小学六年级数学正比例和反比例练习题
六年级《正比例与反比例》(含答案)

【专项复习】六年级《正比例与反比例》1.判断下面的两个量成正比例、反比例还是不成比例.①圆的周长和半径.②圆的面积和半径.③正方形的周长和边长.④圆柱的侧面积一定,圆柱的高和底面的半径.⑤一个自然数和它的倒数.⑥比例尺一定,图上距离和实际距离.2.判断下面各题中的两个量,哪些成正比例?哪些成反比例,哪些不成比例?填入横线内.(1)正方形的周长与边长.(2)小丽步行上学的平均速度与所花时间.(3)一个人的身高和年龄.(4)三角形的面积一定,它的底和高.(5)一捆100米长的电线,用去的长度和剩下的长度..3.观察下面的两个表,然后回答问题.(1)上表中各有哪两种相关联的量?(2)在各表的两种相关的量中,一种量是怎样随着另一种量的变化而变化的?它们的变化规律各有什么特征?(3)哪个表中的两种量成正比例关系?哪个表中的两种量成反比例关系?4.根据下面的3张表,按要求回答问题.表1:车间装订练习本,练习本用纸的张数和装订的本数如下表.表2:车间装订练习本,用了的纸张数和剩下的纸张数如下表.表3:车间装订练习本,每本练习本用纸的张数和装订的本数如下表.(1)选择正确的答案序号填在( )中.表1中的两种量( ),表2中的两种量( ),表3中的两种量( ).A.成正比例B.成反比例C.不成正比例,也不成反比例(2)根据成正比例的量的数据,在下图中描出所对应的点,再连起来.根据图象判断,装订6本练习本要用( )张纸,175张纸能装订( ) 本.5.下图中线段OA表示购买饮料应付金额与瓶数的关系,看图回答问题。
(1)购买饮料应付金额与瓶数成正比例吗?为什么?(2)观察图象,买4瓶饮料需要多少钱?45元可以买几瓶饮料?6.下面的图象表示实验小学食堂的用煤天数和用煤量的关系.(1)根据图象,你能判断用煤天数和用煤量成什么比例吗?(2)如果用y表示用煤的数,x表示用煤的天数,k表示每天的用煤量,它们之间的关系可以表示为( ).(3)根据图象判断,5天要用煤多少吨?2.4吨煤可用多少天?7.文具盒每个售价8元,购买2个,3个,⋯分别需要多少元?(1)填一填.(2)判断应付金额与文具盒的数量是否成正比例,并说明理由.(3)把上表中数量和应付金额应付金额所对应的点描在方格纸上再顺次连接.(4)买9个文具盒要花( )元.(5)李老师买的文具盒个数是王老师的5倍,他花的钱是王老师的倍.8.食堂每天开饭人数与购买蔬菜的数量如表:(1)根据已知的数量关系补充完整上面的表格.(2)根据表中的数在下面图中描出对应的点,再把各个点连接起来.(3)上面的两种量成比例吗?如果成,成什么比例,为什么?9.刘师傅要加工一批零件,每小时加工40个,3小时可以完成,如果要提1小时完成任务,工作效率需提高百分之几?(用比例的方法解)10.某运输队在为灾区抢运120吨救灾物资.如果要一次把所有救灾物资全部运出,车辆的载重量与所需车辆的数量如下表,请把表格填写完整.(1)车辆的载重量和所需车辆的数量成什么比例?为什么?(2)如果用载重量6吨的卡车来运,一共需要多少辆?11.某工程队铺一段路,原计划每天铺9.6千米,15天铺完,实际每天比原计划多铺2.4千米,实际要用多少天铺完?(用比例解答)12.买笔记本的数量和钱数的关系如下表:(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)哪个量没变?数量和总价之间成什么比例?(3)从图中可以看出,如果买9本笔记本,需要多少元钱?13.某工厂四月份(30天)计划生产一批零件,平均每天要生产400个才能完成任务,实际上前6天就生产了3000个.照这样计算,完成原计划任务要用多少天?(分别用正、反比例解)14.一台机器上有一对相互啮合的齿轮,其中大齿轮有400个齿,每分钟转30圈,小齿轮有80个齿,每分钟转多少圈?15.A、B两城相距240千米,四种不同的交通工具从A城到B城的速度和所用的时间情况如下表.(1)请把上表填写完整.(2)不同的交通工具在行驶这段路程的过程中,哪个量没有变?(3)速度和所用时间成什么比例关系?为什么?(4)如果轿车要在25小时行完全程,那么每小时应行驶多少千米?16.一种药水是由药粉和水按照1:200的质量比配制而成的.(1)补充表格.(2)根据表格中的数据在下面的方格纸上描点连线.(3)12克药粉需要加入多少克水?要把2.5千克水配成药水,需要药粉多少克?17.要修一条长12千米的公路,前3天修了1.5千米,照这样计算,修完这条公路还要用多少天?(用比例解)18.修路队修一条公路,前4天修了320米,照这样的速度,又用了10天把路全部修完.这条路全长多少米?(用比例求解)19.一个工程队要修一条长4340米公路,前6个月已修了1860米.照这样的进度,还要几个月才能完成任务?20.自行车中的学问.右图是自行车的前后齿轮示意图,在骑自行车的过程中,蹬一圈,前齿轮就转一圈,后齿轮随之转几圈,后齿轮每转一圈,自行车车轮随之转一圈.请你依据生活经验填写下表.(1)由上表可看出,在骑自行车的过程中,蹬的圈数和车前进的距离成( ) 比例.(2)贝贝每分钟蹬80圈,骑着这辆自行车,每分钟前进多少米?(保留到整数)21.如图是两个互相啮(nie)合的齿轮,它们在同一时间内转动时,大齿轮和小齿轮转过的总齿数是相同的。
完整)六年级正比例和反比例比例练习题

完整)六年级正比例和反比例比例练习题六年级正比例和反比例练题一、填空:1.甲乙两数的比是11:9,甲数占甲、乙两数和的3/5,乙数占甲、乙两数和的2/5.这幅图的比例尺是(1:25,000)。
一幅地图的比例尺是图上6厘米表示实际距离15千米。
实际距离150千米在图上要画3厘米。
14.12的约数有(1.2.4.7.14.28),选择其中的四个约数,把它们组成一个比例是(1:2:4:7)。
写出两个比值是8的比(4:2和16:8)。
15.加工零件的总个数一定,每小时加工的零件个数的加工的时间(反比例关系)。
2.某班男生人数与女生人数的比是3:4,女生人数与男生人数的比是4:3,男生人数和女生人数的比是3:4.女生人数是总人数的4/7.3.一本书,XXX计划每天看2/7,这本书计划(看完)14天。
4.一根绳长2米,把它平均剪成5段,每段长是0.4米,每段是这根绳子的1/5.5.XXX用180张纸订5本本子,用纸的张数和所订的本子数的比是(36:1),这个比的比值的意义是(每本本子需要36张纸)。
6.一个正方形的周长是40米,它的面积是100平方米。
7.9吨大豆可榨油3吨,1吨大豆可榨油3/9吨,要榨1吨油需大豆1/3吨。
8.甲数的22/3等于乙数的5,甲数与乙数的比是(22:15)。
9.把甲数的1/7给乙,甲、乙两数相等,甲数是乙数的8/7,甲数比乙数多1/7.10.甲数比乙数多1/4,甲数与乙数比是(5:4),乙数比甲数少4/5.11.在6:5=1.2中,6是比的前项,5是比的后项,1.2是比的比值。
在4:7=48:84中,4和84是比例的前项,7和48是比例的后项。
12.4:5=24÷(5)=12:1513.一种盐水是由盐和水按1:30的重量配制而成的。
其中,盐的重量占盐水的1/31,水的重量占盐水的30/31.图上距离3厘米表示实际距离180千米,比例为1:60,000;订数学书的本数与所需要的钱数(正比例关系);加工零件的总个数一定,已经加工的零件和没有加工的零件个数(反比例关系)。
小学数学“正比例和反比例”过关测试题(3套)

比习题精编1一、对号入座。
1.( )÷10=0.6=( )%=( ):( )=()9 2.把158:43化成最简单的比是( );43千克: 400克的比值是( )。
3.甲乙两数的比是3:5,甲数是乙数的( )%,乙数是甲数的( )%,甲数与两数和的比是( )。
4.一杯400克的糖水,含糖率是20%,糖与糖水的比是( ),再加入20克糖,糖与糖水的比是( )。
5.把3:8的前项加上6,要使比值不变,后项可以乘( )或加( )二、慎重选择。
1.如果减数相当于被减数的53,那么差与减数的比是( )。
A 2:3B 2:5C 3:5D 3:22.同一段路程,甲车行完要4小时,乙车行完要6小时,甲、乙两车速度的最简比是( )A 4:6B 6:4C 2:3D 3:23.甲乙两个正方体棱长的比是1:2。
它们的表面积的比是( ),体积比是( );A 1:2B 1:4C 1:6D 1:84.一个三角形三个内角的度数比是2:3:5,这是()三角形。
A 锐角B 钝角C 直角 D无法确定五、解决问题。
1.一种药水是把药粉和水按照1∶100的比例配成的.要配成这种水4040千克,需要药粉多少千克?2.一个长方形周长50米,长与宽的比是3∶2,这个长方形的面积是多少?3.建筑工人用2份水泥、3份沙子和5份石子配置一种混凝土.配置6000千克这种混凝土,需要水泥、沙子和石子各多少千克?4.加工一批零件,已完成个数与零件总个数的比是1:3。
如果再加工15个,那么完成个数与剩下的个数同样多,这批零件共有多少个?5.画一个长3厘米,宽2厘米的长方形,把这个长方形按2:1放大后,画下来。
想一想:这两个长方形的面积的比是多少?比例尺习题精编2一、对号入座。
1.在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离()千米。
也就是图上距离是实际距离的1,实际距离是图上距离的()倍。
()0 20 402.一幅图的比例尺是,那么图上的1厘米表示实际距离();实际距离50千米在图上要画()厘米。
六年级数学正比例反比例练习题

六年级数学正比例反比例练习题1、圆的面积和圆的半径成正比例。
()2、圆的面积和圆的半径的平方成正比例。
()3、圆的面积和圆的周长的平方成正比例。
()4、正方形的面积和边长成正比例。
()5、正方形的周长和边长成正比例。
()6、长方形的面积一定时,长和宽成反比例。
()7、长方形的周长一定时,长和宽成反比例。
()8、三角形的面积一定时,底和高成反比例。
()9、梯形的面积一定时,上底和下底的和与高成反比例。
()10、圆的周长和圆的半径成正比例。
()11.选择填空。
a÷b=c,当c一定时a和b();当a一定时b和c();当b一定时a和c()。
(12)路程一定,速度和时间成正比例。
()(13)一堆煤的总量不变,烧去的煤与剩下的煤成反比例。
()(14)花生的出油率一定,花生的重量与榨出花生油的重量成正比例。
(15)平行四边形的面积不变,它的底与高成反比例。
()(16)长方形的_________________,它的长和面积成正比例。
(17)圆柱体体积一定,________________和高成反比例。
(18)工厂制作一种零件,现在每个零件所用的时间由革新前的8分钟减少到3分钟,原来制造60个的时间现在能生产多少个?(用比例方法解答)(19)一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)2、写出关系式(1)买相同的电脑,购买的电脑台数与总价=单价(一定),(2)每捆练习本的本数相同,练习本的总本数与捆数=每捆练习本的本数(一定)(3)总路程一定,已行的路程与未行的路程(4)分数值一定,分数的分子与分母=比值(一定),(5)长方形的长一定,它的面积和宽(6)长方体的体积一定,底面积和高(7)一本书的总页数一定,看的天数与平均每天看的页数(8)圆的周长和直径=∏(一定)(9)订阅《扬子晚报》,订的份数与总价=单价(一定)(10)图上距离一定,实际距离与比例尺(11)小麦的出粉率一定,小麦的质量与面粉的质量(12)六(1)班同学做操,每排站的人数与排数3、常见的转化问题1.把6×8=24×2改写成四个比例。
小学生数学习题练习正比例和反比例关系

小学生数学习题练习正比例和反比例关系正比例和反比例关系是数学中的重要概念,对于小学生来说,掌握这些概念能够帮助他们更好地理解数学题目,提高解题能力。
本文将通过一些习题的练习,帮助小学生加深对正比和反比关系的理解和运用。
一、正比例关系练习1. 小明每天骑自行车上学的时间与他家离学校的距离成正比。
如果他每天骑自行车上学的时间是2小时,距离是8公里,那么骑行10公里需要多少时间?解答:设骑行10公里需要的时间为x小时。
根据正比例关系可得:2小时/8公里= x小时/10公里。
将等式两边的比例值相乘并解方程得:2/8 = x/10。
计算得到:x = 2.5小时。
所以骑行10公里需要2.5小时。
2. 某种水果按重量售卖,每50克售价为3元。
如果小明花了9元,他能买到多少克的水果?解答:设小明能买到的水果重量为x克。
根据正比例关系可得:50克/3元 = x克/9元。
将等式两边的比例值相乘并解方程得:50/3 = x/9。
计算得到:x = 150克。
所以小明能买到150克的水果。
二、反比例关系练习1. 小明开车从A城到B城的速度与他行驶的时间成反比。
如果小明以60公里/小时的速度开车,需要3小时到达B城,那么以75公里/小时的速度他需要多少小时到达B城?解答:设小明以75公里/小时的速度到达B城的时间为x小时。
根据反比例关系可得:60公里/小时 × 3小时 = 75公里/小时 × x小时。
将等式两边的乘积相等并解方程得:60 × 3 = 75 × x。
计算得到:x ≈ 2.4小时。
所以小明以75公里/小时的速度需要2.4小时到达B城。
2. 某个物体的质量和它所受的重力成反比。
如果质量为10千克时,受到的重力是100牛顿,那么质量为20千克时,受到的重力是多少牛顿?解答:设质量为20千克时受到的重力为x牛顿。
根据反比例关系可得:10千克/100牛顿 = 20千克/x牛顿。
将等式两边的比例值相乘并解方程得:10/100 = 20/x。
六年级数学正比例和反比例试题

六年级数学正比例和反比例试题1.、、三个水桶的总容积是公升,如果、两桶装满水,桶是空的;若将桶水的全部和桶水的,或将桶水的全部和桶水的倒入桶,桶都恰好装满.求、、三个水桶容积各是多少公升?【答案】560【解析】根据题意可知,桶水的全部加上桶水的等于桶水的全部加上桶水的,所以桶水的等于桶水的,那么桶水的全部等于桶水的,桶水为桶水的.所以、、三个水桶的容积之比是.又、、三个水桶的总容积是公升,所以桶的容积是公升,桶的容积是公升,桶的容积是公升.2.甲、乙两人原有的钱数之比为,后来甲又得到180元,乙又得到30元,这时甲、乙钱数之比为,求原来两人的钱数之和为多少?【答案】660【解析】两人原有钱数之比为,如果甲得到180元,乙得到150元,那么两人的钱数之比仍为,现在甲得到180元,乙只得到30元,相当于少得到了120元,现在两人钱数之比为,可以理解为:两人的钱数分别增加180元和150元之后,钱数之比为,然后乙的钱数减少120元,两人的钱数之比变为,所以120元相当于4份,1份为30元,后来两人的钱数之和为元,所以原来两人的总钱数之和为元.3.某水果批发市场存放的苹果与桃子的吨数的比是,第一天售出苹果的,售出桃子的吨数与所剩桃子的吨数的比是;第二天售出苹果吨,桃子吨,这样一来,所剩苹果的吨数是所剩桃子吨数的,问原有苹果和桃子各有多少吨?【答案】74 37【解析】法一:设原来苹果有吨,则原来桃子有吨,得:,解得.所以原有苹果37吨,原有桃子(吨).法二:原来苹果和桃子的吨数的比是,把原来的苹果的吨数看作1,则原来桃子的吨数为2,第一天后剩下的苹果是,剩下的桃子是,所以此时剩下的苹果和桃子的重量比是.现在再售出苹果18吨,桃子12吨,所剩的苹果与桃子的重量比是.这就相当于第一天后剩下的苹果和桃子的重量比是,先售出桃子12吨,苹果吨,此时剩下的苹果和桃子的重量比还是,再售出吨苹果,剩下的苹果和桃子的重量比变为,所以这相当于份,最后剩下的桃子有吨,那么第一天后剩下的桃子有吨,原有桃子吨,原有苹果吨.4.(2009年第七届“希望杯”二试六年级)某高速公路收费站对于过往车辆收费标准是:大型车元,中型车元,小型车元.一天,通过该收费站的大型车和中型车数量之比是,中型车与小型车之比是,小型车的通行费总数比大型车多元.(1)这天通过收费站的大型车、中型车、小型车各有多少辆?(2)这天的收费总数是多少元?【答案】(1)90 108 297(2)7290【解析】(1)大型车、小型车通过的数量都是与中型车相比,如果能将中的与中的统一成,就可以得到大型车、中型车、小型车的连比.由和,得到.以辆大型车、辆中型车、辆小型车为一组.因为每组中收取小型车的通行费比大型车多(元),所以这天通过的车辆共有(组).所以这天通过大型车有(辆),中型车有(辆),小型车有(辆).(2)这天收取的总费用为:元.5.下列问题与小刚、小强两人骑车去旅行有关系,请回答。
小学数学正比反比练习题

小学数学正比反比练习题正文:一、正比例关系练习题1. 小明每天骑自行车上学,他的速度和用时的关系是什么?如果他以每小时15公里的速度骑行,那么骑行5小时能够走多远?2. 一辆汽车以每小时80公里的速度行驶,行驶4小时后,它能够走多远?3. 将正比例关系列为函数的形式:设x是小明骑自行车所花费的时间(小时),y是他骑行的距离(公里),写出函数y和x之间的关系式。
4. 小明骑自行车到山上游玩,用时与距离的关系是正比例关系。
他用时2小时到达离家20公里的山脚,那么他用时3小时能够到达离家多远的山脚?5. 一辆汽车以每小时60公里的速度行驶,行驶2小时15分钟后,它能够走多远?二、反比例关系练习题1. 公司A生产一批产品需要5个工人工作3天完成,那么如果只有3个工人参与生产,需要多少天才能完成?2. 某项工程由6个工人完成,需要12天,如果增加工人的数量,能否缩短工期?为什么?3. 设x是某项工程所需要的工人数,y是完成这项工程所需的天数。
当工人数增加时,工期缩短了吗?写出x和y之间的关系式。
4. 利用反比例关系解决实际问题:某项工程由10个工人完成,需要20天。
如果只有5个工人参与工作,那么需要多少天才能完成?5. 公司A和公司B生产某种产品,两个公司的产能成反比例关系。
如果公司B的产能是公司A的2倍,那么公司B需要多久才能完成和公司A一样多的产品?结语:通过以上练习题,我们可以更好地理解小学数学中的正比例关系和反比例关系。
掌握了这两种关系的概念和求解方法,我们可以更好地应用于实际生活中的问题求解。
希望同学们能够通过不断地练习,加深对正反比例关系的理解和运用能力。
(完整)六年级正比例和反比例比例练习题

博文教育内部资料 年级: 姓名:……○……○……密……○……封……○……线……○……内……○……不……○……要……○……答……○……题……1六年级正比例和反比例比例练习题一、 填空:1. 甲乙两数的比是11:9,甲数占甲、乙两数和的)()(,乙数占甲、乙两数和的)()(。
甲、乙两数的比是3:2,甲数是乙数的( )倍,乙数是甲数的)()(。
2. 某班男生人数与女生人数的比是43,女生人数与男生人数的比是( ),男生人数和女生人数的比是( )。
女生人数是总人数的比是( )。
3. 一本书,小明计划每天看72,这本书计划( )看完。
4. 一根绳长2米,把它平均剪成5段,每段长是)()(米,每段是这根绳子的)()(。
5. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是( ),这个比的比值的意义是( )。
6. 一个正方形的周长是58米,它的面积是( )平方米。
7. 89吨大豆可榨油31吨,1吨大豆可榨油( )吨,要榨1吨油需大豆( )吨。
8. 甲数的32等于乙数的52,甲数与乙数的比是( )。
9. 把甲数的71给乙,甲、乙两数相等,甲数是乙数的)()(,甲数比乙数多)()(。
10. 甲数比乙数多41,甲数与乙数比是( )。
乙数比甲数少)()(。
11. 在6 :5 = 1.2中,6是比的( ),5是比的( ),1.2是比的( )。
在4 :7 =48 :84中,4和84是比例的( ),7和48是比例的( )。
12. 4 :5 = 24÷( )= ( ) :1513. 一种盐水是由盐和水按1 :30 的重量配制而成的。
其中,盐的重量占盐水的(—),水的重量占盐水的(—)。
图上距离3厘米表示实际距离180千米,这幅图的比例尺是( )。
一幅地图的比例尺是图上6厘米表示实际距离( )千米。
实际距离150千米在图上要画( )厘米。
14. 12的约数有( ),选择其中的四个约数,把它们组成一个比例是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级下学期各单元同步学习文档
5正比例和反比例
概要:用字母x和y分别表示两个相关联的量,用k表示它们的比值,则x的值随y的值的改变而相应的改变,而它们的比值(或者乘积)k保持不变,我们就说y和x 成正(或反)比例。
正比例用式子表示为: = k (一定)
反比例用式子表示为:x * y =k(一定)
例题:
一)购买一种笔的数量和总价如下表:
数量x/支 1 2 3 4 5 ……
总价y/元0.3 0.6 0.9 ……
1.填写上表,说说总价是随着哪个量的变化而变化的.
2. 笔的总价和数量成正比例吗?为什么?
二)在60米赛跑中,甲冲过终点时,比乙领先10米,乙比丙领先20米,假如乙和丙的速度始终不变,那么,当乙到达终点时,将比丙领先多少?
三)5个空瓶可以换1瓶水,某班同学喝了161瓶水,期中有一些是空瓶换的,那么他们至少买了多少瓶水?
四)一架飞机所带的燃料最多能飞行7小时,飞机去时顺风,每小时飞行800千米,返回是逆风,每小时飞行600千米,这架飞机最多飞行多少千米就得返航?
练习题
一. 填空题
1.车轮的直径一定,所行的路程和车轮的转数成( )比例.
2.一个比的比值一定,前项和后项成( )比例.
3.顶一份报纸的份数和所需的钱数成( )比例.
4.A .B .C三种量的关系是:A=(A≠0,C≠0)。
如果B一定,A,C
两种量成()比例,如果C一定,A和B两量成()比例。
二.应用题
1.装修一间房子,用边长3分米的方砖铺地,需要500块,用边长5分米的方砖铺地,需要多少块?
2.用6台货车拉货,每天可以拉货180吨,如果再增加同样的货车9台,每天可以拉货多少吨?(用两种比例写)
3.有一堆煤,如果一辆车每天运5车,那么需要12天运完,现在需要提前2天运完,每天需运多少车?
4. 2枝圆珠笔的价钱和30枝铅笔的价格相等,3枝钢笔的价钱和15枝圆珠笔的价钱相等,现在用8枝钢笔的价钱可以买多少枝铅笔?。