2014年考研数一真题及答案解析(完整版)
2014年考研数一真题及答案解析

2014年考研数一真题与答案解析数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)B(2)D(3)D(4)B(5)B(6)A(7)(B )(8)(D )二、填空题:9?14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)012=---z y x(10)11=-)(f(11)12+=x x yln(12)π(13)[-2,2](14)25n三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)【答案】(16)【答案】x y )(y 20-==或舍。
x y 2-=时,所以21-=)(y 为极小值。
(17)【答案】令u y cos e x =,则u )u (f )u (f +=''4, 故)C ,C (,u e C e C )u (f u u 为任意常数2122214-+=-由,)(f ,)(f 0000='=得(18)【答案】 补{}∑=11z )z ,y ,x (:的下侧,使之与∑围成闭合的区域Ω,(19)【答案】(1)证}a {n 单调 由20π<<n a ,根据单调有界必有极限定理,得n n a lim ∞→存在, 设a a lim n n =∞→,由∑∞=1n n b 收敛,得0=∞→n n b lim , 故由n n n b cos a a cos =-,两边取极限(令∞→n ),得10==-cos a a cos 。
解得0=a ,故0=∞→n n a lim 。
(20)【答案】①()1,2,3,1T - ②123123123123261212321313431k k k k k k B k k k k k k -+-+--⎛⎫ ⎪--+ ⎪= ⎪--+ ⎪⎝⎭()123,,k k k R ∈ (21)【答案】利用相似对角化的充要条件证明。
2014年考研数学(一)真题与解析(完整版)

1
1
应该选(D)
4. 若函数
( x a1 cos x b1 sin x ) 2 dx min ( x a cos x b sin x ) 2 dx ,则 a1 cos x b1 sin x
a ,bR
(A) 2 sin x 【详解】注意
1 y 1 ,可知 lim 1 且 lim ( y x ) lim sin 0 ,所以有斜渐近线 y x x x x x x x
(B)当 f ' ( x ) 0 时, f ( x ) g ( x ) (D)当 f ( x ) 0 时, f ( x ) g ( x )
(B) 2 cos x
(C) 2 sin x
(D) 2 cos x
x
2
2 dx 3 , cos 2 xdx sin 2 xdx , x cos xdx cos x sin xdx 0 , 3 2
x sin xdx 2 ,
如果换成直角坐标则应该是
0
1
dx
1 x 2
0
f ( x , y )dy dx
0
1
1 x
0
( A) , (B) f ( x , y )dy ,
两个选择项都不正确;
如果换成极坐标则为
2 0
d cos sin f ( r cos , r sin )rdr d cos sin f ( r cos , r sin )rdr .
2 2
其中 :
2014年全国硕士研究生入学统一考试数学一试题及解析(完整精准版).doc

96
福清市元载小学
小学数学
97
福清市龙山中心小学
小学数学
98
福清市宏路中心小学
小学数学
99
福清市海口中心小学
小学数学
100
福清市海口中心小学
小学数学
101
福清市海口中心小学
小学数学
102
福清市岑兜中心小学
小学数学
103
福清市城头中心小学
小学数学
104
福清市南岭中心小学
小学数学
105
福清市龙田中心小学
小学英语
182
福清市镜洋中心小学
小学英语
183
福清市镜洋中心小学
小学英语
184
福清市石门小学
小学体育
185
福清市龙田中心小学
小学体育
186
福清市江镜中心小学
小学体育
187
福清市港头中心小学
小学体育
188
福清市高山中心小学
小学体育
189
福清市实验小学
小学音乐
190
福清市海口中心小学
小学音乐
191
福清市东瀚中心小学
小学语文
76
福清市东瀚中心小学
小学语文
77
福清市渔溪中心小学
小学语文
78
福清市渔溪中心小学
小学语文
79
福清市渔溪中心小学
小学语文
80
福清市渔溪中心小学
小学语文
81
福清市上迳中心小学
小学语文
82
福清市上迳中心小学
小学语文
83
福清市占泽中心小学
小学语文
84
福清市占泽中心小学
2014年考研数一真题及解析

!
!!!"wTdr$")%"!6)$(6)""#-xyUV"!!"#7$ 0zD" #
!
!!%"2; 1{m$%%"% #!\qm"%:#-0|+#}:~F: ~FD>
( dF#8*+T :.$%".:#
!
;
!!$"25b&!$!#$%#$$"#$%!($%%%%,$!$$%#$%$$ 0M!D!#8,0
!!#!%#!$ +MNO0
!!!"
!&"PQRSTUV
!*"STRPQUV
!+"STPQUV
!,"WRSTXRPQUV
!4"2YZ[V3 \4 ]^_‘#a5!4"#-!2#5!3(4"#-!$#85!4(3"#
!!!"
!&"-!!
!*"-!%
!+"-!$
!,"-!#
!""2?@bYZcG 6!#6% ]^_‘#adefg9#6!#6% 0hijkTlD&!!$"#
1
!
!!#"2 6 0hijkD&!$#""#)*$%"$%#"’$ ’%"#,"1!#6!#6%#(#6< +-#!!! #
<
D 6 0YZ#A/,6=% D"% 0N#8/#
!
=#!
Z![O0"!2!%$30#65#5!GH[OYNO0PQRSTU![O\Y:]K^
2014年考研数学一真题及答案解析

(B)充分非必要条件. (D)既非充分也非必要条件.
1 0 【解析】由 (α 1 + kα 3, α 2 + lα 3) = (α 1, α 2, α 3) 0 1 知, k l
当 α 1, α 2, α 3 线性无关时,因为
1 0 ≠0 0 1
所以 α 1 + kα 3, α 2 + lα 3 线性无关 反之不成立 如当 α 3 = 0 ,
}
, 则
a1 cos x + b1 sin x =
(A) 2π sin x . 【解析】 解析】令 Z ( a, b) = (B) 2 cos x . (C) 2π sin x . (D) 2π cos x .
∫
π
−π
( x − a cos x − b sin x) 2 dx
π Za ′ = 2∫ −π ( x − a cos x − b sin x)(− cos x)dx = 0 π ′ Zb = 2∫ −π ( x − a cos x − b sin x)(− sin x)dx = 0
针方向,则曲面积分 [ ] zdx + ydz =___________.
∫
x = cos t 【解析】 解析】令 y = sin t z = − sin t
∴
t : [0,2π]dz =
∫ [− sin t (− sin t ) + sin t (− cos t )]dt
2014 年全国硕士研究生入学统一考试数学一试题及解析(完 整精准版)
一、选择题: 选择题:1~8 小题, 小题,每小题 4 分,共 32 分,下列每题给出四个选项中, 下列每题给出四个选项中,只有一个选项 符合题目要求的, 符合题目要求的,请将所选项的字母填在答题纸指定位置上。 请将所选项的字母填在答题纸指定位置上。 (1)下列曲线中有渐近线的是 (A) y = x + sin x . (B) y = x 2 + sin x . (C) y = x + sin
2014考研数一真题答案及详细解析

令y'=O,得y = -2x,或y =O (不适合方程 , 舍去).
将y =-2x代入方程得-6 x 3 +6 =0,解得x=l,J(l) =-2.
在3y
2
I
y
+y
2
I
+ 2x y y
+2xy +X
2
I
y
=0两端关于x求导
,得
(3y 2 +2xy +x 勹 y"+2(3y +x) (y') 2 +4(y+x)y'+2y =0.
l
cosb
b
2
n
an
•
l -cosb n
= — 2l nl-im00
1
an -cosb n
1 2
ln-im00
a
n
an +l -cosa
n
2,
00
00
2 且级数 n = l 从收敛,所以: n = l 生 bn 收敛.
(2 0)解 C I)对矩阵A施以初等行变换
。 。01 0
A�(�-; -0� �n-(� 1
(8) D
解
厂 [f EY 1 = _00Yfy1(y)dy = 了
+■a
_00Yf1(y)dy+f_=yj、z(y)dy]
=
(EX
了
1
+EX2
),
EY2=— 2 ECX1 +Xz)
=
—(EX
2
1
+EX2
),
故EY1 =EY2 , 又因为
DY 1 =E(Y�)-(EY 1 凡DY2 = ECY!) -(EY2 凡
2014考研数学一真题及答案解析(完整版)
2
2014 年全国硕士研究生入学统一考试
数学一试题答案
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项 符合题目要求的,请将所选项前的字母填在答题纸 指定位置上. ... (1)B (2)D (3)D (4)B (5)B (6)A (7) (B) (8) (D)
π
2
,根据单调有界必有极限定理,得 lim an 存在,
n →∞
设 lim an = a ,由
n →∞
∑b
n =1
∞
n
收敛,得 lim bn = 0 ,
n →∞
,得 cos a − a = cos 0 = 1 。 故由 cos a n − a n = cosb n ,两边取极限(令 n → ∞ ) 解得 a = 0 ,故 lim an = 0 。
n →∞
(20) 【答案】① ( −1, 2,3,1)
T
− k1 + 2 − k2 + 6 − k3 − 1 2k1 − 1 2k2 − 3 2k3 + 1 ②B= (k , k , k ∈ R) 3k1 − 1 3k2 − 4 3k3 + 1 1 2 3 k2 k3 k1
(21) 【答案】利用相似对角化的充要条件证明。
0, y < 0, 3 y, 0 ≤ y < 1, 4 (22) 【答案】 (1) FY ( y ) = 1 1 1 + y ,1 ≤ y < 2, 2 2 1, y ≥ 2.
(2)
3 4 1 πθ , EX 2 θ = 2
的下侧使之与围成闭合的区域?4?7327663dddd221113131131310231222010122010222211?????????????ddzsincosdzsincosdxdydzyx619答案1证an单调由20na根据单调有界必有极限定理得nnlima存在设aalimnn由1nnb收敛得0nnlimb故由nnnbcosaacos?两边取极限令n得10?cosaacos
2014-数一真题大全及答案
X
的概率密度为
f
( x, )
=
2x
3
2
,
x
2
,其中
是未知参数, X1,
X 2 ,,
X n 是来自总
0, 其它
n
体的简单样本,若 C
X
2 i
是
2
的无偏估计,则常数 C
=
.
i =1
【详解】E( X 2 ) =
x2
2x 3 2 dx
=
5 2
2 ,所以
E C
n i =1
X
2 i
=
Cn
5 2
2 ,由于 C
0
0
0
2
【分析】此题考查二重积分交换次序的问题,关键在于画出积分区域的草图. 【详解】积分区域如图所示
如果换成直角坐标则应该是
0
1− x2
1
1− x
dx
f ( x, y)dy + dx f ( x, y)dy ,(A),(B)
−1 0
0
0
两个选择项都不正确;
如果换成极坐标则为
1
1
2 d cos +sin f (r cos , r sin )rdr + d cos +sin f (r cos , r sin )rdr .
线性无关的 (A)必要而非充分条件 (C)充分必要条件
(B)充分而非必要条件 (D) 非充分非必要条件
【详解】若向量1, 2 ,3 线性无关,则
1 (1 + k3 , 2 + l3 ) = (1, 2 ,3 ) 0 k
0
1 = (1, 2 ,3 )K ,对任意的常数 k, l ,矩阵 K 的秩都等 l
2014年全国考研数学一真题及详细解答.doc
2014硕士研究生入学考试 数学一 一、选择题1—8小题.每小题4分,共32分.1.下列曲线有渐近线的是( )(A )x x y sin += (B )x x y sin +=2 (C )x x y 1sin += (D )xx y 12sin +=2.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( ) (A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≤'')(x f 时,)()(x g x f ≥ (D )当0≤'')(x f 时,)()(x g x f ≤3.设)(x f 是连续函数,则=⎰⎰---y y dy y x f dy 11102),(( )(A )⎰⎰⎰⎰---+210011010x x dy y x f dx dy y x f dx ),(),( (B )⎰⎰⎰⎰----+010111012x x dy y x f dx dy y x f dx ),(),((C )⎰⎰⎰⎰+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (121020dr r r f d dr r r f d(D )⎰⎰⎰⎰+++θθππθθπθθθθθθsin cos sin cos )sin ,cos ()sin ,cos (1021020rdr r r f d rdr r r f d4.若函数{}⎰⎰-∈---=--ππππdx x b x a x dx x b x a x Rb a 2211)sin cos (min )sin cos (,,则=+x b x a sin cos 11( )(A )x sin 2 (B )x cos 2 (C )x sin π2 (D )x cos π25.行列式dc dc b a b a0000000等于( ) (A )2)(bc ad - (B )2)(bc ad -- (C )2222c b d a - (D )2222c b d a +-6.设321ααα,, 是三维向量,则对任意的常数l k ,,向量31ααk +,32ααl +线性无关是向量321ααα,,线性无关的( )(A )必要而非充分条件 (B )充分而非必要条件 (C )充分必要条件 (D )非充分非必要条件7.设事件A ,B 想到独立,3050.)(,.)(=-=B A P B P 则=-)(A B P ( ) (A )0.1 (B )0.2 (C )0.3 (D )0.48.设连续型随机变量21X X ,相互独立,且方差均存在,21X X ,的概率密度分别为)(),(x f x f 21,随机变量1Y 的概率密度为))()(()(y f y f y f Y 21211+=,随机变量)(21221X X Y +=,则( )(A )2121DY DY EY EY >>, (B )2121DY DY EY EY ==, (C )2121DY DY EY EY <=, (D )2121DY DY EY EY >=,二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.曲面)sin ()sin (x y y x z -+-=1122在点),,(101处的切平面方程为 .10.设)(x f 为周期为4的可导奇函数,且[]2012,),()('∈-=x x x f ,则=)(7f . 11.微分方程0=-+)ln (ln 'y x y xy 满足31e y =)(的解为 .12.设L 是柱面122=+y x 和平面0=+z y 的交线,从z 轴正方向往负方向看是逆时针方向,则曲线积分⎰=+Lydz zdx .13.设二次型3231222132142x x x ax x x x x x f ++-=),,(的负惯性指数是1,则a 的取值范围是 . 14.设总体X 的概率密度为⎪⎩⎪⎨⎧<<=其它,,),(02322θθθθx xx f ,其中θ是未知参数,n X X X ,,, 21是来自总体的简单样本,若∑=ni i X C 12是2θ的无偏估计,则常数C = .三、解答题15.(本题满分10分) 求极限)ln())((limxx dt t e t x tx 1112112+--⎰+∞→.16.(本题满分10分)设函数)(x f y =由方程06223=+++y x xy y 确定,求)(x f 的极值. 17.(本题满分10分)设函数)(u f 具有二阶连续导数,)cos (y e f z x=满足x x e y e z yzx z 222224)cos (+=∂∂+∂∂.若0000==)(',)(f f ,求)(u f 的表达式.18.(本题满分10分)设曲面)(:122≤+=∑z y x z 的上侧,计算曲面积分:dxdy z dzdx y dydz x )()()(11133-+-+-⎰⎰∑(1) 证明0=∞→n n a lim ;(2) 证明级数∑∞=1n nnb a 收敛.19.(本题满分10分) 设数列{}{}n n b a ,满足2020ππ<<<<n n b a ,,n n n b a a cos cos =-且级数∑∞=1n n b 收敛.20.(本题满分11分)设⎪⎪⎪⎭⎫⎝⎛---=302111104321A ,E 为三阶单位矩阵.(3) 求方程组0=AX 的一个基础解系; (4) 求满足E AB =的所有矩阵. 21.(本题满分11分)证明n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100相似.22.(本题满分11分)设随机变量X 的分布为2121====)()(X P X P ,在给定i X =的条件下,随机变量Y 服从均匀分布210,),,(=i i U .(5) 求Y 的分布函数; (6) 求期望).(Y E23.(本题满分11分)设总体X 的分布函数为⎪⎩⎪⎨⎧<≥-=-00012x x e x F x ,,),(θθ,其中θ为未知的大于零的参数,n X X X ,,, 21是来自总体的简单随机样本,(1)求)(),(2X E X E ;(2)求θ的极大似然估计量.(3)是否存在常数a ,使得对任意的0>ε,都有0=⎭⎬⎫⎩⎨⎧≥-∞→εθa P n n ^lim .2013年考研数学一解析1.【详解】对于xx y 1sin +=,可知1=∞→x yx lim 且01==-∞→∞→x x y x x sin lim )(lim ,所以有斜渐近线x y =应该选(C )2.【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断.如果对区间上任意两点21x x ,及常数10≤≤λ,恒有())()()()(212111x f x f x x f λλλλ+-≥+-,则曲线是凸的.显然此题中x x x ===λ,,1021,则=+-)()()(211x f x f λλ)()())((x g x f x f =+-110,())()(x f x x f =+-211λλ,故当0≤'')(x f 时,曲线是凸的,即())()()()(212111x f x f x x f λλλλ+-≥+-,也就是)()(x g x f ≥,应该选(C ) 【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当0≤'')(x f 时,曲线是凸的,从而010==≥)()()(F F x F ,即0≥-=)()()(x g x f x F ,也就是)()(x g x f ≥,应该选(C )3.【详解】积分区域如图所示。
考研复习资料 2014考研数一真题及解析
y
f ( ex
cos
y )ex( cos
y)
2E x 2
2E y 2
f ( ex
cos
y )e2x
( 4E ex
cos
y )e2x
f ( ex cos y ) 4 f ( ex cos y ) ex cos y
令 ex cos y u ,
则 f ( u ) 4 f ( u ) u ,
(9) 2x y z 1 0
(10) f ( 1) 1 (11) ln y 2x 1
x (12)
(13)[-2,2] (14)
◆
三、解答题:15—23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证 明过程或演算步骤.
(15)【答案】
1
x [ t 2( e x 1) t ]dt
lim 1
x
x2 ln(1 1 )
x
1
( e x 1) x t 2dt
x
tdt
lim
1
1
x
x
lim x2( e 1) x x
令u 1 , x
则 lim x2( e 1) x x
lim
u0
eu
1 u2
u
lim eu 1 1 u0 2u 2
(16)【答案】
3y2 y y2 x 2 yy 2xy x2 y 0 y2 2xy 0 y( y 2x ) 0
2014 年全国硕士研究生入学统一考试
数学一试题答案
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合 题目要求的,请将所选项前的字母填在答.题.纸.指定位置上. (1)C (2)D (3)D (4)B (5)B (6)A (7)(B) (8)(D) 二、填空题:914 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年考研数一真题与答案解析
数学一试题答案
一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项
符合题目要求的,请将所选项前的字母填在答题纸
...指定位置上.
(1)B
(2)D
(3)D
(4)B
(5)B
(6)A
(7)(B)
(8)(D)
二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...
指定位置上. (9)012=---z y x
(10)11=-)(f
(11)12+=x x
y ln (12)π
(13)[-2,2]
(14)25n
三、解答题:15—23小题,共94分.请将解答写在答题纸...
指定位置上.解答应写出文字说明、证明过程或演算步骤.
(15)【答案】
2
1211111111102
0221
121
2112=-=--=--=--=--=+
--++→→+∞→+∞
→+∞→+∞→⎰⎰⎰u e lim u u e lim x )e (x lim ,x
u x )e (x lim x
tdt dt t )e (lim )x ln(x dt ]t )e (t [lim u u u u x x x x
x x x x x 则令
(16)【答案】
20
20
2232222=+=+='++'⋅++')x y (y xy y y x xy y y x y y y
x y )(y 20-==或舍。
x y 2-=时,
2
110
660
62480
62480
633333223223-==⇒==+-=+-+-=+-⋅+⋅+-=+++y ,x x x x x x )x (x )x (x x y x xy y
04914
190
141411202222222362222>=''=''=''+-''-''=''+'+'++''⋅+'⋅+'+'+''+')(y )(y )(y )(y )(y y x y x y x y y y x )y (x y y y y y y y )y ( 所以21-=)(y 为极小值。
(17)【答案】
y cos e )y cos e (f x
E x x '=∂∂ )y cos (e )y cos e (f y sin e )y cos e (f y E )y sin (e )y cos e (f y
E y cos e )y cos e (f y cos e )y cos e (f x
E x x x x x x x x x x -'+''=∂∂-'=∂∂'+''=∂∂22222222
y
cos e )y cos e (f )y cos e (f e )y cos e E (e )y cos e (f y E x E x x x x x x x +=''+=''=∂∂+∂∂44222
222 令u y cos e x =,
则u )u (f )u (f +=''4, 故)C ,C (,u e C e C )u (f u u 为任意常数2122214
-+=- 由,)(f ,)(f 0000='=得
4
161622u e e )u (f u u --=- (18)【答案】 补{}∑=1
1z )z ,y ,x (:的下侧,使之与∑围成闭合的区域Ω,
π
ρρρρπρθρθρρρθρθρθρρθρπρπ41732766311313113131
23122220101222010222
2
1
1-=-+-=+---=+-+--=+-+--=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω
∑∑+∑d ))((dz
]sin cos [d d dz
])sin ()cos ([d d dxdydz
])y ()x ([
(19)【答案】
(1)证}a {n 单调 由20π
<<n a ,根据单调有界必有极限定理,得n n a lim ∞
→存在, 设a a lim n n =∞→,由∑∞=1n n b 收敛,得0=∞
→n n b lim , 故由n n n b cos a a cos =-,两边取极限(令∞→n ),得10==-cos a a cos 。
解得0=a ,故0=∞
→n n a lim 。
(20)【答案】①()1,2,3,1T - ②123123123123261212321313431k k k k k k B k k k k k k -+-+--⎛⎫ ⎪--+ ⎪= ⎪--+ ⎪⎝⎭
()123
,,k k k R ∈ (21)【答案】利用相似对角化的充要条件证明。
(22)【答案】(1)()0,0,3,01,4111,12,221, 2.
Y y y y F y y y y <⎧⎪⎪≤<⎪=⎨⎛⎫⎪+≤< ⎪⎪⎝⎭⎪≥⎩ (2)34
(23)【答案】(1)21,2EX EX πθθ=
=
(2)21
1ˆn i i X n θ==∑ (3)存在。