算术逻辑运算单元
算术逻辑单元

一:算术逻辑单元——(ALU)1)比如二进制的00101010是十进制的42,所以表示储存数字是计算机的重要功能,但真正的目标是计算,有意义的处理数字:比如把“两个数相加”这些操作由计算机的“算术逻辑单元”处理,简称“ALU”2)ALU是计算机的数学大脑,ALU*就是*计算机里负责运算的组件,基本其他所有部件都用到它。
3)最著名的ALU——英特尔——74181,1970年,它是第一个封装在单个芯片的完整ALU。
4)用布尔逻辑做个简单的ALU电路,功能和74181一样,用它从头做出一台电脑二:ALU有两个单元,1个算术单元和一个逻辑单元1)算术单元:它负责计算机里的所有数字在操作,例:加减法。
它还会做很多其他的事情,比如给某个数字加1,“把两个数字相加”这叫增量运算2)最简单的加法电路:是拿2个bit加在一起(bit是0或1);有2个输入:A和B,一个输出,就是两个数字的和,需要注意的是:A,B,输出,这3个都是单个(bit)(0或1)3)输入只有4种可能:前三个是0+0=0 1+0=1 0+1=1 (记住在二进制里面,1与true相同,0与false 相同。
4)这组输入和输出,和XOR门的逻辑完全一样,B所以我们可以把XOR用作1位加法器(adder)但第四个输入组合,1+1,是个特例。
1+1=2(显然)但二进制里面没有2,二进制里1+1的结果是0,1进到下一位,和是10(二进制)XOR的输出。
只对了一部分。
1+1输出0,但我们需要一根额外的线代表“进位”只有输出是1和1时,进位才是true因为算出来的结果用一个bit 存不下,方便的是,我们刚好有个逻辑门能做这个事,“AND”门,只有当两个输入为“true”的输出才为“true”所以我们把它加到电路中。
这个电路叫叫“半加器”半加器就是两个逻辑门组成的电路AB FALSETRUE再简化就变成如下图SUMCARRY1)把半加器封装成一个单独组件:两个输入A和B都是1位,两个输出“总和”和“进位”2)如果想处理超过1+1的运算,我们需要全加器,半加器输出了进位,意味着我们算下一列的时候,还有之后的每一列,我们的加3个位在一起,并不是2个3)全加器表格有3个输入:A,B,C都是1个bit所以最大可能是1+1+1“总和1”进位“1”所以要两条线输出“总和”和“进位”我们可以用半加器做全加器我们先用半加器将A和B相加,把C输入到第二个半加器,最后用一个OR门检查进位是不是true全加器=半加器+半加器+OR(检查)再提升一层抽象,全加器,作为独立组件,全加器会把“A”“B”“C”三个输入加起来,输出“总和”和“进位”CARRYSUM有了新组件,可以相加两个8位数字,叫两个数字A和B我们从A和B的第一位开始,叫A0和B0,现在不用处理任何进位,因为是第一位加法,我们可以用半加器来加这个数字,输出叫sum0,现在加A1和B1,因为A0和B0的结果有可能进位,所以这次要用全加器,除了A1和B1,还要连上进位,然后,把这个全加器的进位连到下个全加器的输入,处理A2,和B2,以此类推,把8个bit搞定注意每个进位是怎么连接到下一个全加器的,所以这个叫“8位行波进位加法器”,注意最后一个全加器有进位的输出.如果第9位有进行,代表着2个数字的和太大了,超过来8位,这叫“溢出”,一般来说,“溢出”的意思是:两个数字的和太大了,超过了用来表示的位数,这会导致错误和不可预期的结果。
构成cpu的主要部件是什么

“构成CPU的主要部件是运算逻辑部件、寄存器部件和控制部件。
算术逻辑单元:算术逻辑单元(arithmetic and logic unit) 是能实现多组算术运算和逻辑运算的组合逻辑电路,简称ALU。
寄存器:寄存器的功能是存储二进制代码,它是由具有存储功能的触发器组合起来构成的。
一个触发器可以存储1位二进制代码,故存放n 位二进制代码的寄存器,需用n个触发器来构成。
控制单元:控制单元(Control Unit)负责程序的流程管理。
正如工厂的物流分配部门,控制单元是整个CPU的指挥控制中心,由指令寄存器IR(Instruction Register)、指令译码器ID(Instruction Decoder)和操作控制器OC(Operation Controller)三个部件组成,对协调整个电脑有序工作极为重要。
控制单元可以作为CPU的一部分,也可以安装于CPU外部。
中央处理器:中央处理器作为计算机系统的运算和控制核心,是信息处理、程序运行的最终执行单元。
CPU 自产生以来,在逻辑结构、运行效率以及功能外延上取得了巨大发展。
中央处理器(CPU),是电子计算机的主要设备之一,电脑中的核心配件。
其功能主要是解释计算机指令以及处理计算机软件中的数据。
CPU是计算机中负责读取指令,对指令译码并执行指令的核心部件。
中央处理器主要包括两个部分,即控制器、运算器,其中还包括高速缓冲存储器及实现它们之间联系的数据、控制的总线。
电子计算机三大核心部件就是CPU、内部存储器、输入/输出设备。
中央处理器的功效主要为处理指令、执行操作、控制时间、处理数据。
在计算机体系结构中,CPU 是对计算机的所有硬件资源(如存储器、输入输出单元)进行控制调配、执行通用运算的核心硬件单元。
CPU 是计算机的运算和控制核心。
计算机系统中所有软件层的操作,最终都将通过指令集映射为CPU的操作。
结构通常来讲,CPU的结构可以大致分为运算逻辑部件、寄存器部件和控制部件等。
cpu中用来对数据进行各种算术运算和逻辑运算的部件

cpu中用来对数据进行各种算术运算和逻辑运算的部件CPU是计算机的核心部件,它负责执行各种算术运算和逻辑运算,以处理和执行计算机程序中的指令。
CPU中的运算部件是实现这些功能的关键部分。
一、算术运算部件CPU中的算术运算部件主要负责执行加、减、乘、除等算术运算。
这些运算在计算机程序中非常常见,例如在处理数值数据、进行数学计算或执行科学计算时。
1. 加法器:加法器是CPU中最基本的算术运算部件,用于执行加法运算。
它接收两个操作数,并将它们相加,生成结果。
加法器在CPU中通常是多位的,可以处理不同长度的数据。
2. 减法器:减法器与加法器类似,用于执行减法运算。
它接收两个操作数,并将它们相减,生成结果。
3. 乘法器:乘法器用于执行乘法运算。
它接收两个操作数,并将它们相乘,生成结果。
乘法器在CPU中通常是多位的,可以处理不同长度的数据。
4. 除法器:除法器用于执行除法运算。
它接收两个操作数,其中一个作为被除数,另一个作为除数,生成商和余数。
除法器在CPU中通常是多位的,可以处理不同长度的数据。
二、逻辑运算部件CPU中的逻辑运算部件主要负责执行逻辑运算,如与、或、非等。
这些运算在计算机程序中也非常常见,例如在处理布尔逻辑、条件判断或控制流程时。
1. 逻辑与门:逻辑与门用于执行逻辑与运算。
它接收两个操作数,只有当两个操作数都为真时,结果才为真。
2. 逻辑或门:逻辑或门用于执行逻辑或运算。
它接收两个操作数,只要其中一个操作数为真,结果就为真。
3. 逻辑非门:逻辑非门用于执行逻辑非运算。
它接收一个操作数,并对其取反。
如果操作数为真,结果为假;如果操作数为假,结果为真。
除了以上介绍的算术运算和逻辑运算部件外,CPU中还可能包含其他类型的运算部件,如移位器、比较器等,以满足不同的计算需求。
三、总结CPU中的运算部件是实现计算机程序中各种算术和逻辑运算的关键部分。
这些部件通过精心的设计和优化,使得CPU能够高效地完成各种复杂的计算任务。
cpu计算的原理

cpu计算的原理
CPU(中央处理器)是计算机的核心部件之一,负责执行程序的指令和进行算术逻辑运算。
CPU的计算原理可以分为以下几个方面:
1. 指令获取:CPU从内存中获取指令,并将其加载到指令寄
存器中。
指令寄存器存储当前正在执行的指令。
2. 指令解码:CPU对指令进行解码,确定指令的类型和操作
对象。
3. 数据获取:如果指令需要操作数据,CPU将从内存或寄存
器中获取所需的数据。
4. 算术逻辑单元(ALU)运算:CPU使用ALU进行算术和逻
辑运算,如加法、减法、乘法、除法、与、或、非等。
5. 控制单元操作:控制单元控制指令的执行顺序和流程,并决定下一步应执行的指令。
6. 数据存储:CPU将计算结果存储回寄存器或内存中。
这样,后续指令可以使用这些结果。
7. 重复执行:CPU反复执行这个过程,直到程序执行完成。
CPU的计算原理实质上是不断重复的指令执行过程,通过指
令获取、解码、数据获取、运算、控制和数据存储等步骤,实现程序的执行和计算任务的完成。
这样的重复执行使得CPU 能够高效地完成各种计算任务。
微型计算机中运算器的主要功能是

微型计算机中运算器的主要功能是
1.算术运算:运算器能够执行加减乘除等基本的算术运算,通过运算器中的算术逻辑单元(ALU)来实现。
ALU可以对二进制数据进行加减乘除等运算,并能够处理整数、浮点数和定点数等不同的数据类型。
2.逻辑运算:运算器还能够执行与、或、非等逻辑运算,通过逻辑门电路实现。
逻辑运算常用于判断条件和控制计算机的流程。
3.位运算:运算器支持对二进制数据进行位移、与、或、异或等位运算操作,这些运算常用于处理数据的位级别操作。
4.浮点运算:运算器通常也包括浮点运算单元(FPU),用于执行浮点数的加减乘除等运算。
浮点运算在科学计算、图形处理和数据分析等领域中广泛应用。
5.控制运算:运算器还负责控制计算机的运算节奏和流程。
它接收指令、解析指令、操作寄存器和内存等资源,并根据指令类型执行相应的运算操作。
6.状态保存:运算器中的寄存器用于临时存储计算结果、操作数和中间数据等。
寄存器能够快速访问,常用于保存重要数据和中间结果,以便计算机能够快速地执行后续运算。
总之,运算器是计算机中重要的组件之一,主要负责完成各种数学和逻辑运算,并支持不同的数据类型和运算方式。
它是计算机能够高效运算和执行各种任务的基础。
ALU(算术逻辑运算单元)的设计

EDA技术与应用实验报告(四)实验名称:ALU(算术逻辑运算单元)的设计姓名:陈丹学号:100401202班级:电信(2)班时间:2012.12.11南京理工大学紫金学院电光系一、实验目的1、学习包集和元件例化语句的使用。
2、学习ALU电路的设计。
二、实验原理1、ALU原理ALU的电路原理图如图1 所示,主要由算术运算单元、逻辑单元、选择单元构成。
图1ALU功能表如表1 所示。
表12、元件、包集在结构体的层次化设计中,采用结构描述方法就是通过调用库中的元件或者已经设计好的模块来完成相应的设计。
在这种结构体中,功能描述就像网表一样来表示模块和模块之间的互联。
如ALU 是由算术单元、逻辑单元、多路复用器互相连接而构成。
而以上三个模块是由相应的VHDL 代码产生的,在VHDL 输入方式下,如果要将三个模块连接起来,就要用到元件例化语句。
元件例化语句分为元件声明和元件例化。
1、元件声明在VHDL 代码中要引入设计好的模块,首先要在结构体的说明部分对要引入的模块进行说明。
然后使用元件例化语句引入模块。
元件声明语句格式:component 引入的元件(或模块)名port(端口说明);end component;注意:元件说明语句要放在“architecture”和“begin”之间。
2、元件例化语句为将引入的元件正确地嵌入到高一层的结构体描述中,就必须将被引用的元件端口信号与结构体相应端口信号正确地连接起来,元件例化语句可以实现该功能。
元件例化语句格式:标号名:元件名(模块名)port map(端口映射);标号名是元件例化语句的唯一标识,且结构体中的标识必须是唯一的;端口映射分为:位置映射、名称映射。
位置映射指port map 中实际信号的书写顺序与component 中端口说明中的信号书写顺序一致,位置映射对书写顺序要求很严格,不能颠倒;名称映射指port map 中将引用的元件的端口信号名称赋予结构体中要使用元件的各个信号,名称映射的书写顺序要求不严格,顺序可以颠倒。
位可控加减法器设计32位算术逻辑运算单元

【位可控加减法器设计32位算术逻辑运算单元】1. 引言位可控加减法器是现代计算机中十分重要的组成部分,它可以在逻辑电路中实现对算术运算的功能。
其中,32位算术逻辑运算单元是计算机中非常常见的一个部件,它可以用来进行32位数据的加法、减法和逻辑运算。
本文将就位可控加减法器的设计和32位算术逻辑运算单元进行全面评估,并给出深度和广度兼具的解析。
2. 什么是位可控加减法器位可控加减法器是一种灵活的算术逻辑电路,它可以根据控制信号来选择进行加法运算或减法运算。
这种设计可以大大提高电路的灵活性和适用性,使得算术运算单元可以在不同的情况下实现不同的运算需求。
3. 32位算术逻辑运算单元的设计原理32位算术逻辑运算单元是计算机中进行32位数据运算的核心部件,它通常包括加法器、减法器、逻辑门等组件。
在设计中,需要考虑到加法器和减法器的位宽、进位和溢出等问题,同时还需要考虑逻辑门的多功能性和灵活性。
通过合理的组合和控制,可以实现对32位数据进行高效的算术逻辑运算。
4. 位可控加减法器设计在32位算术逻辑运算单元中的运用位可控加减法器的设计可以很好地应用在32位算术逻辑运算单元中,通过控制信号来选择进行加法或减法运算,从而满足不同情况下对数据的处理需求。
这种设计不仅能简化电路结构和控制逻辑,还能提高算术逻辑运算单元的灵活性和效率,使其更适用于不同的场景和运算需求。
5. 个人观点和理解从我个人的理解来看,位可控加减法器设计在32位算术逻辑运算单元中的应用,可以很好地提高计算机的运算效率和灵活性。
通过合理的设计和控制,可以使得算术逻辑运算单元在不同的情况下具有不同的功能,从而更好地满足计算机对于数据处理的需求。
这种设计也为计算机的设计和优化提供了很好的思路和方法。
6. 总结通过本文的评估和解析,我们对于位可控加减法器的设计以及在32位算术逻辑运算单元中的应用有了更深入的理解。
通过灵活的控制信号,可以实现算术逻辑运算单元在不同情况下对数据进行不同的处理,从而提高了计算机的运算效率和灵活性。
简述冯诺依曼计算机体系结构的组成部分及功能

简述冯诺依曼计算机体系结构的组成部分及功能
冯·诺依曼体系结构是一种最简单的计算机结构,它由五个主要组成部分组成,分别是存储器、控制器、总线、ALU(算术逻辑单元)和输入输出设备。
存储器:冯·诺依曼体系结构的存储器用来存储程序代码和数据,并且能够为其他部件提供数据。
控制器:控制器用来控制计算机的运行,控制数据在各部件之间的流动,以及执行程序指令。
总线:总线连接存储器、控制器、ALU(算术逻辑单元)和输入输出设备,使这些部件能够交互通信。
ALU(算术逻辑单元):ALU用来处理计算机中的数据,它可以完成运算操作,如算术运算和逻辑判断。
输入输出设备:输入输出设备用来将计算机处理的信息传递给外部设备,例如键盘、鼠标、显示器、打印机等。
冯·诺依曼体系结构的功能为计算机提供了一种简单的计算机体系结构,它能够运行程序,处理输入数据并生成输出数据。
它是计算机科学的基础,也是当今日常计算机使用中的重要组成部分。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28
2.1.5译码器-1
2输入4输出译码器
2020年5月19日1时50分
29
2.1.5译码器-2
两块3输入变量译码器扩展成4输入译码器
D=0,Y0~Y7 D=1,Y8~y15
2020年5月19日1时50分
30
2.1.6数据选择器-1
双4通道选1数据选择器
2020年5月19日1时50分
31
2.1.6数据选择器-2
2.1计算机中常用的组合逻辑电路 2.1.1三态电路
三态电路应用实例
图2.1三态反相门(1)的功能表及逻辑图
2020年5月19日1时50分
7
2.1计算机中常用的组合逻辑电 路
2.1.2异或门及其应用
1.异或门
图2.7异或门的功能表和逻辑图 逻辑表达式?
2020年5月19日1时50分
8
2.1计算机中常用的组合逻辑电 路
14
串行加法器和并行加法器
移位寄存器
速度慢,在ALU中很少采用
2020年5月19日1时50分
15
移位寄存器
Q2
Q1
CP D
2020年5月19日1时50分
16
2.1.3加法器—4位全加器
C2=X2Y2+(X2+Y2)C1
2020年5月19日1时50分
17
2.1.3加法器--4位超前进位加法 器
2.1.2异或门及其应用 数码比较器
图2.9四位比较器
2020年5月19日1时50分
当Ai=Bi ,则 Yi=0; 当Ai≠ Bi , 则 Yi=1
逻辑表达式?
9
2.1计算机中常用的组合逻辑电 路
2.1.2异或门及其应用 数码比较器
图2.9四位比较器
2020年5月19日1时50分
当Ai=Bi ,则 Yi=0; 当Ai≠ Bi , 则 Yi=1
2020年5月19日1ALU外观图
2020年5月19日1时50分
25
由4位ALU构成的16位ALU
C1 = G1 + P1C0 C2 = G2 + P2C1 = G2 + P2(G1 + P1C0 )
= G2+P2G1+P2P1C0
2020年5月19日1时50分
26
8选1数据选择器
2020年5月19日1时50分
32
2.2时序逻辑电路
2.2.1触发器 1. 电位触发方式触发器
图2.23 锁存器
2. 边沿触发方式触发器
图2.24 D触发器
第一章 小结
课程简介 冯.诺依曼体系结构
采用5大部件 采用程序、数据存储 采用2进制
计算机层次结构
硬件~总线结构 软件系统
性能指标
2020年5月19日1时50分
1
第一章 小结
课程简介
计算机组成原理:计算机的结构、组成及实现
➢ 地位:承上启下
OS 接口 体系结构
➢ 性质:重要的专业基础课 组成原理
➢ 任务:建立对计算机系统的整机概念
➢ 要求:
数字逻辑电路
➢ 熟练掌握计算机系统的基本概念和基本原理
➢ 了解各主要部件硬件结构,相互作用和联系及其工作 原理
➢ 掌握指令系统
2
计算机系统的基本组成及层次结构
从功能角度分析
数据输入 存储 运算、处理(传送) 输出
组成
体系结构-存储程序 (冯·诺依曼)
算术逻辑 单元 (ALU)
多位ALU
2020年5月19日1时50分
12
2.1计算机中常用的组合逻辑电 路
2.1.3加法器—半加器
2020年5月19日1时50分
13
2.1计算机中常用的组合逻辑电 路
2.1.3加法器—全加器
2020年5月19日1时50分
Fn=Xn ⊕ Yn ⊕ Cn Cn=XnYn+(Xn+Yn)Cn-1
由4位ALU构成的16位ALU
SN74182
2020年5月19日1时50分
27
半加器
真值表 逻辑表达式
2020年5月19日1时50分
第2章 小结
全加器
多位加法器
算术逻辑单 元
真值表
逻辑表达式(和, 进位)
串行进位
并行进位
•进位表达式(进位产生 函数G、进位传递函数P)
•多位进位表达式
一位ALU 4位ALU 多位ALU
10
2.1计算机中常用的组合逻辑电 路
2.1.2异或门及其应用 奇偶检测电路
图2.10八位奇偶检测电路
2020年5月19日1时50分
11
上一讲小结
半加器
• 真值表,和 逻辑表达式
全加器
• 真值表,和 逻辑表达式, 进位表达式
多位加法器
• 串行加法器 • 进位链表达式
(进位产生函 数、进位传递 函数) • 并行加法器
5
第2章 算术逻辑运算单元(ALU)
内容提要
半加器
真值表,和逻辑表达式
全加器
真值表,和逻辑表达式,进位表达式
多位加法器
串行加法器 进位链表达式(进位产生函数、进位传递函数) 并行加法器
算术逻辑单元(ALU) 多位ALU
2020年5月19日1时50分
6
第2章 计算机的逻辑部件
4
存储程序工作方式与诺依曼机
冯·诺依曼领导研制EDVAC(Electronic Discreate Variable Computer)机要点(1943~1946) 采用二进制代码表示数据和指令 采用5大部件 采用存储程序工作方式
事先编制程序 程序存储于计算机的存储器之中 计算机运行时自动取指、执行
2020年5月19日1时50分
图2.14四位超前进位加法器
18
4位超前进位加法器
2020年5月19日1时50分
19
2-1-4 算术逻辑单元
Fi
Ci
∑
…
Sn~0
Xi
Yi
2020年5月19日1时50分
20
算 术 逻 辑 单 元
2020年5月19日1时50分
S3S2 00 01 10 11
Xi 1 Ai+Bi Ai+Bi Ai
21
S1S0
00 01 10 11
Yi Ai AiBi Ai Bi 0
S3S2 00 01 10 11
Xi 1 Ai+/Bi Ai+Bi Ai
S1S0 00 01 10 11
Yi Ai AiBi Ai/ Bi 0
2020年5月19日1时50分
22
++
+
+
2020年5月19日1时50分
23
SN74181 4位ALU内部结构图
软件
语言支持 资源管理 应用软件
状
运算器
态数
命 结令
据
果
程 序
输入设备
请 求
命 令
存储器
地
命
址
令
输出设备
命
请
令
求
控制器
3
计算机系统的基本组成及层次结构
从硬件组成角度来分析 硬件组成层次结构
数字逻辑层 微体系结构层
功能部件 具体组成、运行原理、连接、协同
指令系统层
从软件组成角度来分析 操作系统层 汇编语言层 高级语言(算法语言)层 应用层