逆变电路及其控制方法幻灯片
第十五讲PWM控制技术

u*为交流信号时,只要其频率远低于上述自励振荡频率,从 u中滤除由器件通断产生的高次谐波后,所得的波形就几乎 和u* 相同,从而实现电压跟踪控制
14.3.2 三角波比较方式
基本原理
不是把指令信号和三角波直接进行比较,而是通 过闭环来进行控制
第十五讲 PWM控制技术(二)
14.0 14.1 14.2 14.3 14.4
引言 PWM控制的基本原理 PWM逆变电路及其控制方法 PWM跟踪控制技术 PWM整流电路及其控制方法
14.3 PWM跟踪控制技术
PWM波形生成的第三种方法——跟踪控制方法 把希望输出的波形作为指令信号,把实际波形作
定时比较方式
不用滞环比较器,而是设置一个固定的时钟 以固定采样周期对指令信号和被控制变量进行采样,根
据偏差的极性来控制开关器件通断 在时钟信号到来的时刻,如i < i*,V1通,V2断,使i增大
如i > i*,V1断,V2通,使i减小 每个采样时刻的控制作用都使实际电流与指令电流的误
V1
VD3
桥PWM整流电路
半桥电路直流侧电容必须由两个 电容串联,其中点和交流电源连 接
VD2 VD1
us
Ls is Rs A
V3 B
+
ud
负 载
V4
VD4
V2
b)
全桥电路直流侧电容只要一个就 可以
图6-28
图6-28
单相PWM整流电路
交 电Leabharlann 流 感侧 和电 交
感 流
电Ls
包 源
括 内
外 部
逆变电路原理图

逆变电路原理图逆变电路是一种将直流电转换为交流电的电路。
它通常由开关管和电感、电容等元件组成,可以实现直流电源向各种负载输出交流电。
逆变电路在各种电子设备中都有广泛的应用,例如逆变电源、UPS电源等。
在本文中,我们将介绍逆变电路的原理图及其工作原理。
逆变电路的原理图通常由输入端、输出端、开关管、电感、电容等元件组成。
其中,输入端接收直流电源,经过开关管的控制,通过电感和电容等元件实现直流电到交流电的转换,最终输出到负载中。
开关管的工作状态由控制电路来控制,它可以周期性地打开和关闭,从而实现对直流电的切割和转换。
电感和电容则起到了滤波和平滑输出波形的作用。
逆变电路的工作原理是基于开关管的工作状态来实现的。
当开关管处于导通状态时,直流电源通过电感储能,同时电容器充电,此时负载得到电源供电。
当开关管处于断开状态时,电感释放能量,电容器放电,此时负载得到的是电感和电容器放电的能量。
通过不断地切换开关管的工作状态,可以实现直流电到交流电的转换。
在逆变电路中,开关管的工作状态由控制电路来控制。
控制电路通常由PWM控制器、驱动电路、反馈电路等组成。
PWM控制器可以根据输入信号的大小和频率来生成相应的脉冲信号,驱动电路则将脉冲信号传递给开关管,控制其导通和断开。
反馈电路则可以监测输出端的电压和电流,将其反馈给PWM控制器,实现对输出波形的调节和稳定。
逆变电路的原理图和工作原理对于电子工程师来说是非常重要的。
通过深入理解逆变电路的原理图和工作原理,可以更好地设计和调试逆变电路,提高电路的效率和稳定性。
同时,对于工程师来说,熟练掌握逆变电路的原理图和工作原理也是必不可少的技能。
总之,逆变电路是一种非常重要的电子电路,在各种电子设备中都有着广泛的应用。
通过深入理解逆变电路的原理图和工作原理,可以更好地应用和设计逆变电路,提高电路的效率和稳定性。
希望本文对您有所帮助,谢谢阅读!。
《三电平逆变器》课件

欢迎来到《三电平逆变器》的课程!本课程将重点介绍三电平逆变器的定义、 原理、工作原理、优点和应用,以及未来的发展趋势。让我们一起深入了解 这个令人兴奋的技术。
什么是三电平逆变器?
定义和基本原理
三电平逆变器通过引入第三电平,提供更高 的电压水平和更低的谐波失真。
三电平逆变器与传统二电平逆变器 的区别
提高能效性和降低电磁干扰
三电平逆变器可以显著提高能效性,并降低电磁干扰对其他电子设备的影响。
适用于高功率换流器和电动汽车
三电平逆变器在高功率换流器和电动汽车等领域具有广泛的应用前景。
结论
1 三电平逆变器的未来和发展趋势
随着能源转型的加速和对高效能源转换的需求增加,三电平逆变器将在未来继续发展壮 大。
与传统二电平逆变器相比,三电平逆变器具 有更高的效率和更低的电磁干扰。
三电平逆变器的工作原理
1
电路结构分析
通过分析三电平逆变器的电路结构,我们可以深入了解其工作原理。
2
控制方法
了解三电平逆变器的控制方法是理解其工作原理的关键。
3
功率传输
探索三电平逆变器是如何实现高效率和减少功率损耗的。th, J. (2018). Three-Level Inverters: A Comprehensive Analysis. IEEE Transactions on Power Electronics, 33(6), 5612-5624.
2. Wang, L., & Chen, G. (2019). High-Power Three-Level Inverter Applications in Electric Vehicles. IEEE Transactions on Vehicular Technology, 68(3), 2345-2356.
pwm逆变电路的控制方法

pwm逆变电路的控制方法
PWM(脉宽调制)逆变电路是将直流电转换为交流电的一种常用电路,其控制方法主要分为以下几种:
1. 三相全桥PWM逆变控制方法:该方法采用三相全桥电路进行控制,通过改变脉冲的宽度和频率来控制输出电压的大小和波形,从而实现对直流电的转换。
2. 三相半桥PWM逆变控制方法:该方法利用三相半桥电路进行控制,具有体积小、效率高等优点,但需要较高的开关功率器件,应用范围较窄。
3. 单相PWM逆变控制方法:该方法适用于小功率电源转换,其控制方法与三相全桥PWM逆变控制方法类似,但只需使用单相电路即可。
控制方法一般采用微处理器等芯片进行控制,通过控制芯片输出PWM信号的占空比和频率来控制输出电压。
在具体控制过程中,需要注意电路参数的选择和设置,以及保护措施的实施,确保电路稳定、安全地工作。
总之,PWM逆变电路的控制方法多种多样,具体选择何种方法取决于具体的应用场景和要求,需要根据实际情况进行选择和优化。
逆变器电路原理图

逆变器电路原理图逆变器是一种将直流电转换为交流电的电子器件,广泛应用于太阳能发电系统、风能发电系统、电动汽车和UPS等领域。
逆变器电路原理图是设计和制造逆变器的重要参考资料,它展示了逆变器内部电路的连接和工作原理,对于工程师和技术人员来说具有重要的参考价值。
逆变器电路原理图通常由多个部分组成,包括整流器、滤波器、逆变器、控制电路等。
首先,整流器部分将输入的直流电源转换为平稳的直流电压,然后经过滤波器进行滤波处理,去除电压中的杂波和谐波,使输出的直流电压更加稳定。
接下来,经过逆变器部分的处理,直流电压被转换为交流电压,输出到负载端使用。
控制电路则对整个逆变器系统进行监控和控制,确保逆变器的稳定运行和保护系统的安全。
在逆变器电路原理图中,不同的部分通过线路连接起来,形成一个完整的电路系统。
各个元件的选型和连接方式都对逆变器的性能和稳定性产生重要影响。
因此,在设计逆变器电路原理图时,需要充分考虑各个部分之间的匹配和协调,确保整个系统能够正常工作。
逆变器电路原理图的设计需要结合具体的应用场景和要求,选择合适的元件和电路拓扑结构。
不同类型的逆变器,如单相逆变器、三相逆变器、桥式逆变器等,其电路原理图也会有所不同。
同时,逆变器的功率级别和输出波形类型也会对电路设计产生影响,需要根据具体情况进行调整和优化。
总的来说,逆变器电路原理图是逆变器设计和制造的关键参考资料,它直接影响着逆变器的性能和稳定性。
工程师和技术人员需要对逆变器的工作原理和电路结构有深入的理解,才能设计出高性能、高可靠性的逆变器系统。
通过不断的实践和研究,逆变器电路原理图将会得到不断的完善和优化,推动逆变器技术的发展和应用。
PWM逆变电路及其控制方法

PWM逆变电路及其控制方法PWM(Pulse Width Modulation)逆变电路是一种通过改变电压或电流波形的占空比来实现电能转换的技术。
它广泛应用于各种电源逆变器、交流电机驱动器、太阳能逆变器、UPS(不间断电源系统)等领域。
本文将介绍PWM逆变电路的基本原理、常见的控制方法以及应用实例。
PWM逆变电路的基本原理是通过将直流电压转换为交流电压,使得输出波形的频率和幅值可以根据需求进行调节。
其核心部件是逆变器,通常由开关元件(如功率开关管)和输出变压器组成。
逆变器通过快速开关开关闭合,产生一系列电压脉冲,然后经过输出变压器将直流电压转换为交流电压。
PWM逆变电路的控制方法有多种,常见的包括:固定频率脉宽调制(Fixed Frequency Pulse Width Modulation,FFPWM)、固定频率电压脉宽调制(Constant Frequency Voltage Pulse Width Modulation,CFVPWM)、固定频率电流脉宽调制(Constant Frequency Current Pulse Width Modulation,CFCPWM)以及多重脉冲脉宽调制(Multiple Pulse Width Modulation,MPWM)等。
固定频率脉宽调制是PWM逆变电路中最简单的控制方法之一,其特点是输出频率和开关频率固定,可以通过调节脉宽来实现输出波形的幅值控制。
固定频率电压脉宽调制在固定频率脉宽调制的基础上增加了电压控制环节,通过反馈控制使输出电压达到设定值。
固定频率电流脉宽调制则在固定频率脉宽调制的基础上增加了电流控制环节,通过反馈控制使输出电流达到设定值。
多重脉冲脉宽调制是在固定频率脉宽调制的基础上引入多个脉冲周期,通过交错控制来改善输出波形的谐波含量。
1.电力电子逆变器:将直流电能转换为交流电能。
通过控制PWM逆变电路的开关元件,可以实现交流电压的频率和幅值的调节,广泛应用于电力系统、电动机驱动器及电力调速系统等。
三相逆变器电路原理和工作过程图文说明

三相逆变器电路原理和工作过程图文说明单相逆变器电路由于受到功率开关器件的容量、零线(中性线)电流、电网负载平衡要求和用电负载性质等的限制,容量一般都在100kV A以下,大容量的逆变电路大多采用三相形式。
三相逆变器按照直流电源的性质不同分为三相电压型逆变器和三相电流型逆变器。
1.三相电压型逆变器。
电压型逆变器就是逆变电路中的输入直流能量由一个稳定的电压源提供,其特点是逆变器在脉宽调制时的输出电压的幅值等于电压源的幅值,而电流波形取决于实际的负载阻抗。
三相电压型逆变器的基本电路如图6-15所示。
该电路主要由6只功率开关器件和6只续流二板管以及带中性点的直流电源构成。
图中负载L和R表示三相负载的各路相电感和相电阻。
图6-15 三相电压型逆变器电路原理图图6-15三相电压型逆变器电路原理图功率开关器件VT1~VT6在控制电路的作用下,控制信号为三相互差1200的脉冲信号时,可以控制每个功率开关器件导通180度或120度,相邻两个开关器件的导通时间互差60度逆变器三个桥臂中上部和下部开关元件以180度间隔交替开通和关断,VT1~VT6以60度的电位差依次开通和关断,在逆变器输出端形成a、b、c三相电压。
控制电路输出的开关控制信号可以是方波、阶梯波、脉宽调制方波、脉宽调制三角波和锯齿波等,其中后三种脉宽调制的波形都是以基础波作为载波,正弦波作为调制波,最后输出正弦波波形。
普通方波和被正弦波调制的方波的区别如图6-16所示,与普通方波信号相比,被调制的方波信号是按照正弦波规律变化的系列方波信号,即普通方波信号是连续导通的,而被调制的方波信号要在正弦波调制的周期内导通和关断N次。
方波调制波形图6-16 方波与被调制方波波形示意图2.三相电流型逆变器。
电流型逆变器的直流输入电源是一个恒定的直流电流源,需要调制的是电流,若一个矩形电流注入负载,电压波形则是在负载阻抗的作用下生成的。
在电流型逆变器中,有两种不同的方法控制基波电流的幅值,一种方法是直流电流源的幅值变化法,这种万法使得交流电输出侧的电流控制比较简单;另一种方法是用脉宽调制来控制基波电流。
PWM逆变电路及其控制方法

PWM逆变电路及其控制方法PWM逆变电路是一种将直流电能转换为交流电能的电路。
它通过以一定的频率和变化占空比的脉冲宽度调制信号,使得输入的直流电压经过逆变器变换后,输出成为一定频率和幅值可调的交流电压。
PWM逆变电路主要用于交流传动,太阳能发电系统,UPS等领域。
PWM逆变电路的基本结构包括直流输入电源、逆变器和输出滤波电路。
其中,直流输入电源将直流电压提供给逆变器,逆变器利用PWM技术将直流电压转换为交流电压,输出滤波电路对逆变器输出的脉冲波进行滤波,得到平滑的交流电压输出。
脉宽调制控制是最常用的PWM逆变电路控制方法。
它通过改变逆变器输入脉冲信号的占空比,控制逆变器输出交流电压的幅值。
具体实现方法是利用比较器将一个三角波信号与一个参考电压进行比较,产生一个PWM波形信号。
这个PWM波形信号的脉宽由比较器输出的高低电平确定,通过改变三角波信号的频率和参考电压的大小,可以改变脉冲宽度从而控制逆变器输出电压的幅值。
频率调制控制是通过改变逆变器输入脉冲信号的频率,控制逆变器输出交流电压的频率。
与脉宽调制控制不同,频率调制控制中,逆变器输出的脉冲宽度保持不变。
具体实现方法是通过改变比较器的阈值电压,或者改变三角波信号的频率,从而改变逆变器输出信号的频率。
值得注意的是,PWM逆变电路的控制方法还可以根据需要,对脉宽调制控制和频率调制控制进行组合,以实现更复杂的控制策略。
总结起来,PWM逆变电路是一种将直流电能转换为交流电能的电路,其控制方法主要有脉宽调制控制和频率调制控制两种。
通过调整脉宽和频率,可以实现对逆变器输出交流电压幅值和频率的精确控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VD 3 V5
VD 5
N'
V
N
Ud 2
+ C
V4
VD 4 V6
VD 6 V2W
VD 2
uuuurrrUVWc
调制 电路
U相的控制规律
u
●P种W电Mu平UN波’ 、形u只VN有’ 和±uUWdN/2’
的 两
O
uU N '
Ud 2
O
●
得
出uUV,波当形1可和由6u通UN’时-uV,N’
u
ur uc
O
uo Ud O -U d
t
u of
uo
t
图 6-6
四.控制规律:双极性 PWM 控制方式
● 当 ur > uc 时:给 V1 和 V4 导通信号,给 V2 和 V3 关断信号 ● 如 io > 0 ,V1 和 V4 通,如 io < 0 ,VD1 和 VD4 通, uo=Ud ● 当 ur < uc 时:给 V2 和 V3 导通信号,给 V1 和 V4 关断信号 ● 如 io < 0 ,V2 和 V3 通,如 io > 0 ,VD2 和 VD3 通,uo=-Ud
● ur 负半周,V1 保持断, u V 2保持通;
uc ur
● 当 ur > uc 时使 V4 通, O
t
V3 断,uo= 0 ● 当 ur < uc 时使 V4 断, u o
Ud
V3 通, uo= -Ud
uo u of
● 虚线 uof
O
t
表示 uo 的基波分量
-U d
图7-5 单极性图P6W- 5M控制方式波形
V1
Ud + V2
信号波 ur 载波 uc
调制 电路
V3 VD 1
RL
uo
V4
VD 2
图6-4
VD 3
图7-4
VD 4
单相桥式
PWM 逆变电路
★ uo 正半周,V1通,V2断,V3 和 V4交替通断 ● io 为负时 V1和 V4 仍导通,io 从 VD1 和 VD4 流过,uo=Ud ; ● V4 关断 V3 开通后,io 从 V3 和 VD1 续流,uo=0 ; ● uo总可得到Ud和零两种电平
●三相的PWM控制公用三角波载波uc ●三相的调制信号urU、urV和urW依次相差120°
Ud 2
+ V1 C U
VD 1 V3
VD 3 V5
VD 5
N'
V
N
Ud 2
+ C
V4
VD 4 V6
VD 6 V2W
VD 2
uuuurrrUVWc
调制 电路
图6-7
图6-7 三相桥式PWM型逆变电 路
U相的控制规律
V1
Ud + V2
信号波 ur 载波 uc
调制 电路
VD 1 R
V3 L
uo
V4
VD 2
图7-4 单相桥式图 PW6-M4 逆变电路
VD 3 VD 4
三.控制规律:单极性PWM控制方式
★ uo正半周,V1通,V2断,V3 和 V4交替通断 ● 感性负载电流滞后电压, uo 正半周, io 一段正,一段为负; ● io 为正的区间,V1 和 V4 导通时,uo=Ud ; ● V4 关断时,负载电流通过 V1和 VD3 续流,uo=0 ;
V1
Ud + V2
信号波 ur 载波 uc
调制 电路
V3 VD 1
RL
uo
V4
VD 2
VD 3 VD 4
图6-4
单相桥式电路既可采取单极性调制,也可采用双极性调制
u
ur uc
O
t
uo
u of
uo
Ud
O
t
-U d
图7-6 双极性图PW6 M- 6控制方式波 形
本节习题
184页 习题1、习题2
双极性PWM控制方式(三相桥逆变)
u
uc ur
● ur 正半周,V1保持通, O
t
V2 保持断
● 当 ur > uc 时使V4通,
uo Ud
V3 断,uo=Ud
uo u of
● 当 ur < uc 时使V4断,
O
t
V3 通,uo= 0
-U d
图7-5 单极性图P6W- 5M控制方式波形
单极性PWM控制方式
uc 载波信号 ur 调制信号
四.控制规律:双极性 PWM 控制方式控制
● 在 调制波 ur 的半个周期内,三角波载波 uc 有正有负,得到的 PWM 波也有正有负;
● 在 ur一周期内,输出 PWM 波只有±Ud 两种电平; ● 仍在调制信号 ur 和载波信号 uc 的交点控制器件的通断; ● ur 正负半周,对各开关器件的控制规律与单极性控制 相同;
逆变电路及其控制 方法幻灯片
优选第二节逆变电路及其控制 方法
7.2.1 计算法和调制法 一.计算法
● 根据正弦波的频率、幅值和半周期内脉冲的个数, 准确计算出 PWM 波各脉冲的宽度和间隔,根据 此计算来控制逆变电路开关器件的通断,就可得到 所需的 PWM 波形
● 用计算法非常繁琐,当输出正弦波的频率、幅值或 相位变化时,计算的结果都要跟着变化。
7.2.1 计算法和调制法 二.调制法
● 用输出波形作为调制信号,进行调制控制,从而得到期望的 PWM波;
● 通常采用等腰三角波或锯齿波作为载波信号;等腰三角波应 用最多,其任一点水平宽度和高度成线性关系且左右对称;
● 载波信号波与任一平缓变化的调制信号波相交,在相交点来 控制电力电子器件的通断,可以得宽度正比于信号波幅值的 脉冲,符合 PWM 的要求;
●当urU>uc时,给V1导通信号,给V4关断信号,uUN’=Ud/2 ●当urU<uc时,给V4导通信号,给V1关断信号,uUN’=-Ud/2 ● 当 给 V1(V4) 加 导 通 信 号 时 , 可 能 是 V1(V4) 导 通 , 也 可 能 是 VD1(VD4)导通
Ud 2
+ V1 C U
VD 1 V3
★ uo 负半周,V2 通,V1断,V3 和 V4 交替通断 ● uo可得 -Ud 和 零 两种电平
V1
Ud + V2
信号波 ur 载波 uc
调制 电路
V3 VD 1
RL
uo
V4
VD 2
VD 3
图7-4
VD 4
单相桥式
PWM 逆变电路
图6-4
单极性PWM控制方式
uc 载波信号 ur 调制信号
● 在 ur 和 uc 的交点时刻 控制 IGBT 的通断
● 调制信号波为正弦波时,得到的就是 SPWM波; ● 调制信号是其他所需波形时,也能得到等效的 PWM波。
图7-5 单极性PWM控制方式波形
u
uc ur
O
t
uo
uo
Ud
u 6-5
举例:结合IGBT单相桥式电压型逆变电路对调制法进行说明 ● 工作时 V1 和 V2 通断互补,V3 和 V4 通断也互补; ● uo 正半周,V1 通,V2 断,V3 和 V4 交替通断; ● uo 负半周,V2 通,V1 断,V3 和 V4 交替通断;