:a m-'a n=a m』(a = 0, m,n都是正整数,且m「n) 同底数幕相除,底数不变,指数相减。

女口:(ab)4亠(ab)二(ab)3二a3b35、零指数;a0 =1 ,即任何不等于零的数的零次方等于1。

r / n为偶数r迪T n为偶数I —屮11次奇数1一@—b乜为奇数二、单项式、多项式的乘法运算:6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,贝S连同它的指数作为积的一个因式。

口:- 2x2y3z・3xy二_____________ 7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即m(a b c^ ma mb mc ( m, a, b, c 都是单项式)。

女口 : 2x(2x ~'3y) -'3y(x ' y) = 。

8多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。

9、平方差公式:(a • b)(a-b)二a?-b2注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。

初二数学八上第十四章整式乘法与因式分解知识点总结复习和常考题型练习

初二数学八上第十四章整式乘法与因式分解知识点总结复习和常考题型练习

第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯= ⑵幂的乘方:()nm mn aa = ⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+ 4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式. ⑵公式法:①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++ ⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法常考例题精选1.(2015·襄阳中考)下列运算正确的是( ) =3 ·a2=a3C.(-a3)2=a5÷a2=a32.(2015·烟台中考)下列运算中正确的是( ) +2a=5a2 B.(-3a3)2=9a6÷a2=a3 D.(a+2)2=a2+43.(2015·遵义中考)计算(−12ab2)3的结果是( )3 23218184.(2015·沈阳中考)下面的计算一定正确的是( ) +b3=2b6 B.(-3pq)2=-9p2q2·3y5=15y8÷b3=b35.(2015·凉山州中考)下列各式正确的是( )=(−a)2=(−a)3=|−a2|=|a3|6.(2015·长春中考)计算:7a2·5a3= .7.(2015·广州中考)分解因式:x2+xy= .8.(2015·东营中考)分解因式2a2-8b2= .9.(2015·无锡中考)分解因式:2x2-4x= .10.(2015·连云港中考)分解因式:4-x2= .11.(2015·盐城中考)分解因式a2-9= .12.(2015·长沙中考)x2+2x+1= .13.(2015·临沂中考)分解因式4x-x3= .14.(2015·安徽中考)分解因式:x2y-y= .15.(2015·潍坊中考)分解因式:(a+2)(a-2)+3a= .16.(2015·遂宁中考)为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照下面的规律,摆第(n)个图案,需用火柴棒的根数为.17.(2015·潍坊中考)当n等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形分别如图所示.则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)18.(2015·牡丹江中考)一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为元.19.(2015·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.1.(2015·徐州)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.下列计算错误的是( )A.(5-2)0=1 B.28x4y2÷7x3=4xy2C.(4xy2-6x2y+2xy)÷2xy=2y-3x D.(a-5)(a+3)=a2-2a-153.(2015·毕节)下列因式分解正确的是( )A.a4b-6a3b+9a2b=a2b(a2-6a+9) B.x2-x+14=(x-12)2C.x2-2x+4=(x-2)2D.4x2-y2=(4x+y)(4x-y)4.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于( ) A.2 B.4 C.6 D.85.若m=2100,n=375,则m,n的大小关系是( )A.m>n B.m<n C.m=n D.无法确定6.已知a+b=3,ab=2,则a2+b2的值为( )A.3 B.4 C.5 D.67.计算:(a-b+3)(a+b-3)=( )A.a2+b2-9 B.a2-b2-6b-9C.a2-b2+6b-9 D.a2+b2-2ab+6a+6b+98.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .(a +b)2=a 2+2ab +b 2B .(a -b)2=a 2-2ab +b 2C .a 2-b 2=(a +b)(a -b)D .(a +2b)(a -b)=a 2+ab -2b 29.若x 2+mx -15=(x -3)(x +n),则m ,n 的值分别是( ) A .4,3 B .3,4 C .5,2 D .2,510.(2015·日照)观察下列各式及其展开式: (a +b)2=a 2+2ab +b 2(a +b)3=a 3+3a 2b +3ab 2+b 3(a +b)4=a 4+4a 3b +6a 2b 2+4ab 3+b 4(a +b)5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 …请你猜想(a +b)10的展开式第三项的系数是( ) A .36 B .45 C .55 D .6611.计算:(x -y)(x 2+xy +y 2)= .12.(2015·孝感)分解因式:(a -b)2-4b 2= .13.若(2x +1)0=(3x -6)0,则x 的取值范围是 .14.已知a m =3,a n =2,则a 2m -3n = .15.若一个正方形的面积为a 2+a +14,则此正方形的周长为 .16.已知实数a ,b 满足a 2-b 2=10,则(a +b)3·(a -b)3的值是 .17.已知△ABC 的三边长为整数a ,b ,c ,且满足a 2+b 2-6a -4b +13=0,则c为.18.观察下列各式,探索发现规律:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;….按此规律,第n个等式为.19.计算:(1)(2015·重庆)y(2x-y)+(x+y)2; (2)(-2a2b3)÷(-6ab2)·(-4a2b).20.用乘方公式计算:(1)982; (2)899×901+1.21.分解因式:(1)18a3-2a;(2)ab(ab-6)+9;(3)m2-n2+2m-2n.22.先化简,再求值:(1)(2015·随州)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.学习了分解因式的知识后,老师提出了这样一个问题:设n为整数,则(n+7)2-(n-3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.25.阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a +b)(a +b)=2a 2+3ab +b 2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a +b)(a +3b)=a 2+4ab +3b 2;(3)请仿照上述方法另写一个含有a ,b 的代数恒等式,并画出与之对应的几何图形.26. 定义2a b a b *=-,则(12)3**= .。

整式的乘除与因式分解知识点复习

整式的乘除与因式分解知识点复习

整式的乘除与因式分解知识点复习乘除与因式分解是数学中非常重要的知识点,广泛应用于各个领域。

在高中阶段,学习乘除与因式分解是为了更好地理解并解决数学问题,为后续学习提供基础。

本文将对乘除与因式分解的相关知识进行复习,以期加深对这一知识点的理解。

1.整式的乘法整式是由常数项和各种变量及其指数的积或和的形式构成的代数式。

整式的乘法是指两个整式之间的乘法运算。

在整式的乘法中,需要注意以下几个知识点:(1)同底数幂的乘法:当两个幂的底数相同时,可以将底数保持不变,指数相加。

例如,5^2*5^3=5^(2+3)=5^5(2)不同底数幂的乘法:当两个幂的底数不同时,将两个底数乘在一起,指数保持不变。

例如,2^3*3^2=2^3*3^2=6^2(3)乘法分配律:乘法分配律是指整式乘法中,对于两个整式a、b和一个整式c,有(a+b)*c=a*c+b*c例如,(2x+3)(4x+5)=2x*4x+2x*5+3*4x+3*5=8x^2+10x+12x+15=8x^2+22x+152.整式的除法整式的除法是指将一个整式除以另一个整式,得到商和余数的运算过程。

在整式的除法中,需要注意以下几个知识点:(1)除法算法:整式的除法运算过程与约分的思想类似。

首先找出被除式中最高次项和除式中最高次项的幂次差,然后将被除式中的每一项与除式的最高次项相乘得到临时商,再将临时商乘以除式,得到临时商与被除式的差,重复之前的步骤,直到无法再继续相除为止。

例如,(2x^3+3x^2-5x+7)/(x-2)=2x^2+7x+9余数为23(2)因式定理:如果整式f(x)除以(x-a)的余数为0,则x-a是f(x)的一个因式。

例如,f(x)=x^2-3x+2,将f(x)除以(x-2),得到(x^2-3x+2)/(x-2)=x-1余数为0,所以x-2是f(x)的一个因式。

3.因式分解因式分解是将一个整式分解成几个乘积的形式,其中每个乘积因式都尽可能简单。

整式乘除与因式分解

整式乘除与因式分解

整式的乘除与因式分解一、基础知识1.同底数幂的乘法:n m n m aa a +=∙,(m,n 都是正整数),即同底数幂相乘,底数不变,指数相加。

2.幂的乘方:()m n mn a a=,(m,n 都是正整数),即幂的乘方,底数不变,指数相乘。

3.积的乘方:()n n n ab a b =,(n 为正整数),即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

4.整式的除法:m n m n a a a-÷=,(0a ≠,m ,n 都是正整数,并且m n >),即同底数幂相除,底数不变,指数相减。

(1)01(0)a a =≠,任何不等于0的数的0次幂都等于1.(2)单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

(3)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

5.因式分解概念:把一个多项式化成几个整式的乘积的形式,这就叫做把这个多项式因式分解,也可称为将这个多项式分解因式,它与整式乘法互为逆运算。

6提公因式法和公式法常用公式:(1)))((22b a b a b a +-=-(2)222)(2b a b ab a ±=+±(3)))((2233b ab a b a b a +-+=+(4)))((2233b ab a b a b a ++-=-(5)ac ab c b a +=+)(补充公式:(1)2222)(222c b a ca bc ab c b a ++=+++++(2)))((3222333ca bc ab c b a c b a abc c b a ---++++=-++考点1因式分解例1 (1)33xy y x -; (2)x x x 2718323+-(3)()112---x x (4)()()3224x y y x ---考点2 十字相乘法例2 (1) 893+-x x (2)32231222xy y x y x -+;(3)()222164x x -+ (4)22103y xy x --考点3 四项和四项以上多项式分解例3 (1)22244z y xy x -+-; (2)b a b a a 2322-+-(3)322222--++-y x y xy x例4 已知a 、b 、c 是△ABC 的三边,且满足ac bc ab c b a ++=++222,求证:△ABC 为等边三角形。

初中数学整式的乘除与因式分解知识点考点梳理

初中数学整式的乘除与因式分解知识点考点梳理

初中数学整式的乘除与因式分解知识点考点梳理一、整式的乘法整式的乘法是指对两个或多个整式进行乘法运算。

整式乘法主要包括常数与整式相乘、整式与整式相乘和整式与多项式相乘。

1.常数与整式相乘:用一个常数乘以一个整式,只要将该整式的每一项乘以该常数即可。

2.整式与整式相乘:对于两个整式相乘,可以使用分配律和合并同类项的方法来进行乘法。

3.整式与多项式相乘:整式与多项式相乘时,要将整式中的每一项分别与多项式相乘,然后将所得的乘积合并同类项。

二、整式的除法整式的除法是指对一个整式除以另一个整式的操作。

整式的除法主要涉及到多项式的除法和多项式的带余除法。

1.多项式的除法:多项式的除法要求被除式和除式都是多项式。

多项式的除法可以使用长除法的方法,将被除式从左到右每一项与除式进行相除,然后将所得商依次写下。

2.多项式的带余除法:多项式的带余除法是对多项式进行除法运算时同时求出商和余数。

在多项式的带余除法中,我们要先根据需要进行合并同类项或补零操作,然后按正常的多项式除法进行运算。

三、因式分解的基本概念因式分解是将一个整式写成多个整式的乘积的过程,这些被乘积的整式称为因式。

因式分解是整式运算中的重要部分,它在解决实际问题和简化计算中起到了重要的作用。

四、因式分解的常用方法1.提取公因式:提取公因式是指将多项式中多个项的公共因子提取出来。

提取公因式的方法是将多项式中每一项的各个因子进行相应的整理,找出它们的最大公因式。

2.公式法:公式法是指将一些特定的整式的乘积进行因式分解。

例如,平方差公式、差平方公式和完全平方公式等,都是常用的公式法。

3.组合因式法:组合因式法是根据多项式的特点,将多项式进行适当的组合,然后找出其因式。

组合因式法是一个灵活运用的方法,可以根据需要进行不同形式的组合。

五、因式分解的应用因式分解在数学中有广泛的应用。

它可以帮助我们解决实际问题、简化计算和求解方程等。

1.解决实际问题:通过因式分解,我们可以将实际问题转化为求解因式的问题,从而帮助我们更好地理解和解决实际问题。

整式的乘除因式分解定义公式总结

整式的乘除因式分解定义公式总结

《整式的乘除与因式分解》四大知识点归纳第一类、幂的运算法则:同底数幂的乘法a m a n=a m+n幂的乘方(a m )n=a m n积的乘方(a b)n = a n b n同底数幂的除法a m÷a n=a m+n (a≠0,m、n为正整数,m﹥n)零指数幂a0 = 1(a≠0)负指数幂 a – p = (a≠0 ,p为正整数)第二类、整式的乘、除法整式的乘法1.单项式乘以单项式法则单项式和单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数一起作为积的一个因式.2。

单项式乘以多项式法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

即m(a+b+c)=ma+mb+mc3.多项式乘以多项式法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加即(a+b) (m+n) = am + an + bm +bn整式的除法1.单项式除以单项式法则单项式相除,把系数和同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

2.多项式除以单项式法则多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

即(am+bm)÷m = a + b第三类、乘法公式平方差公式两个数的和与这两个数的差的积,等于这两个数的平方差。

即(a+b)(a –b)= a2 –b2完全平方公式两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.即(a+b)2=a2+2ab+b2 (a—b)2=a2—2ab+b2第四类、因式分解:1。

定义:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.2。

方法①提公团式法:如果一个多项式的各项含有公因式,那么可以把这个公因式提到括号外面,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.②运用公式法:把乘法公式逆运用,可以把某些类型的多项式因式分解,这种方法叫公式法。

8年级上整式乘除与因式分解知识点汇总

8年级上整式乘除与因式分解知识点汇总

第十四章 整式乘法与因式分解(一)幂的运算:1.同底数幂的乘法①n 个相同因式(或因数)a 相乘,记作a n ,读作a 的n 次方(幂),其中a 为底数,n 为指数,a n 的结果叫做幂。

①底数相同的幂叫做同底数幂。

①同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。

即:a m ﹒a n =a m+n 。

注意:底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+•+①此法则也可以逆用,即:a m+n = a m ﹒a n 。

①开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

2.同底数幂的除法①同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:n m n m a a a -=÷(n m a ,,0≠都是正整数)。

①此法则也可以逆用,即:a m -n = a m ÷a n (a≠0)。

3.零指数与负指数公式:(1)零指数幂:任何不等于0的数的0次幂都等于1,即:a 0=1(a≠0)。

(2)负指数幂:任何不等于零的数的―p 次幂,等于这个数的p 次幂的倒数,即:p p aa 1=-(p a ,0≠是正整数) 注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

注意:00,0-2无意义;(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5 .绝对值小于1的数可记成n -10a ⨯±的形式,其中10a 1<≤,n 是正整数,n 等于原数中第一个有效数字前面的零的个数(包括小数点前面的一个零)。

4.幂的乘方①幂的乘方是指几个相同的幂相乘。

(a m )n 表示n 个a m 相乘。

①幂的乘方运算法则:幂的乘方,底数不变,指数相乘。

mn n m a a =)(。

(n m ,都是正整数)①此法则也可以逆用,即m n n m mn a a a )()(==。

初中数学整式的乘除与分解因式知识点

初中数学整式的乘除与分解因式知识点

初中数学整式的乘除与分解因式知识点
整式的乘法与除法是初中数学中的重点内容之一。

下面是一些相关的知识点:
1. 整式的乘法:整式的乘法要注意项的乘法和系数的乘法。

将每一项的系数分别相乘,并将指数分别相加,得到乘积的系数和指数。

例如:(3x+2)(4x-1)
首先扩展,得到12x^2 + 5x - 2。

2. 整式的除法:整式的除法是通过“乘除消数”的方法来完成的。

将除数乘以一个适
当的式子,使得结果与被除式的某个部分相等或尽量接近。

然后将乘积减去被除式,
重复之前的步骤,直到无法再减少为止。

例如:(2x^2 + 5x + 3) ÷ (x + 1)
首先将被除式分解为(x + 1)(2x + 3),然后进行乘法,得到2x^2 + 5x + 3。

然后将乘积减去被除式,得到0。

所以结果为2x + 3。

3. 因式的分解:整式的因式分解是将一个整式写成几个因式的乘积的形式。

例如:6x^2 + 11x + 3的因式分解为(2x + 1)(3x + 3)。

这些知识点在初中数学中是比较基础的内容,掌握了整式的乘除与分解因式的方法,
将有助于解决更复杂的数学问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《整式乘除与因式分解》知识点归纳总结一、幂的运算:1、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+•+2、幂的乘方法则:mn n m a a =)((n m ,都是正整数) 幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(== 如:23326)4()4(4==3、积的乘方法则:n n n b a ab =)((n 是正整数)。

积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-4、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m φ 同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷5、零指数; 10=a ,即任何不等于零的数的零次方等于1。

二、单项式、多项式的乘法运算:6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

如:=•-xy z y x 3232 。

7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加, 即mcmb ma c b a m ++=++)((cb a m ,,,都是单项式)。

如:)(3)32(2y x y y x x +--= 。

8、多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。

9、平方差公式:22))((b a b a b a -=-+注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。

右边是相同项的平方减去相反项的平方。

如:))((z y x z y x +--+ = 10、完全平方公式:2222)(b ab a b a +±=±完全平方公式的口诀:首平方,尾平方,首尾2倍中间放,符号和前一个样。

公式的变形使用:(1)ab b a ab b a b a 2)(2)(2222-+=-+=+;ab b a b a 4)()(22-+=-222)()]([)(b a b a b a +=+-=-- ;222)()]([)(b a b a b a -=--=+-(2)三项式的完全平方公式: bc ac ab c b a c b a 222)(2222+++++=++11、单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。

如:b a m b a 242497÷-12、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。

即:c b a m cm m bm m am m cm bm am ++=÷+÷=÷=÷++)( 三、因式分解的常用方法.1、提公因式法(1)会找多项式中的公因式;公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数; ②字母——各项含有的相同字母; ③指数——相同字母的最低次数; (2)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(3)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的. 2、公式法运用公式法分解因式的实质是:把整式中的乘法公式反过来使用;常用的公式: ①平方差公式: a 2-b 2= (a +b )(a -b ) ②完全平方公式:a 2+2ab +b 2=(a +b )2 a 2-2ab +b 2=(a -b )23、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。

特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。

思考:十字相乘有什么基本规律?例1.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a .解析:凡是能十字相乘的二次三项 式ax 2+bx+c ,都要求24b ac ∆=- >0而且是一个完全平方数。

于是98a ∆=-为完全平方数,1a =例2、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。

1 2解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5 用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

例3、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习1、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x(二)二次项系数不为1的二次三项式——c bx ax ++2 条件:(1)21a a a = 1a 1c (2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b += 分解结果:c bx ax ++2=))((2211c x a c x a ++例4、分解因式:101132+-x x分析: 1 -2 3 -5 (-6)+(-5)= -11 解:101132+-x x =)53)(2(--x x练习3、分解因式:(1)6752-+x x (2)2732+-x x(三)二次项系数为1的齐次多项式例5、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。

1 8b1 -16b 8b+(-16b)= -8b解:221288b ab a --=)16(8)]16(8[2b b a b b a -⨯+-++ =)16)(8(b a b a -+练习4、分解因式(1)2223y xy x +- (2)2286n mn m +- (3)226b ab a --(四)二次项系数不为1的齐次多项式例9、22672y xy x +- 例10、2322+-xy y x1 -2y 把xy 看作一个整体 1 -12 -3y 1 -2 (-3y)+(-4y)= -7y (-1)+(-2)= -3 解:原式=)32)(2(y x y x -- 解:原式=)2)(1(--xy xy练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习5、(1)17836--x x (2)22151112y xy x --(3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m(7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++3、在数学学习过程中,学会利用整体思考问题的数学思想方法和实际运用意识。

如:对于任意自然数n ,22)5()7(--+n n 都能被动24整除。

1.若225722+-++m n n m b a b a 的运算结果是753b a ,则n m +的值是( )A .-2B .2C .-3D .32.若a 为整数,则a a +2一定能被( )整除A .2B .3C .4D .5 3.若x 2+2(m-3)x+16是完全平方式,则m 的值等于…………………( )A.3B.-5C.7.D.7或-14.如图,矩形花园ABCD 中,AB=a ,AD=b ,花园中建有一条矩形道路LMQP 及一条平行四边形道路RSTK ,若LM=RS=c ,则花园中可绿化部分的面积为( ) A .2b ac ab bc ++- B .ac bc ab a -++2 C .2c ac bc ab +-- D .ab a bc b -+-225.分解因式:=-+-ab b a 2122__________________________.6.下表为杨辉三角系数表的一部分,它的作用是指导读者按规律写出形如()nb a +(n 为正整数)展开式的系数,请你仔细观察下表中的规律,填出()n b a +展开式中所缺的系数。

()()()32233222332b ab b a a b a b ab a b a ba b a +++=+++=++=+ 则()4322344_____________b ab b a b a a b a ++++=+ 7. 3x(7-x)=18-x(3x-15);8. (x+3)(x-7)+8>(x+5)(x-1).9.2,3==n m x x ,求n m x 23+、n m x 23-的值10.探索题:11)(1(2-=+-x x x ) 1)1)(1(32-=++-x x x x 1)1)(1(423-=+++-x x x x x 1)1)(1(5234-=++++-x x x x x x......①试求122222223456++++++的值②判断1222222200620072008++++++Λ的值的个位数是几?。

相关文档
最新文档