江苏省镇江三所省重点高中09-10学年第一学期期中联考高二数学文科试题必修五[1]

合集下载

江苏省镇江市2024~2025学年高三上学期期中模拟测数学试卷(含答案)

江苏省镇江市2024~2025学年高三上学期期中模拟测数学试卷(含答案)

2024~2025学年第一学期高三期中模拟测试卷(1)姓名:___________ 班级:___________一、单选题1.若,则()A.B.C.D.2.已知全集,集合,,则如图所示的图中阴影部分表示的集合为()A.B.C.D.3.若等比数列{an}的前n项和为S n,且S5=10,S10=30,则S20=()A.80B.120C.150D.1804.命题“”为真命题的一个充分不必要条件是()A.B.C.D.5.记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T<π,且的图象关于点(3π2,2)中心对称,则f(π2)=()A.1B.C.D.36.在△ABC中,,为上一点,且,若,则的值为()A.B.C.D.7.已知,,且,则的最小值为().A.4B.6C.8D.128.设,则()A.B.C.D.二、多选题9.将函数的图象向左平移个单位得到函数,则下列说法正确的是()A.的周期为B.的一条对称轴为C.是奇函数D.在区间上单调递增10.已知函数,则()A.有两个极值点B.有三个零点C.点是曲线的对称中心D.直线是曲线的切线11.如图,棱长为2的正方体中,为棱的中点,为正方形内一个动点(包括边界),且平面,则下列说法正确的有()A.动点B.三棱锥体积的最小值为C.与不可能垂直D.当三棱锥的体积最大时,其外接球的表面积为三、填空题12.已知为第一象限角,为第三象限角,,,则.13.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.14.若曲线在点处的切线也是曲线的切线,则.四、解答题15.已知函数的定义域为,对任意且,都满足.(1)求;(2)判断的奇偶性;(3)若当时,,且,求不等式的解集.1i1zz=+-z=1i--1i-+1i-1i+RU={}2560A x x x=--≤3lg3xB x yx-⎧⎫==⎨⎬+⎩⎭Venn(]3,1--(]1,3-(]1,3[]3,6[]21,2,0x x a∀∈-≤4a≤4a≥5a≤5a≥()y f x=3252π,23BAC AD DB∠==P CD12AP mAC AB=+||3,||4AC AB==AP CD⋅76-761312-1312x>0y>26xy x y++=2x y+0.110.1e,ln0.99a b c===-,a b c<<c b a<<c a b<<a c b<<()sin26f x xπ⎛⎫=-⎪⎝⎭6π()g x()g xπ()g x3xπ=()g x()g x,36ππ⎡⎤-⎢⎣⎦3()1f x x x=-+()f x()f x(0,1)()y f x=2y x=()y f x=1111ABCD A B C D-E1DD F11C CDD1//B F1A BEF11B D EF-131B F1A B11B D DF-25π2αβtan tan4αβ+=tan tan1αβ+sin()αβ+=e xy x=+()0,1ln(1)y x a=++a=()f x(,0)(0,)-∞+∞,x y∈R||||x y≠()22()()f x y f x y f x y++-=-(1),(1)f f-()f x1x>()0f x>(2)1f=(2)(1)2f x f x+--<16.如图,三棱锥中,,,,E 为BC 的中点.(1)证明:;(2)点F 满足,求二面角的正弦值.17.已知函数.(1)讨论的单调性;(2)证明:当时,.18.已知数列满足,(1)记,写出,,并求数列的通项公式; (2)求的前20项和.19.记△ABC 的内角的对边分别为,已知.(1)求; (2)若,求△ABC 面积.参考答案:题号12345678910答案C D C D A D A CAD AC 题号11 答案ABD12.A BCD -DA DB DC ==BD CD ⊥60ADB ADC ∠=∠= BC DA ⊥EF DA =D AB F --()()e xf x a a x =+-()f x 0a >()32ln 2f x a >+{}n a 11a =11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数2n n b a =1b 2b {}n b {}n a ,,A B C ,,a b c 2222cos b c a A+-=bc cos cos 1cos cos a B b A ba Bb A c--=+()tan tan tan 1tan tan αβαβαβ++==--因为,,则,,又因为,则,,则,则,解得法二:因为为第一象限角,为第三象限角,则,则13.【详解】方法一:由于,而截去的正四棱锥的高为,所以原正四棱锥的高为,所以正四棱锥的体积为,截去的正四棱锥的体积为,所以棱台的体积为.方法二:棱台的体积为.故答案为:.14.【详解】由得,,故曲线在处的切线方程为;由得,设切线与曲线相切的切点为,由两曲线有公切线得,解得,则切点为,切线方程为,根据两切线重合,所以,解得.故答案为:15.【详解】(1)因为对任意且,都满足,令,得,,令,得,.(2)对任意非零实数,,令,可得.在上式中,令,得,即对任意非零实数,都有,是偶函数.(3)对任意且,有,由(2)知,在区间上单调递增.,,是定义域为的偶函数,且在区间上单调递增,原不等式转化为,解得或或,原不等式的解集为.16.【详解】(1)连接,因为E为BC中点,,所以①,因为,,所以与均为等边三角形,,从而②,由①②,,平面,所以,平面,而平面,所以.(2)不妨设,,.,,又,平面平面.以点为原点,所在直线分别为轴,建立空间直角坐标系,如图所示:设,设平面与平面的一个法向量分别为,二面角平面角为,而,因为,所以,即有,,取,所以;,取,所以,所以,,从而所以二面角17.【详解】(1)因为,定义域为,所以,当时,由于,则,故恒成立,所以在上单调递减;π3π2π,2π,2ππ,2π22k k m mαβ⎛⎫⎛⎫∈+∈++⎪ ⎪⎝⎭⎝⎭,Zk m∈()()()22ππ,22π2πm k m kαβ+∈++++,Zk m∈()tan0αβ+=-<()()3π22π,22π2π2m k m kαβ⎛⎫+∈++++⎪⎝⎭,Zk m∈()sin0αβ+<()()sincosαβαβ+=-+()()22sin cos1αβαβ+++=()sinαβ+=αβcos0,cos0αβ><cosα==cosβ==sin()sin cos cos sin cos cos(tan tan)αβαβαβαβαβ+=+=+4cos cosαβ====282142=36()1446323⨯⨯⨯=()122343⨯⨯⨯=32428-=(13164283⨯⨯+=28ln2e xy x=+e1xy'=+0|e12xy='=+=e xy x=+()0,121y x=+()ln1y x a=++11yx'=+()ln1y x a=++()()00,ln1x x a++121yx'==+012x=-11,ln22a⎛⎫-+⎪⎝⎭112ln21ln222y x a x a⎛⎫=+++=++-⎪⎝⎭ln20a-=ln2a=ln2,x y∈R||||x y≠()22()()f x y f x y f x y++-=-1,0x y==(1)(1)(1)f f f+=(1)0f∴=1,0x y=-=(1)(1)(1)0f f f-+-==(1)0f∴-=a b,22a b a bx y+-==()()()f a f b f ab+=1b=-()(1)()f a f f a+-=-a()()f a f a=-()f x∴12,(0,)x x∈+∞12x x<22111,0x xfx x⎛⎫>∴>⎪⎝⎭()()()22211111x xf x f x f f x f xx x⎛⎫⎛⎫=⨯=+>⎪ ⎪⎝⎭⎝⎭()f x∴(0,)+∞(2)1,211(2)(2)(4)f f f f=∴=+=+=(2)(1)2f x f x+--<(2)(1)2(1)(4)(44),f x f x f x f f x∴+<-+=-+=-()f x(,0)(0,)-∞+∞(0,)+∞∴0|2||44|x x<+<-2x<-225x-<<2x>∴2(,2)2,(2,)5∞∞⎛⎫--⋃-⋃+⎪⎝⎭,AE DE DB DC=DE BC⊥DA DB DC==60ADB ADC∠=∠= ACDABD△AC AB∴=AE BC⊥AE DE E=,AE DE⊂ADE⊥BC ADE AD⊂ADE BC DA⊥2DA DB DC===BD CD⊥BC DE AE∴==2224AE DE AD∴+==AE DE∴⊥,AE BC DE BC E⊥=,DE BC⊂BCD AE∴⊥BCD E,,ED EB EA,,x y z(0,0,0)D A B EDAB ABF()()11112222,,,,,n x y z n x y z==D AB F--θ(AB=(EF DA==(F()AF=1111⎧=⎪∴=11x=1(1,1,1)n=222==⎪⎩21y=2(0,1,1)n=cos=sinθ==D AB F--()()e xf x a a x=+-R()e1xf x a=-'a≤e0x>e0xa≤()e10xf x a=-<'()f x R当时,令,解得,当时,,则在上单调递减;当时,,则在上单调递增;综上:当时,在上单调递减;当时,在上单调递减,在上单调递增.(2)方法一:由(1)得,,要证,即证,即证恒成立,令,则令,则,则所以在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.方法二:令,则,由于在上单调递增,所以在上单调递增,又,所以当时,;当时,;所以在上单调递减,在上单调递增,故,则,当且仅当时,等号成立,因为,当且仅当,即时,等号成立,所以要证,即证,即证,令,则,令,则,则在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.18.【详解】解:(1)[方法一]【最优解】:显然为偶数,则,所以,即,且,所以是以2为首项,3为公差的等差数列,于是.[方法二]:奇偶分类讨论由题意知,所以.由(为奇数)及(为偶数)可知,数列从第一项起,若为奇数,则其后一项减去该项的差为1,若为偶数,则其后一项减去该项的差为2.所以,则.[方法三]:累加法由题意知数列满足.所以,,则.所以,数列的通项公式.(2)[方法一]:奇偶分类讨论.[方法二]:分组求和由题意知数列满足,所以.所以数列的奇数项是以1为首项,3为公差的等差数列;同理,由知数列的偶数项是以2为首项,3为公差的等差数列.0a >()e 10xf x a =-='ln x a =-ln x a <-()0f x '<()f x (),ln a -∞-ln x a >-()0f x '>()f x ()ln ,a -+∞0a ≤()f x R 0a >()f x (),ln a -∞-()f x ()ln ,a -+∞()()()ln min 2ln ln ln e1af a a x a f a a a --+=++=+=3()2ln 2f x a >+2312ln 2ln a a a ++>+21ln 02a a -->()()21ln 02g a a a a =-->()21212a g a a a a -=-='()0g a '<0a <<()0g a '>a >()g a ⎛ ⎝⎫+∞⎪⎪⎭()2min102g a g ==--=>()0g a >0a >3()2ln 2f x a >+()e 1xh x x =--()e 1x h x '=-e x y =R ()e 1x h x '=-R ()00e 10h =-='0x <()0h x '<0x >()0h x '>()h x (),0-∞()0,∞+()()00h x h ≥=e 1x x ≥+0x =()2ln 22()e e eln 1xxx af x a a x a a x a x x a a x +=+-=+-=+-≥+++-ln 0x a +=ln x a =-3()2ln 2f x a >+23ln 12ln 2x a a x a +++->+21ln 02a a -->()()21ln 02g a a a a =-->()21212a g a a a a -=-='()0g a '<0a <<()0g a '>a >()g a ⎛ ⎝⎫+∞⎪⎪⎭()2min 102g a g ==--=>()0g a >0a >3()2ln 2f x a >+2n 21222212,1n n n n a a a a +++=+=+2223n n a a +=+13n n b b +=+121+12b a a ==={}n b 122,5,31n b b b n ===-1231,2,4a a a ===122432,15b a b a a ====+=11n n a a +-=n 12n n a a +-=n n n *23()n n a a n N +-=∈()11331n b b n n =+-⨯=-{}n a *113(1)1,()22nn n a a a n +-==++∈N 11213(1)11222b a a -==++=+=322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++ 12(1)131n n n =+-+=-⨯122,5b b =={}n b 31n b n =-20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++ 1231012310(1111)b b b b b b b b =-+-+-++-+++++ 110()102103002b b +⨯=⨯-={}n a 12212121,1,2n n n n a a a a a -+==+=+2122123n n n a a a +-=+=+{}n a 2221213n n n a a a ++=+=+{}n a从而数列的前20项和为:.19.【详解】(1)因为,所以,解得:.(2)由正弦定理可得,变形可得:,即,而,所以,又,所以故的面积为.{}n a 201351924260()()S a a a a a a a a =+++++++++ 1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=2222cos a b c bc A =+-2222cos 22cos cos b c a bc Abc A A+-===1bc =cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A Ba Bb Ac A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B BA B A B A B ---=-==+++()()sin sin sin A B A B B --+=2cos sin sin A B B -=0sin 1B <≤1cos 2A =-0πA <<sin A =ABC V 11sin 122ABC S bc A ==⨯△。

高二上学期期中考试数学试卷含答案

高二上学期期中考试数学试卷含答案

高二级上学期期中考试题数学本试卷共8页,22小题,满分150分,考试时间120分钟。

第一部分选择题(共60分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( )A .0B .-1C .0或1D .0或-12.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( )A.2π B .22π C .2πD .4π3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 5.下列命题中,正确的是( )A .任意三点确定一个平面B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( )A. 5 B .23 C . 22D .3 37.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上, 则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .D .⎡⎣二、多选题:本题共4小题,每小题5分,共20分.9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .410.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+=B .30x y +-=C .20x y -=D .10x y --=12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,BC =CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6第二部分非选择题(90分)三、填空题:本题共4小题,每小题5分,共20分.13.命题“20210x x x ∃<-->,”的否定是______________.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.15.若直线:l y kx =与曲线:1M y =+有两个不同交点,则k 的取值范围是________________.16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程.18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,P A ⊥平面ABCD ,P A =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值;(2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l 与圆C 相离,求a 的取值范围.20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点.(1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.21. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.22. (本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点? 若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.高二级上学期期中考试题 数学答案及说明一、选择题:1.D ,2.A ,3.C ,4.B ,5.C ,6.B ,7.D ,8.A ,9.BCD ,10.ACD ,11.ABC ,12.BC.二、填空题:13.0x ∀<,2210x x --≤;14.y =-2x -2;15.13,24⎡⎫⎪⎢⎣⎭;16.36π.题目及详细解答过程:一、单选题(本题共8小题,每小题5分,共40分)1.已知直线l 1:2x +my =2,l 2:m 2x +2y =1,且l 1⊥l 2,则m 的值为( ) A .0 B .-1 C .0或1 D .0或-1 解析:因为l 1⊥l 2,所以2m 2+2m =0,解得m =0或m =-1. 答案:D2.若一个圆锥的轴截面是面积为1的等腰直角三角形,则该圆锥的侧面积为( ) A.2π B .22π C .2π D .4π 解析:设底面圆的半径为r ,高为h ,母线长为l ,由题可知,r =h =22l ,则12(2r )2=1,r =1,l =2.所以圆锥的侧面积为πrl =2π. 答案:A3.把正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为( )A .90°B .60°C .45°D .30°解析:当三棱锥D ­ABC 体积最大时,平面DAC ⊥平面ABC .取AC 的中点O ,则∠DBO 即为直线BD 和平面ABC 所成的角.易知△DOB 是等腰直角三角形,故∠DBO =45°.答案:C4.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A B C D 【答案】B【解析】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为22553255d ⨯--== 圆心到直线230x y --=的距离均为22555d -==; 所以,圆心到直线230x y --=25. 故选:B .5.下列命题中,正确的是( ) A .任意三点确定一个平面 B .三条平行直线最多确定一个平面C .不同的两条直线均垂直于同一个平面,则这两条直线平行D .一个平面中的两条直线与另一个平面都平行,则这两个平面平行 解析:由线面垂直的性质,易知C 正确. 答案:C6.已知M (3,23),N (-1,23),F (1,0),则点M 到直线NF 的距离为( ) A. 5 B .23 C . 22D .3 3解析:易知NF 的斜率k =-3,故NF 的方程为y =-3(x -1),即3x +y -3=0. 所以M 到NF 的距离为|33+23-3|(3)2+12=2 3. 答案:B7.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是( )A .20πB .16πC .32πD .24π解析:由题意知正四棱柱的底面积为4,所以正四棱柱的底面边长为2,正四棱柱的底面对角线长为22,正四棱柱的对角线为2 6.而球的直径等于正四棱柱的对角线,即2R =2 6.所以R = 6.所以S 球=4πR 2=24π. 答案:D8.直线:20l x y ++=分别与x 轴、y 轴交于A 、B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是( ) A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,【答案】A 【解析】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则22AB =.点P 在圆22(2)2x y -+=上,∴圆心为(2,0),则圆心到直线的距离1202222d ++==.故点P 到直线20x y ++=的距离2d 的范围为2,32⎡⎤⎣⎦,则[]22122,62ABP S AB d d ==∈△.故答案为A.二、多选题(每题5分,共20分)9.若220x x --<是2x a -<<的充分不必要条件,则实数a 的值可以是( ) A .1B .2C .3D .4【答案】BCD【解析】:由220x x --<,解得12x -<<.又220x x --<是2x a -<<的充分不必要条件,(1∴-,2)(2-,)a ,则2a .∴实数a 的值可以是2,3,4.故选:BCD .10.已知,αβ是两个不重合的平面,,m n 是两条不重合的直线,则下列命题正确的是( ) A .若//m n m α⊥,,则n α⊥ B .若//,m n ααβ⋂=,则//m n C .若m α⊥,m β⊥,则//αβ D .若,//,m m n n αβ⊥⊥,则//αβ 【答案】ACD 【解析】若m α⊥,则,a b α∃⊂且a b P =使得m a ⊥,m b ⊥,又//m n ,则n a ⊥,n b ⊥,由线面垂直的判定定理得n α⊥,故A 对; 若//m α,n αβ=,如图,设m AB =,平面1111D C B A 为平面α,//m α,设平面11ADD A 为平面β,11A D n αβ⋂==,则m n ⊥,故B 错;垂直于同一条直线的两个平面平行,故C 对;若,//m m n α⊥,则n α⊥,又n β⊥,则//αβ,故D 对; 故选:ACD .11.若直线过点(1,2)A ,且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( ) A .10x y -+= B .30x y +-= C .20x y -= D .10x y --=【答案】ABC【解析】:当直线经过原点时,斜率为20210k -==-,所求的直线方程为2y x =,即20x y -=; 当直线不过原点时,设所求的直线方程为x y k ±=,把点(1,2)A 代入可得12k -=,或12k +=,求得1k =-,或3k =,故所求的直线方程为10x y -+=,或30x y +-=; 综上知,所求的直线方程为20x y -=、10x y -+=,或30x y +-=. 故选:ABC .12.已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,23BC =,26CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为6 【答案】BC【解析】作图在四棱锥P ABCD -中:为矩形,由题:侧面PCD ⊥平面ABCD ,交线为CD ,底面ABCDBC CD ⊥,则BC ⊥平面PCD ,过点B 只能作一条直线与已知平面垂直,所以选项A错误;连接AC 交BD 于O ,连接MO ,PAC ∆中,OM ∥PA ,MO ⊆面MBD ,PA ⊄面MBD ,所以//PA 面MBD ,所以选项B 正确;四棱锥M ABCD -的体积是四棱锥P ABCD -的体积的一半,取CD 中点N ,连接PN ,PN CD ⊥,则PN平面ABCD ,32PN =,四棱锥M ABCD -的体积112326321223M ABCD V -=⨯⨯⨯⨯=所以选项D 错误.矩形ABCD 中,易得6,3,3AC OC ON ===,PCD 中求得:16,2NM PC ==在Rt MNO 中223MO ON MN =+=即: OM OA OB OC OD ====,所以O 为四棱锥M ABCD -外接球的球心,半径为3, 所以其体积为36π,所以选项C 正确, 故选:BC三、填空题(每题5分,共20分)13.命题“20210x x x ∃<-->,”的否定是______. 【答案】0x ∀<,2210x x --≤【解析】因为特称命题的否定是全称命题,所以,命题20210x x x ∃<-->,, 则该命题的否定是:0x ∀<,2210x x --≤ 故答案为:0x ∀<,2210x x --≤.14.已知直线l 1的方程为23y x =-+,l 2的方程为42y x =-,直线l 与l 1平行且与l 2在y 轴上的截距相同,则直线l 的斜截式方程为________________.解析:由斜截式方程知直线l 1的斜率k 1=-2,又l ∥l 1,所以l 的斜率k =k 1=-2.由题意知l 2在y 轴上的截距为-2,所以l 在y 轴上的截距b =-2.由斜截式方程可得直线l 的方程为y =-2x -2.答案:y =-2x -215.若直线:l y kx =与曲线()2:113M y x =+--有两个不同交点,则k 的取值范围是________________.解析:曲线M :y =1+1-(x -3)2是以(3,1)为圆心,1为半径的,且在直线y =1上方的半圆.要使直线l 与曲线M 有两个不同交点,则直线l 在如图所示的两条直线之间转动,即当直线l 与曲线M 相切时,k 取得最大值34;当直线l 过点(2,1)时,k 取最小值12.故k 的取值范围是13,24⎡⎫⎪⎢⎣⎭. 答案:13,24⎡⎫⎪⎢⎣⎭16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的体积为____________.解析:如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC .又由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,知OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r ,所以三棱锥S ­ABC 的体积为311323r V SC OB OA ⎛⎫=⨯⋅⋅= ⎪⎝⎭,即r 33=9.所以r =3.所以3344336.33=O V r πππ=⨯=球答案:36π四、解答题(每题5分,共70分)17.(本小题满分10分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程. 解:(1)设l 2的方程为2x -y +m =0,..........1分因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3,即l 2:2x -y -3=0.....3分联立⎩⎪⎨⎪⎧x +2y -4=0,2x -y -3=0,得⎩⎪⎨⎪⎧x =2,y =1.所以直线l 1与l 2的交点坐标为(2,1)...........5分 (2)当l 3过原点时,l 3的方程为y =12x ..........6分当l 3不过原点时,设l 3的方程为12x y a a +=...........7分 又直线l 3经过l 1与l 2的交点,所以2112a a+=, 得52a =,l 3的方程为2x +y -5=0...........8分 综上,l 3的方程为y =12x 或2x +y -5=0...........10分18.(本小题满分12分)四棱锥P-ABCD 的底面ABCD 为直角梯形,AB ∥CD ,AB ⊥AD ,AB =12CD =1,PA ⊥平面ABCD ,PA =AD = 3.(1)求证:PD ⊥AB ;(2)求四棱锥P-ABCD 的体积.18.解:(1)证明:因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以PA ⊥AB ,..........1分又因为AB ⊥AD ,AD ∩PA =A ,..........3分 所以AB ⊥平面PAD ,..........4分又PD ⊂平面PAD ,..........5分所以AB ⊥PD ...........6分 (2)解:S 梯形ABCD =12(AB +CD )·AD =332,.......8分又PA ⊥平面ABCD ,..........9分所以V 四棱锥P-ABCD =13×S 梯形ABCD ·PA =13×332×3=32...........12分19.(本小题满分12分)已知圆C 的圆心坐标为(a ,0),且圆C 与y 轴相切. (1)已知a =1,M (4,4),点N 是圆C 上的任意一点,求|MN |的最小值; (2)已知a <0,直线l 的斜率为43,且与y 轴交于点20,3⎛⎫- ⎪⎝⎭.若直线l与圆C 相离,求a 的取值范围.19.解:(1)由题意可知,圆C 的方程为(x -1)2+y 2=1...........2分又|MC |=(4-1)2+(4-0)2=5,..........4分 所以|MN |的最小值为5-1=4...........5分(2)因为直线l 的斜率为43,且与y 轴相交于点20,3⎛⎫- ⎪⎝⎭,所以直线l 的方程为y =43x -23.即4x -3y -2=0..........7分因为直线l 与圆C 相离,所以圆心C (a ,0)到直线l 的距离d >r . 则224243a a ->+.........9分又0a <,所以245a a ->-,解得2a >-..........11分 所以a 的取值范围是(-2,0)..........12分20.(本小题满分12分)在直三棱柱ABC-A 1B 1C 1中,AB =5,AC =3,BC =4,点D 是线段AB 上的动点. (1)当点D 是AB 的中点时,求证:AC 1∥平面B 1CD ;(2)线段AB 上是否存在点D ,使得平面ABB 1A 1⊥平面CDB 1?若存在,试求出AD 的长度;若不存在,请说明理由.20.解:(1)证明:如图,连接BC 1,交B 1C 于点E ,连接DE ,则点E 是BC 1的中点,又点D 是AB 的中点,由中位线定理得DE ∥AC 1,.........1分 因为DE ⊂平面B 1CD ,.........2分AC 1⊄平面B 1CD ,.........3分所以AC 1∥平面B 1CD ..........4分(2)解:当CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1........5分 证明:因为AA 1⊥平面ABC ,CD ⊂平面ABC , 所以AA 1⊥CD ..........6分又CD ⊥AB ,AA 1∩AB =A ,.........7分所以CD ⊥平面ABB 1A 1,因为CD ⊂平面CDB 1,.........8分 所以平面ABB 1A 1⊥平面CDB 1,.........9分故点D 满足CD ⊥AB 时,平面ABB 1A 1⊥平面CDB 1......10分 因为AB =5,AC =3,BC =4,所以AC 2+BC 2=AB 2, 故△ABC 是以角C 为直角的三角形, 又CD ⊥AB ,所以AD =95..........12分22. (本小题满分12分) 如图,多面体ABCDEF 中,四边形ABCD 是菱形,060ABC ∠=,FA ⊥平面ABCD ,//,2 2.FA ED AB FA ED ===求二面角F BC A --的大小的正切值;求点E 到平面AFC 的距离;求直线FC 与平面ABF 所成的角的正弦值.21.解: 作于点G ,连接FG , 四边形ABCD 是菱形,,,为等边三角形,,-----1分平面ABCD ,平面ABCD ,,又,,平面AFG ,BC FG ∴⊥-----2分 G∴为二面角的平面角,------3分----------------------------4分连接AE ,设点E 到平面AFC 的距离为h , 则, ----------------------5分即,也就是,--------------------6分解得:; ------------------------------------------------7分(3)作CH AB ⊥于点H ,连接FH ,ABC ∆为等边三角形,H ∴为AB 的中点,221,3,5,AH CH FH FA AH ===+= FA ⊥平面ABCD ,CH ⊂平面ABCD ,FA CH ∴⊥,----8分 又,CH AB AB AF A ⊥⋂=,CH ∴⊥平面ABF ,-----9分CFH ∴∠为直线FC 与平面ABF 所成的角,-------10分36sin 422CH CFH CF ∴∠===.-----------------12分 22.(本小题满分12分)已知圆22+=9:O x y ,过点()0,2P -任作圆O 的两条相互垂直的弦AB 、CD ,设M 、N 分别是AB 、CD 的中点,(1)直线MN 是否过定点?若过,求出该定点坐标,若不过,请说明理由; (2)求四边形ACBD 面积的最大值,并求出对应直线AB 、CD 的方程.22.解:(1)当直线AB CD 、的斜率存在且不为0,设直线AB 的方程为:()()()112220,,,,y kx k A x y B x y =-≠------------1分由2229+=y kx x y =-⎧⎨⎩得:()221450k x kx +--=--------------------2分 点()0,2P -在圆内,故0∆>. 又 1212222422,21211M M Mx x k k x x x y kx k k k +∴+=∴===-=-+++ 即 2222,11kM k k ⎛⎫- ⎪++⎝⎭--------------------3分AB CD ⊥以1k -代换k 得22222,11k k N k k ⎛⎫-- ⎪++⎝⎭22222222111.22211MNk k k k k k k k k k -+-++∴==+++---------------4分∴直线MN 的方程为:222212121k k y x k k k -⎛⎫+=- ⎪++⎝⎭化简得2112k y x k-=-,故直线MN 恒过定点()01-,--------------------5分 当直线AB CD 、的斜率不存在或为0时,显然直线MN 恒过定点()01-, 综上,直线MN 恒过定点()01-,--------------------.6分 (2) 解法一:圆心O 到直线AB的距离1d =AB ==分 (或由第(1)问得:21AB x =-==以1k -代换k 得CD =)AB CD ⊥∴以1k -代换k 得:CD =分12ACBD S AB CD ∴=⋅==分14=≤= 当且仅当221,1k k k==±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=-----------12分 解法二:设圆心O 到直线AB 、CD 的距离分别为12,d d 、则22222211229,9AB r d d CD r d d =-=-=-=---------------------7分AB CD ⊥222124d d OP ∴+==--------------------8分()()()2222121221991821818414ACBD S AB CD d d d d OP ∴=⋅=≤-+-=-+=-=-=--------------------10分当且仅当12d d =,即1k =±时,取等号,故四边形ACBD 面积的最大值为14,--------------------11分对应直线AB 、CD 分别为2,2y x y x =-=--或2,2y x y x =--=---------12分。

2023-2024学年江苏省徐州一中高二(上)期中数学试卷【答案版】

2023-2024学年江苏省徐州一中高二(上)期中数学试卷【答案版】

2023-2024学年江苏省徐州一中高二(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目条件要求.1.直线x +√3y +1=0的倾斜角是( ) A .30° B .60°C .120°D .150°2.通过椭圆x 24+y 23=1的焦点且垂直于x 轴的直线l 被椭圆截得的弦长等于( ) A .2√3 B .3C .√3D .63.双曲线x 24−y 2=1的焦点到渐近线的距离为( )A .1B .√2C .2D .34.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交于C 于A ,B 两点,则|AB |=( ) A .√303B .6C .12D .7√35.许多建筑融入了数学元素,更具神韵,数学赋予了建筑活力,数学的美也被建筑表现得淋漓尽致.已知图1是单叶双曲面(由双曲线绕虚轴旋转形成立体图形)型建筑,图2是其中截面最细附近处的部分图象.上、下底面与地面平行.现测得下底面直径AB =20√10米,上底面直径CD =20√2米,AB 与CD 间的距离为80米,与上下底面等距离的G 处的直径等于CD ,则最细部分处的直径为( )A .20米B .10√5米C .10√3米D .10米6.若圆x 2+y 2﹣2x ﹣6y +1=0上恰有三点到直线y =kx 的距离为2,则k 的值为( ) A .12或2B .34或43C .2D .437.已知⊙M :x 2+y 2﹣2x ﹣2y ﹣2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作⊙M 的切线P A ,PB ,切点为A ,B ,当|PM |•|AB |最小时,直线AB 的方程为( ) A .2x ﹣y ﹣1=0B .2x +y ﹣1=0C .2x ﹣y +1=0D .2x +y +1=08.已知F (﹣c ,0)是椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点,直线y =x +c 与该椭圆相交于M ,N 两点,O 是坐标原点,P 是线段OF 的中点,线段MN 的中垂线与x 轴的交点在线段PF 上.该椭圆离心率的取值范围是( ) A .[√63,1) B .[√22,1) C .(0,√63] D .[√22,√63] 二、多项选择题:本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分部分选对的得2分.9.已知a 为实数,若三条直线ax +2y +8=0,4x +3y ﹣10=0和2x ﹣y ﹣10=0不能围成三角形,则a 的值为( ) A .83B .1C .﹣1D .﹣410.若方程x 22−t−y 21−t=1所表示的曲线为C ,则下列命题正确的是( )A .若曲线C 为双曲线,则t <1或t >2B .若曲线C 为椭圆,则1<t <2C .曲线C 可能是圆D .若曲线C 为焦点在x 轴上的椭圆,则1<t <3211.如图,已知椭圆x 24+y 22=1的左、右顶点分别是A 1,A 2,上顶点为B 1,在椭圆上任取一点C ,连结A 1C 交直线x =2于点P ,连结A 2C 交PO 于点M (O 是坐标原点),则下列结论正确的是( )A .k CA 1•k CA 2为定值B .k A 1P =12k OP C .OP ⊥A 2CD .MB 1的最大值为√612.已知抛物线C :y 2=4x ,过点P (2,0)的直线l 交C 于A ,B 两点,O 为坐标原点,则下列说法正确的有( )A .若直线l 的斜率为2,则△OAB 的面积为12 B .|AB |的最小值为4√2C .1|PA|+1|PB|=√24D .若M (﹣2,0),则|MA||MB|=|PA||PB|三、填空题本题共4小题,每小题5分,共20分.13.已知S n 为等差数列{a n }的前n 项和,且满足a 2=4,S 4=22,则S 8= .14.已知直线y =k (x +1)截圆(x ﹣1)2+(y ﹣1)2=4所得两段圆弧的弧长之比为1:2,则k = .15.双曲线x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F ,左、右顶点为A 1、A 2,过F 作A 1A 2的垂线与双曲线交于B 、C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线斜率为 .16.若正方形ABCD 的一条边在直线y =2x ﹣17上,另外两个顶点在抛物线y =x 2上.则该正方形面积的最小值为 .四、解答题:本题共6小题,共70分.解答题应写出文字说明、证明过程或演算步骤. 17.(10分)等差数列{a n }的前n 项和为S n ,a 3+a 5=a 4+7且a 1+a 10=20. (1)求{a n }的通项公式;(2)求满足不等式S n <3a n ﹣2的n 的值.18.(12分)已知圆C :x 2+y 2+2x ﹣4y +m =0与y 轴相切,O 为坐标原点,动点P 在圆外,过P 作圆C 的切线,切点为M .(1)求圆C 的圆心坐标及半径;(2)求满足|PM |=2|PO |的点P 的轨迹方程. 19.(12分)若椭圆E :x 2a 2+y 2b 2=1(a >b >0)过抛物线x 2=4y 的焦点,且与双曲线x 2﹣y 2=1有相同的焦点.(1)求椭圆E 的方程;(2)不过原点O 的直线l :y =x +m 与椭圆E 交于A ,B 两点,当△OAB 的面积为√32时,求直线l 的方程.20.(12分)已知抛物线C :y 2=2px (p >0),过抛物线的焦点F 且垂直于x 轴的直线交抛物线于不同的两点A ,B ,且|AB |=4. (1)求抛物线C 的方程;(2)若不经过坐标原点O 的直线l 与抛物线C 相交于不同的两点M ,N ,且满足OM →⊥ON →证明直线l 过x 轴上一定点Q ,并求出点Q 的坐标. 21.(12分)已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的虚轴长为4,直线2x ﹣y =0为双曲线C 的一条渐近线.(1)求双曲线C 的标准方程;(2)记双曲线C 的左、右顶点分别为A ,B ,过点T (2,0)的直线l 交双曲线C 于点M ,N (点M 在第一象限),记直线MA 斜率为k 1,直线NB 斜率为k 2,求证:k 1k 2为定值.22.(12分)已知椭圆C 1:x 24+y 2=1的左右顶点分别为A 1、A 2,上下顶点分别为B 1、B 2,记四边形A 1B 1A 2B 2的内切圆为C 2.(1)求圆C 2的标准方程;(2)已知P 为椭圆C 1上任意一点,过点P 作圆C 2的切线分别交椭圆C 1于M 、N 两点,试求三角形PMN 面积的最小值.2023-2024学年江苏省徐州一中高二(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目条件要求.1.直线x +√3y +1=0的倾斜角是( ) A .30°B .60°C .120°D .150°解:直线x +√3y +1=0的斜率k =1√3=−√33, 设其倾斜角为θ(0°≤θ<180°),则tan θ=−√33,∴θ=150°. 故选:D . 2.通过椭圆x 24+y 23=1的焦点且垂直于x 轴的直线l 被椭圆截得的弦长等于( ) A .2√3B .3C .√3D .6解:由题设,不妨设过焦点(1,0)且垂直于x 轴的直线l :x =1, 代入椭圆方程得14+y 23=1可得y =±32,故被椭圆截得的弦长等于3.故选:B . 3.双曲线x 24−y 2=1的焦点到渐近线的距离为( )A .1B .√2C .2D .3解:双曲线中,焦点坐标为(±√5,0),渐近线方程为:y =±12x , ∴双曲线x 24−y 2=1的焦点到渐近线的距离:d =|±√5|√1+4=1. 故选:A .4.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交于C 于A ,B 两点,则|AB |=( ) A .√303B .6C .12D .7√3解:由y 2=3x 得其焦点F (34,0),准线方程为x =−34.则过抛物线y 2=3x 的焦点F 且倾斜角为30°的直线方程为y =tan30°(x −34)=√33(x −34). 代入抛物线方程,消去y ,得16x 2﹣168x +9=0. 设A (x 1,y 1),B (x 2,y 2)则x 1+x 2=16816=212, 所以|AB |=x 1+34+x 2+34=34+34+212=12 故选:C .5.许多建筑融入了数学元素,更具神韵,数学赋予了建筑活力,数学的美也被建筑表现得淋漓尽致.已知图1是单叶双曲面(由双曲线绕虚轴旋转形成立体图形)型建筑,图2是其中截面最细附近处的部分图象.上、下底面与地面平行.现测得下底面直径AB =20√10米,上底面直径CD =20√2米,AB 与CD 间的距离为80米,与上下底面等距离的G 处的直径等于CD ,则最细部分处的直径为( )A .20米B .10√5米C .10√3米D .10米解:建立如图的坐标系,由题意可知D (10√2,20),B (10√10,﹣60), 设双曲线方程为:x 2a 2−y 2b 2=1,∴{200a 2−400b 2=11000a 2−3600b2=1,解得a 2=100,b 2=400,|EF |=2a =20, 故选:A .6.若圆x 2+y 2﹣2x ﹣6y +1=0上恰有三点到直线y =kx 的距离为2,则k 的值为( ) A .12或2B .34或43C .2D .43解:圆x 2+y 2﹣2x ﹣6y +1=0的圆心C (1,3),半径r =12√4+36−4=3,∵圆上恰有三点到直线y =kx 的距离为2, ∴圆心C (1,3)到直线y =kx 的距离为1,即d =|k−3|√k +1=1,解得k =43.故选:D .7.已知⊙M :x 2+y 2﹣2x ﹣2y ﹣2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作⊙M 的切线P A ,PB ,切点为A ,B ,当|PM |•|AB |最小时,直线AB 的方程为( ) A .2x ﹣y ﹣1=0B .2x +y ﹣1=0C .2x ﹣y +1=0D .2x +y +1=0解:化圆M 为(x ﹣1)2+(y ﹣1)2=4, 圆心M (1,1),半径r =2.∵S 四边形PAMB =12|PM|⋅|AB|=2S △P AM =|P A |•|AM |=2|P A |=2√|PM|2−4. ∴要使|PM |•|AB |最小,则需|PM |最小,此时PM 与直线l 垂直. 由直线l :2x +y +2=0,可得直线PM 的斜率为12,直线PM 的方程为y ﹣1=12(x ﹣1),即y =12x +12, 联立{y =12x +122x +y +2=0,解得P (﹣1,0). 则以PM 为直径的圆的方程为x 2+(y −12)2=54.联立{x 2+y 2−2x −2y −2=0x 2+y 2−y −1=0,相减可得直线AB 的方程为2x +y +1=0.故选:D .8.已知F (﹣c ,0)是椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点,直线y =x +c 与该椭圆相交于M ,N 两点,O 是坐标原点,P 是线段OF 的中点,线段MN 的中垂线与x 轴的交点在线段PF 上.该椭圆离心率的取值范围是( ) A .[√63,1) B .[√22,1) C .(0,√63] D .[√22,√63] 解:设M (x 1,y 1),N (x 2,y 2),设MN 的中点为B ,与OF 的交点为A , 联立{y =x +c x 2a2+y 2b2=1,整理可得:(a 2+b 2)x 2+2a 2cx +a 2(c 2﹣b 2)=0,所以x 1+x 2=−2a 2c a 2+b2,x 1x 2=a 2(c 2−b 2)a 2+b2,y 1+y 2=x 1+x 2+2c =2b 2c a 2+b2,因为直线MN 的斜率为1,所以线段MN 的中点B (−a 2ca 2+b2,b 2ca 2+b 2)所以由题意可得直线AB 的斜率为﹣1, 所以直线AB 的方程为:y −b 2c a 2+b2=−(x +a 2c a 2+b2), 将A (x A ,0)的坐标代入可得−b 2ca 2+b2=−(x A +a 2c a 2+b2), 所以可得x A =b 2c−a 2ca 2+b 2,由﹣c ≤x A ≤−c 2,可得﹣1≤b 2−a 2a 2+b2≤−12, 又b 2=a 2﹣c 2, 所以可得﹣1≤−c 22a 2−c 2≤−12,e =ca , 所以可得23≤e 2≤1, 又因为e ∈(0,1),解得:√63≤e <1, 故选:A .二、多项选择题:本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分部分选对的得2分.9.已知a 为实数,若三条直线ax +2y +8=0,4x +3y ﹣10=0和2x ﹣y ﹣10=0不能围成三角形,则a 的值为( ) A .83B .1C .﹣1D .﹣4解:联立{2x −y −10=04x +3y −10=0,得x =4,y =﹣2,即交点(4,﹣2),三条直线ax +2y +8=0,4x +3y ﹣10=0和2x ﹣y ﹣10=0不能围成三角形, 所以直线ax +2y +8=0过点(4,﹣2)或与已知一条直线平行, 当直线ax +2y +8=0过点(4,﹣2)是,a =﹣1, 当ax +2y +8=0与4x +3y ﹣10=0平行时,a =83, 当ax +2y +8=0与2x ﹣y ﹣10=0平行时,a =﹣4,综上,a =﹣1或a =﹣4或a =83. 故选:ACD . 10.若方程x 22−t−y 21−t=1所表示的曲线为C ,则下列命题正确的是( )A .若曲线C 为双曲线,则t <1或t >2B .若曲线C 为椭圆,则1<t <2C .曲线C 可能是圆D .若曲线C 为焦点在x 轴上的椭圆,则1<t <32解:对于A ,方程表示双曲线,则(2﹣t )(1﹣t )>0,解得t <1或t >2,故A 正确; 对于B ,方程表示椭圆,则{2−t >0t −1>02−t ≠t −1,解得1<t <2且t ≠32,故B 错误;对于C ,当t =32时,方程表示圆,故C 正确;对于D ,方程表示焦点在x 轴上的椭圆,则2﹣t >t ﹣1>0,解得1<t <32,故D 正确; 故选:ACD . 11.如图,已知椭圆x 24+y 22=1的左、右顶点分别是A 1,A 2,上顶点为B 1,在椭圆上任取一点C ,连结A 1C 交直线x =2于点P ,连结A 2C 交PO 于点M (O 是坐标原点),则下列结论正确的是( )A .k CA 1•k CA 2为定值B .k A 1P =12k OP C .OP ⊥A 2CD .MB 1的最大值为√6解:椭圆的左右顶点分别A 1(﹣2,0),A 2(2,0),因为点C 在椭圆上,所以设点C 的坐标为(2cosθ,√2sinθ),θ∈[0,2π], 对于A ,k CA 1k CA 2=√2sinθ2cosθ+2+√2sinθ2cosθ−2=2sin 2θ4cos 2θ−4=sin 2θ−2sin 2θ=−12,所以A 正确; 对于B ,因为k A 1P =k C A 1=√2sinθ2cosθ+2,所以直线AP 为y =√2sinθ2cosθ+2x +2√2sinθ2cosθ+2,令x =2,得y =2√2sinθcosθ+1,所以点P 的坐标为(2,2√2sinθcosθ+1),所以k OP =√2sinθcosθ+1,所以k A 1P =12k OP ,所以B 正确;对于C ,因为k k A 2=√2sinθ2cosθ−2,所以k CA 2⋅k OP =√2sinθ2cosθ−2⋅√2sinθcosθ+1=2sin 2θ2(cos 2θ−1)=−1,所以OP ⊥A 2C ,所以C 正确;对于D ,直线OP 为y =√2sinθcosθ+1x ,直线A 2C 为y =√2sinθ2cosθ−2x −2√2sinθ2cosθ−2, 由两直线的方程联立方程组,解得x =2(cosθ+1)3−cosθ,y =2√2sinθ3−cosθ,所以点M 的坐标为(2(cosθ+1)3−cosθ,2√2sinθ3−cosθ), 因为B 1(0,√2),所以|MB 1|2=4(cosθ+1)2(3−cosθ)2+(2√2sinθ3−cosθ−√2)2,当cosθ=45,sinθ=−35时,|MB 1|2=4(45+1)2(3−45)2+(−2√2×353−45−√2)2=902121>7,所以D 错误. 故选:ABC .12.已知抛物线C :y 2=4x ,过点P (2,0)的直线l 交C 于A ,B 两点,O 为坐标原点,则下列说法正确的有( )A .若直线l 的斜率为2,则△OAB 的面积为12 B .|AB |的最小值为4√2C .1|PA|+1|PB|=√24D .若M (﹣2,0),则|MA||MB|=|PA||PB|解:A .抛物线C :y 2=4x ,过点P (2,0)的直线l 交C 于A ,B 两点, 若直线l 的斜率为2,则直线l 的方程为y =2(x ﹣2),即x =y2+2, 设A (x 1,y 1),B (x 2,y 2), 由{x =y2+2y 2=4x,得y 2﹣2y ﹣8=0,∴y 1+y 2=2,y 1y 2=﹣8,∴△OAB 的面积S =12|PO||y 1−y 2|=|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=6,故A 错误; B 和C .由题意知,直线l 的斜率不为0,设直线l 的方程为x =my +2,A (x 1,y 1),B (x 2,y 2), 由{x =my +2y 2=4x ,得y 2﹣4my ﹣8=0,∴y 1+y 2=4m ,y 1y 2=﹣8, ∴|AB|=√(1+m 2)[(y 1+y 2)2−4y 1y 2]=√(1+m 2)(16m 2+32)=4√m 4+3m 2+2=4√(m 2+32)2−14≥4√2,当且仅当m =0时等号成立,故B 正确;|AP|=√(x 1−2)2+y 12=√[(my 1+2)−2]2+y 12=√1+m 2|y 1|,同理,可得|BP|=√1+m 2|y 2|,则1|AP|+1|BP|=√m 21+√m 22=21√m 2+1|y1y 2|=128√m 2+1=√28√m 2+1=√22√m 2+1≠√24,故C 错误;D .k AM +k BM =y 1x 1+2+y 2x 2+2=y 1(x 2+2)+y 2(x 1+2)(x 1+2)(x 2+2)=2my 1y 2+4(y 1+y 2)(x 1+2)(x 2+2)=2m×(−8)+4×4m(x 1+2)(x 2+2)=0, 即∠AMP =∠BMP ,∴|MA||MB|=|PA||PB|,故D 正确.故选:BD .三、填空题本题共4小题,每小题5分,共20分.13.已知S n 为等差数列{a n }的前n 项和,且满足a 2=4,S 4=22,则S 8= . 解:S n 为等差数列{a n }的前n 项和,且满足a 2=4,S 4=22, ∴{a 1+d =44a 1+4×32d =22,解得a 1=1,d =3,则S 8=8×1+8×72×3=92. 故答案为:92.14.已知直线y =k (x +1)截圆(x ﹣1)2+(y ﹣1)2=4所得两段圆弧的弧长之比为1:2,则k = .解:由(x ﹣1)2+(y ﹣1)2=4可知圆心为C (1,1),半径为2,设直线与圆交于A 、B 两点,又直线y =k (x +1)截圆(x ﹣1)2+(y ﹣1)2=4所得两段圆弧的弧长之比为1:2,∴∠ACB =120°,∴圆心到直线的距离为半径的一半, ∴√1+k 2=1,解得k =0或k =43.故答案为:0或43.15.双曲线x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F ,左、右顶点为A 1、A 2,过F 作A 1A 2的垂线与双曲线交于B 、C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线斜率为 .解:由题意,A 1(﹣a ,0),A 2(a ,0),B (c ,b 2a ),C (c ,−b 2a ), ∵A 1B ⊥A 2C ,∴b 2a c+a ⋅−b 2a c−a =−1,∴a =b ,∴双曲线的渐近线的斜率为±1.故答案为:±1.16.若正方形ABCD 的一条边在直线y =2x ﹣17上,另外两个顶点在抛物线y =x 2上.则该正方形面积的最小值为 .解:不妨设C ,D 在抛物线上,C (x 1,x 12),D (x 2,x 22).不妨设x 1<x 2,∵CD ∥AB ,∴k CD =k AB ,∴化为x 1+x 2=2.①由正方形ABCD 可得|BC |=|CD |, ∴112√5=√(x 1−x 2)2+(x 12−x 22)2,②①②联立解得x 1=3或9或﹣1或﹣7.取3或9时,|BC |=4√5,∴正方形ABCD 的面积S 取得最小值80.故答案为80.四、解答题:本题共6小题,共70分.解答题应写出文字说明、证明过程或演算步骤.17.(10分)等差数列{a n }的前n 项和为S n ,a 3+a 5=a 4+7且a 1+a 10=20.(1)求{a n }的通项公式;(2)求满足不等式S n <3a n ﹣2的n 的值.解:(1)设数列{a n }的公差为d ,由a 3+a 5=a 4+7,得2a 1+5d =a 1+3d +7①.由a 1+a 10=20,得10a 1+45d =100②,解得a 1=1,d =2,所以a n =a 1+(n ﹣1)d =2n ﹣1;(2)因为a 1=1,a n =2n ﹣1,所以S n =a 1+a n 2n =n 2, 由不等式S n <3a n ﹣2,得n 2<3(2n ﹣1)﹣2,所以n 2﹣6n +5<0,解得1<n <5,因为n ∈N *,所以n 的值为2,3,4.18.(12分)已知圆C :x 2+y 2+2x ﹣4y +m =0与y 轴相切,O 为坐标原点,动点P 在圆外,过P 作圆C 的切线,切点为M .(1)求圆C 的圆心坐标及半径;(2)求满足|PM |=2|PO |的点P 的轨迹方程.解:(1)圆C 的方程可化为(x +1)2+(y ﹣2)2=5﹣m ,因为圆C 与y 轴相切,所以5﹣m =1,所以m =4,即圆心C (﹣1,2),半径为1;(2)设P (x ,y ),则|PM |2=|PC |2﹣|MC |2=(x +1)2+(y ﹣2)2﹣1,|PO |2=x 2+y 2,因为|PM |=2|PO |,所以|PM |2=4|PO |2,即(x +1)2+(y ﹣2)2﹣1=4(x 2+y 2),化简得3x 2+3y 2﹣2x +4y ﹣4=0,所以点P 的轨迹方程为3x 2+3y 2﹣2x +4y ﹣4=0.19.(12分)若椭圆E :x 2a 2+y 2b 2=1(a >b >0)过抛物线x 2=4y 的焦点,且与双曲线x 2﹣y 2=1有相同的焦点.(1)求椭圆E 的方程;(2)不过原点O 的直线l :y =x +m 与椭圆E 交于A ,B 两点,当△OAB 的面积为√32时,求直线l 的方程.解:(1)抛物线x 2=4y 的焦点为(0,1),双曲线x 2﹣y 2=1的焦点为(±√2,0),依题意可得,{b =1c =√2,则a 2=b 2+c 2=3, 所以椭圆C 的方程为x 23+y 2=1;(2)根据题意,设A (x 1,y 1),B (x 2,y 2),联立直线与椭圆方程,可得{x 2+3y 2=3y =x +m,消去y 并整理可得,4x 2+6mx +3m 2﹣3=0, 则x 1+x 2=−3m 2,x 1x 2=3m 2−34, 由弦长公式可得,|AB|=√2×√(−3m 2)2−4×3m 2−34=√22⋅√2−3m 2,又点O 到直线AB 的距离为d =|m|1+1=√22|m|, 依题意,令S △AOB =12d|AB|=12×√22×|m|×√22×√2−3m 2=14√−3(m 2−2)2+12=√32,当且仅当m 2=2,即m =±√2(符合题意)时,△AOB 的面积取得最大值为√32,此时直线l 的方程为y =x ±√2.20.(12分)已知抛物线C :y 2=2px (p >0),过抛物线的焦点F 且垂直于x 轴的直线交抛物线于不同的两点A ,B ,且|AB |=4.(1)求抛物线C 的方程;(2)若不经过坐标原点O 的直线l 与抛物线C 相交于不同的两点M ,N ,且满足OM →⊥ON →证明直线l 过x 轴上一定点Q ,并求出点Q 的坐标.解:(1)抛物线C 的焦点为F(p 2,0),由于线段AB ⊥x 轴,且|AB |=4,所以,点(p 2,±2)在抛物线C 上,将点的坐标代入抛物线C 的方程得2p ⋅p 2=4,即p 2=4, 由于p >0,得p =2,因此,抛物线C 的方程为y 2=4x ;(2)设直线l 的方程为x =my +t ,则直线l 与x 轴的交点为Q (t ,0),设点M (x 1,y 1)、N (x 2,y 2),则x 1=y 124,x 2=y 224, 将直线l 的方程与抛物线C 的方程联立{x =my +t y 2=4x,得y 2﹣4my ﹣4t =0, 由韦达定理得y 1+y 2=4m ,y 1y 2=﹣4t ,∵OM →⊥ON →,∴OM →⋅ON →=x 1x 2+y 1y 2=y 12y 2216+y 1y 2=(−4t)216−4t =t 2−4t =0, 解得t =0或t =4.当t =0时,直线l 过原点O ,不合乎题意,舍去!所以,t =4,因此,直线l 过x 轴上的定点Q ,且点Q 的坐标为(4,0).21.(12分)已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的虚轴长为4,直线2x ﹣y =0为双曲线C 的一条渐近线.(1)求双曲线C 的标准方程;(2)记双曲线C 的左、右顶点分别为A ,B ,过点T (2,0)的直线l 交双曲线C 于点M ,N (点M 在第一象限),记直线MA 斜率为k 1,直线NB 斜率为k 2,求证:k 1k 2为定值. 解:(1)∵虚轴长为4,∴2b =4,即b =2,∵直线2x ﹣y =0为双曲线C 的一条渐近线,∴b a=2,∴a =1, 故双曲线C 的标准方程为x 2−y 24=1. (2)由题意知,A (﹣1,0),B (1,0),设直线l 的方程为x =ny +2,M (x 1,y 1)N (x 2,y 2),联立{x 2−y 24=1x =ny +2,得(4n 2﹣1)y 2+16ny +12=0,∴y 1+y 2=−16n 4n 2−1,y 1y 2=124n 2−1, ∴ny 1y 2=−34(y 1+y 2),∵直线MA 的斜率k 1=y 1x 1+1,直线NB 的斜率k 2=y2x 2−1, ∴k 1k 2=y 1x 1+1y 2x 2−1=y 1(ny 2+1)y 2(ny 1+3)=ny 1y 2+y 1ny 1y 2+3y 2=−34(y 1+y 2)+y 1−34(y 1+y 2)+3y 2=−13,为定值. 22.(12分)已知椭圆C 1:x 24+y 2=1的左右顶点分别为A 1、A 2,上下顶点分别为B 1、B 2,记四边形A 1B 1A 2B 2的内切圆为C 2. (1)求圆C 2的标准方程;(2)已知P 为椭圆C 1上任意一点,过点P 作圆C 2的切线分别交椭圆C 1于M 、N 两点,试求三角形PMN 面积的最小值.解:(1)因为椭圆C 1的左右顶点分别为A 1、A 2,上下顶点分别为B 1、B 2, 所以A 2(2,0),B 1(0,1),此时直线A 2B 1的方程为x +2y =2,而原点O 到直线A 2B 1的距离d =2√5, 可得圆C 2的半径r =d =2√5, 则圆C 2的标准方程为x 2+y 2=45;(2)不妨设直线PM 方程为y =mx +n ,P (x 1,y 1),M (x 2,y 2), 因为直线PM 与圆C 2相切,所以原点O 到直线PM 距离d =1√m 2+n 2=2√5,整理得5n 2=4m 2+4, 联立{y =mx +n x 24+y 2=1,消去y 并整理得(1+4m 2)x 2+8mnx +4n 2﹣4=0, 此时x 1x 2+y 1y 2=(1+m 2)x 1x 2+mn(x 1+x 2)+n 2=(1+m 2)4n 2−41+4m 2+mn −8mn 1+4m2+n 2=0, 即k OP •k OM =﹣1,所以OP ⊥OM ,同理得OP ⊥ON ,则M ,O ,N 三点共线,所以S △PMN =2S △OPM =|OP |•|OM |,不妨设直线OP 的方程为y =k ,将y =k 代入椭圆方程中,解得x 2=41+4k 2, 所以OP 2=x 2+y 2=(1+k 2)x 2=4(1+k 2)1+4k 2, 同理得OM 2=4[1+(−1k )2]1+4(−1k )2=4(k 2+1)k 2+4, 则1OP 2+1OM 2=1+4k 24(1+k 2)+k 2+44(1+k 2)=54, 此时54=1OP 2+1OM 2≥2|OP||OM|,解得|OP |•|OM |≥85,则S △PMN =|OP |•|OM |≥85,当且仅当|OP|=|OM|=2√105时,等号成立. 故△PMN 面积的最小值为85.。

2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:沪教版2020必修第三册第十~十一章。

5.难度系数:0.72。

一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.不重合的两个平面最多有条公共直线【答案】1【解析】根据平面的位置关系可知,不重合两平面平行或相交,当相交时,有且只有一条公共直线.故答案为:12.已知球的表面积是16π,则该球的体积为.3.空间中一个角∠A的两边和另一个角∠B的两边分别平行,若∠A=,则∠B=;【答案】【解析】如图,若角∠A 的两边和角∠B 的两边分别平行,且方向相同,则∠A 与∠B 相等此时70B A ∠=∠=︒;②当角∠A 的两边和角∠B 的两边分别平行,且一边方向相同另一边方向相反,则∠A 与∠B 互补,此时180110B A ∠=︒-∠=︒.故答案为70︒或110︒.4.如图,正三棱柱的底面边长为2,高为1,则直线1B C 与底面ABC 所成的角的大小为(结果用反三角函数值表示).5.在空间中,给出下面四个命题,其中真命题为.(填序号)①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则αβ∥;③若直线l 与平面α内的任意一条直线垂直,则l α⊥;④两条异面直线在同一平面内的射影一定是两条相交直线.【答案】③【解析】①过平面α外两点可确定一条直线,当这条直线垂直于平面α时,有无数个平面垂直于平面α,故①错误;②若三点在平面α同侧,则αβ∥;若三点在平面α两侧,则α与β相交,故②错误;③直线l 与平面α内的任意一条直线垂直,则l 垂直于平面α内两条相交直线,由线面垂直的判定定理可得l α⊥,故③正确;④两条异面直线在同一个平面内的射影有可能是两条相交直线,也可能是两条平行直线,还可能是一个点和一条直线,故④错误;故答案为:③6.正四棱锥P -ABCD 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与P A 所成角的余弦值为.连接AC 交BD 于O 点,连接OE ,则OE 因为⊥PO 面ABCD ,所以PO DB ⊥,又因为所以直在角三角形EOB 中,设PA a =,则故答案为:33.7.如图,有一圆锥形粮堆,其轴截面是边长为6m 的正ABC V ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是m .【答案】35【解析】解:由题意得:圆锥的底面周长是6π,则66180n ππ=,解得:180n ︒=可知圆锥侧面展开图的圆心角是180︒,如图所示:则圆锥的侧面展开图中:()3m AP =,6(m)AB =,90BAP ︒∠=所以在圆锥侧面展开图中:()223635m BP =+=故答案为:358.已知一球体刚好和圆台的上、下底面及侧面都相切,且圆台上底面的半径为2,下底面的半径为1,则该圆台的侧面积为.【答案】9π【解析】圆台的轴截面如下图示:截面中圆为内切球的最大圆,且2AF DF AG DH ====,1BE CE BG CH ====,所以3AB CD ==,而上下底面周长分别为4π、2π,故该圆台的侧面积为13(2π4π)9π2⨯⨯+=.故答案为:9π9.如图,已知三棱柱111ABC A B C -的体积为3,P ,Q ,R 分别为侧棱1AA ,1BB ,1CC 上的点,且1AP CR AA +=,则Q ACRP V -=.则111332Q ACRP V d S d -=⋅⋅=⋅⋅⋅设三棱柱111ABC A B C -的体积故答案为:1.10.已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为.11.正方形ABCD 中,E ,F 分别为线段AB ,BC 的中点,连接DE ,DF ,EF ,将ADE V ,CDF V ,BEF △分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合,得到三棱锥O DEF -,则该三棱锥外接球半径R 与内切球半径r 的比值为.【答案】26【解析】在正方形ABCD 中,,AD AE CD ⊥12.空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:A,B,C,D中有三个点到的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,这样的平面α的个数是___________个【答案】32【解析】首先取3个点相等,不相等的那个点由4种取法;然后分3分个点到平面α的距离相等,有以下两种可能性:(1)全同侧,这样的平面有2个;(2)不同侧,必然2个点在一侧,另一个点在一侧,1个点的取法有3种,并且平面过三角形两个点边上的中位线,考虑不相等的点与单侧点是否同侧有两种可能,每种情况下都唯一确定一个平面,故共有6个,⨯=个,所有这两种情况共有8个,综上满足条件的这样的平面共有4832故答案为:32二、选择题(本题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分;每题有且只有一个正确选项)13.下列几何体中,多面体是()A.B.C.D.【答案】B【解析】A选项中的几何体是球,是旋转体;B选项中的几何体是三棱柱,是多面体;C 选项中的几何体是圆柱,旋转体;D 选项中的几何体是圆锥,是旋转体.故选B.14.已知两个平面α、β,在下列条件下,可以判定平面α与平面β平行的是().A .α、β都垂直于一个平面γB .平面α内有无数条直线与平面β平行C .l 、m 是α内两条直线,且l ∥β,m ∥βD .l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β【答案】D【解析】对于A ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B 都与平面ABCD 垂直,但这两个平面不平行,所以A 错误,对于B ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,平面11AAC C 中所有平行于交线1AA 的直线都与平面11AA B B 平行,但这两个平面不平行,所以B 错误,对于C ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,,M N 分别为11,A B AB 的中点,则1,MN BB 在平面11AA B B 内,且都与平面11AAC C 平行,但这两个平面不平行,所以C 错误.对于D ,因为l 、m 是两条异面直线,所以将这两条直线平移到共面α时,一定在α内形成两条相交直线,由面面平行的判定定理可知,该结论正确.故选:D15.将3个1212⨯的正方形沿邻边的中点剪开分成两部分(如图1);将这6部分接于一个边长为六边形边上(如图2),若拼接后的图形是一个多面体的表面展开图,则该多面体的体积是()A .17282B .864C .576D .2【答案】B【解析】折成的多面体如图①所示,将其补形为正方体,如图②,所求多面体体积为正方体的一半,又依题易求得正方体的边长为12,故3112864,2V =⨯=故选:B.16.如图,在正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1A F ∥平面1AD E .设1A F 与平面11BCC B 所成的角为1,A F α与1AD 所成的角为β,那么下列结论正确的是()A .α的最小值为arctan2,β的最小值为arctan3B .α的最小值为arctan3,β的最大值为2πC .α的最小值大于arctan2,β的最小值大于arctan3D .α的最大值小于arctan3,β的最大值小于2π设正方体的棱长为2,因为MN GE ∥,且MN ⊄MN ∴∥平面1AEGD ;同理1A N ∥平面1AEGD ,且∴平面1A MN ∥平面AEGD ∵11A B ⊥面11BB C C ,所以又1AD MN ,所以1A F 与1AD 所成的角为111tan A B B Fα∴=;当F 为MN 中点时,此时当F 与M 或N 重合时,此时2tan 22α∴≤≤,arctan2对于β,当F 为MN 中点时,当F 与M 或N 重合时,β()221252A F ⎛⎫∴=-= ⎪ ⎪⎝⎭tan 3β∴=,tan 3β∴≥,arctan 3β≤≤又arctan3 1.4≈,arctan2故选:A.三、解答题(本大题共有5题,满分78分,第17-19题每题14分,第20、21题每题18分.)17.如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD //平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.【解析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,(1分)∵P 是1DD 的中点,∴1//PO BD ,(3分)又∵PO ⊂平面PAC ,1⊄BD 平面PAC ,∴直线1BD //平面PAC ;(6分)(2)由(1)知,1//PO BD ,∴APO ∠即为异面直线1BD 与AP 所成的角,(8分)∵PA PC =12AO AC ==且PO AO ⊥,∴1sin2AO APO AP ∠==.又(0,90]APO ∠∈︒︒,∴30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30︒.(14分)18.如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF D E ⊥,F 是垂足.(1)求证:AF DB ⊥;(2)若圆柱与三棱锥D ABE -的体积的比等于3π,求直线DE 与平面ABD 所成角的大小.【解析】(1)证明:根据圆柱性质,DA ⊥平面ABE ,因为EB ⊂平面ABE ,所以DA EB ⊥,又因为AB 是圆柱底面的直径,点E 在圆周上,所以AE EB ⊥,因为AE DA A ⋂=且,AE DA ⊂平面DAE ,所以EB ⊥平面DAE ,(2分)又因为AF ⊂平面DAE ,所以EB AF ⊥,因为AF D E ⊥,且EB DE E =I ,且,EB DE ⊂平面DEB ,所以AF ⊥平面DEB ,又因为DB ⊂平面DEB ,所以AF DB ⊥.(6分)(2)解:过点E 作EH AB ⊥,H 是垂足,连接DH ,根据圆柱性质,平面ABD ⊥平面ABE ,且平面ABD ⋂平面ABE AB =,且EH ⊂平面ABE ,所以EH ⊥平面ABD ,因为DH ⊂平面ABD ,所以DH 是ED 在平面ABD 上的射影,从而EDH ∠是DE 与平面ABD 所成的角,(8分)设圆柱的底面半径为R ,则2DA AB R ==,所以圆柱的体积为32πV R =,且21233D ABEABE R V AD S EH -=⋅=⋅ ,由:3πD ABE V V -=,可得EH R =,可知H 是圆柱底面的圆心,且AH R =,且DH =,在直角EDH 中,可得tan EH EDH DH ∠==EDH ∠=(14分)19.如图,将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE(1)求证:直线EC 与平面ABD 没有公共点;(2)求点C 到平面BED 的距离.【解析】(1)取BD 的中点F ,连接CF 、AF ,如图,依题意,在BCD △中,,BC CD BC CD =⊥,则CF BD ⊥,而平面ABD ⊥平面CBD ,平面ABD ⋂平面CBD BD =,CF ⊂平面CBD ,于是得CF ⊥平面ABD ,且2CF =因为AE ⊥平面ABD ,且2AE =//AE CF ,且AE CF =,从而得四边形AFCE 为平行四边形,//EC AF ,(4分)又AF ⊂平面ABD ,EC ⊂/平面ABD ,则//EC 平面ABD ,所以直线EC 与平面ABD 没有公共点;(6分)(2)因为CF ⊥平面ABD ,AF ⊂平面ABD ,所以CF AF ⊥,因为BD AF ⊥,BD CF F = ,,BD CF ⊂平面,CBD 所以AF ⊥平面,CBD 因为//,EC AF ,于是得EC ⊥平面CBD ,因为AE ⊥平面ABD ,,AB AD ⊂平面ABD ,所以,AE AB AE AD ⊥⊥,(8分)因为EC AF ==EB ED =,则等腰BED 底边BD 上的高2h ==,12BED S BD h =⋅= ,而2BCD S =,设点C 到平面BED 的距离为d ,由C BED E BCD V V --=得1133BED BCD S d S EC ⋅=⋅ ,即2=,解得1d =,所以点C 到平面BED 的距离为1(14分)20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,底面,AC BD O PAC = △是边长为2的等边三角形,PB =PD ,AP =4AF(1)求证:PO ⊥底面ABCD (2)求直线CP 与OF 所成角的大小.(3)在线段PB 上是否存在点M ,使得//CM 平面BDF ?如果存在,求BMBP的值;如果不存在,请说明理由.【解析】(1)因为底面ABCD 是菱形,且AC BD O = ,所以O 为AC ,BD 中点,在PBD △中,PB =PD ,可得PO ⊥BD ,因为在PAC 中,PA =PC ,O 为AC ,BD 中点,所以PO ⊥AC ,(3分)又因为AC ⋂BD =O ,所以PO ⊥底面ABCD .(4分)(2)连接OF ,取AP 中点为E ,连接OE ,因为底面ABCD 是菱形,AC ⋂BD =O ,由O 为AC 中点,且E 为AP 中点,AP =4AF ,所以F 为AE 中点,所以CP //OE .,故∠EOF 为直线CP 与OF 所成的角,(8分)又由PAC 为等边三角形,且E 为中点,所以∠EOF =30o .(10分)(3)存在,13BM BP =,连接CE ,ME ,因为AP =4AF ,E 为AP 中点,所以13EF FP =,又因为13BM BP =,所以在PFB △中,EF BMFP BP =,即EM //BF ,(12分)因为EM ⊄平面BDF ,BF ⊂平面BDF ,所以EM //平面BDF ,由(2)知EC //OF ,因为EC ⊄平面BDF ,OF ⊂平面BDF ,所以EC //平面BDF ,因为EC ⋂EM =E ,所以平面EMC //平面BDF ,因为CM ⊂平面EMC ,所以CM //平面BDF .(18分)21.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱111,BB AC 分别交于点F ,G.(1)若F 为1BB 的中点,试确定点G 的位置,并说明理由;(2)在(1)的条件下,求截面AGEF 与底面ABC 所成锐二面角的正切值;(3)设截面AFEG 的面积为0S ,AEG △面积为1S ,AEF △面积为2S ,当点F 在棱1BB 上变动时,求2012S S S 的取值范围.【解析】(1)在平面11BCC B 内延长1CC ,FE 相交于点P ,则P ∈平面AGEF ,又1P CC ∈⊂平面11ACC A ,则有平面AGEF 平面11ACC A AG =,P AG ∈,即A ,G ,P 三点共线.(2分)因为E 为11B C 的中点,F 为1BB 的中点,所以11112PC B F CC ==,所以113PC PC =,又因为1//GC AC ,所以1113GC PC AC PC ==,所以111112333GC AC A C ===,即点G 为棱11AC 上靠近点1C 的三等分点.(4分)(2)在平面11BCC B 内延长CB ,EF 相交于点Q ,连接AQ ,则平面AGEF 平面ABC AQ =,在平面11ACC A 内作GM AC ⊥于点M ,则GM ⊥平面ABC ,又AQ ⊂平面ABC ,所以G M AQ ⊥,在平面ABC 内作MN AQ ⊥于点N ,连接GN ,又,GM MN ⊂平面GMN ,GM MN M ⋂=,所以AQ ⊥平面GMN ,GN ⊂平面GMN ,所以AQ GN ⊥,所以GNM ∠为截面AGEF 与底面ABC 所成锐二面角的平面角.(6分)在AQC 中,作CH AQ ⊥于点H ,11BQ C E ==,2AC =,3CQ =,60AC B ∠= ,12222ABC S =⨯⨯⨯=△AQC S =由余弦定理2222cos 4967AQ AC CQ AC CQ ACQ =+-⋅⋅∠=+-=,则AQ122AQC S AQ CH ==⋅ ,可得3217CH =,所以237MN CH ==,又22G M AA ==,所以21tan 3GM GNM MN ∠==,故截面AGEF 与底面ABC (10分)(3)设1GC m =,则[]0,1m ∈,2PG mGA m=-.设PGE 的面积为S ,所以12S m S m=-,又因为21S S S =+,所以1222S m S -=,且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦,故()22120121212212S S S S SS S S S S S +==++,令12S t S =,则1,12t ⎡⎤∈⎢⎥⎣⎦,(11分)设()112,12g t t t t ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎣⎦⎝⎭,当12112t t ≤<≤时,()()()()121212121212111t t g t g t t t t t t t t t --=+--=-,120t t -<,120t t >,1210t t -<,则()()120g t g t ->,即()()12g t g t >,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪,所以()94,2g t ⎡⎤∈⎢⎥,。

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试卷含答案(共5套)

高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若(4)“若,则,则有实数解”的逆否命题;”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形B.等腰直角三角形C.有一个内角为30°的直角三角形D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.为的内角,,的对边分别为,,,若,,,则的面积A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1B.16C.8D.4)10.若关于的不等式的解集为,则的取值范围是(A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.114.已知的三边长构成公差为 2 的等差数列,且最大角的正弦值为 ,则这个三角形的周长为________.15.已知数列{a n }的前 n 项和为 S n ,a 1=1,当 n≥2时,a n +2S n - =n ,则 S 2017的值____ ___16.已知变量满足约束条件 若目标函数 的最小值为2,则的最小值为__________.三、解答题:共 6 题,共 70 分,解答应写出必要的文字说明、证明过程或演算步骤。

江苏省镇江市实验高级中学高二苏教版语文必修5教案:第二专题《项脊轩志》 Word版含答案

江苏省镇江市实验高级中学高二苏教版语文必修5教案:第二专题《项脊轩志》 Word版含答案

《项脊轩志》教案教学目标知识与能力:1积累重点文言词和句式,了解归有光散文的语言特点。

2、理解文中表达的复杂情感。

3借鉴作品传情达意的写作手法,尝试在写作实践中运用。

过程与方法:自读,借助注释疏通文意,初步理解把握文章内容。

讲授,感受、理解作者复杂的感情朗读,体会作者表达的复杂情感。

情感态度价值观:从语言对话、生活细节的描绘中感悟作者细腻真切的情感。

重点与难点:本专题重点在“情”字上,就是感受、理解亲情,需要用心去解读、体会文中的喜怒哀乐,丰富精神世界。

本文解读的难点在于赏析、借鉴相关的写作手法,用以指导学生自己的写作实践。

课时安排:三课时教学过程:自学导案自学目标:熟悉课文,读顺课文,整体把握文章所写的内容和表达的情感。

自学要求:1、自读课文2遍,读准字音,读顺课文。

易读错的地方:脊轩jǐxuān 漉lù顾/视无可置者修葺qì前辟四窗pì垣墙yuán 以当南日dāng 栏楯shǔn 偃仰yǎnyǎng 珊珊可爱shān 诸父异爨dài cuàn 逾yú栖qī妪yù婢bì妣bǐ呱呱gū阖hé笏hù长号háo2、借助注释疏通难懂的句意,初步感知文章内容(在文中找中心句)、理顺层次。

3、划出不懂的句子。

第一课时教学要点:了解作者,诵读课文,整体把握文章所写的内容和表达的情感,研习第一段。

教学重点:理解赏析第一段的内容、情感、手法。

教学难点:“偃仰啸歌”“三五之夜”等句子的意境的欣赏教学过程:一.导入二.作者简介归有光(1507~1571年),字熙甫,号震川,又号项脊生,明朝昆山人,著名散文家。

1博览群书——作者自幼苦读,9岁能文,20岁通读五经(《诗经》《尚书》《周易》《礼记》《》)和三史(《史记》《汉书》《后汉书》,加《三国志》称“四史”),2仕途多舛——考试不利,35岁才中举,后8次考进士落第,于是迁居到嘉定(今上海市)安亭江上,讲学20余年,学生颇多,称之为“震川先生”。

江苏苏州2024年高二上学期期中调研数学试卷

2024~2025学年第一学期高二期中调研试卷数学答案注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共4页,包含单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题).本卷满分150分,答题时间为120分钟.答题结束后,请将答题卡交回.2.答题前,请务必将自己的学校、班级、姓名、考试号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区城内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.清注意字体工整,笔迹清楚.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项填涂在答题卡相应的位置上.1. 已知经过点()()1,2,,4A B m 的直线l 的斜率为2,则m 的值为( ) A. 1− B. 0 C. 1 D. 22. 等差数列{}n a 中,1352,10a a a =+=,则6a 的值为( )A. 7B. 8C. 9D. 103. 已知动点M 与两定点()()0,0,0,3O A 的距离之比为12,则动点M 的轨迹方程为( ) A. 228120x y x +−+=B. 228120x y y +−+= C 22230x y x ++−= D. 22230x y y ++−=4. 在2和8之间插入3个实数,,a x b 使得2,,,,8a x b 成等比数列,则x 的值为( )A. 4−B. 4−或4C. 4D. 55. 若两直线()12:220,:3110l x ayl a x ay ++=−−−=平行,则实数a 取值集合是( ) A. 10,6B. {}0C. 16D. 1,126. 等差数列{}n a 的前n 项和为n S ,若11S 为定值时272k a a a ++也是定值,则k 的值为( )A. 9B. 11C. 13D. 不能确定.的7. 已知直线1:20l x y −=与2:30l x y +−=,过点()3,2P 的直线l 被12,l l 截得的线段恰好被点P 平分,则这三条直线12,,l l l 围成的三角形面积为( ) A. 163B. C. 8 D. 3238. 已知数列{}n a 的前n 项和为n S ,且11222,,1,,,n n n a n n a a a n n ++− == − 为奇数为偶数则18S 的值为( ) A. 1023 B. 1461 C. 1533 D. 1955二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,选错或不答得0分,请把正确的选项填涂在答题卡相应的位置上.9. 已知数列{aa nn }是等差数列,{bb nn }是等比数列,*,,,m n p q ∈N .( )A. 若m n p q +=+,则m n p q a a a a +=+B. 若m n p q a a a a +=+,则m n p q +=+C. 若m n p q +=+,则m n p q b b b b =D. 若m n p q b b b b =,则m n p q +=+10. 已知公差不为0的等差数列{n a 的前n 项和为n S ,则( )A. 点(),n n a 在同一条直线上B. 点(),n n S 在同一条直线上C. 点,nS n n在同一条直线上 D. 点()()11,nk n k n S S ++−(,n k 均正整数,且k 为常数)在同一条直线上 11. 已知直线:20l kx y k −−+=,圆22:4O x y +=,则( )A. l 与坐标轴的正半轴围成的三角形面积最大值是4B. 若l 与圆O 相交于,A B 两点,且90AOB ∠=°,则2k =−C. 若圆O 上恰有四个点到l 的距离为1,则34k > D. 若对于两个不同的k 值,l 与圆O 分别相切于点P ,Q ,则PQ 所在直线的方程是240x y +−=为三、填空题:本题共3小题,每小题5分,共15分,请把答案写在答题卡相应的位置上.12. 已知()()3,4,5,6A B −−两点到直线:10l ax y ++=的距离相等,则a 的值为__________. 13. 已知等比数列{}n a 满足6117101,2a a a a +==−,则116a a +=__________. 14. 如图,已知点()2,0A ,点B 为圆221:9O x y +=上的动点,若圆222:1O x y +=上存在一点M ,使得AM BM ⊥ ,则AB 的取值范围是__________.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答,解答时应证明过程或演算步骤.15. 已知等差数列{}n a 的前n 项和为n S ,且4234,32nn S S a a ==+. (1)求数列{}n a 的通项公式;(2)设12n n n b a −=,求数列{}n b 的前n 项和n T .16. 已知ABC 的三个顶点是()()()1,5,5,7,3,3A B C −−−,求:(1)边BC 上的中线所在直线的方程;(2)边BC 上的高所在直线的方程;(3)ABC ∠的角平分线所在直线的方程.17. 已知数列{}{},n n a b 满足112,224,n n n n n n a a b n b a b ++=−+ =−++ 且115,12a b ==−. (1)求3a ;(2)证明数列12n a n −−等比数列,并求n a .18. 已知圆22:4O x y +=内有一点()01,0P −,倾斜角为α的直线l 过点0P 且与圆O 交于,A B 两点. (1)当135α= 时,求AB 的长;是(2)是否存在弦AB 被点0P 三等分?若存在,求出直线l 的斜率;若不存在,请说明理由; (3)记圆O 与x 轴的正半轴交点为M ,直线MA 的斜率为1k ,直线MB 的斜率为2k ,求证:12k k 为定值.19. 已知点()()11,1,0,2P P −,向量()*11n n PP PP PP n +=+∈N ,点,,n n O P Q 一条直线上,且满足2n n OP OQ ⋅= .(1)求n OP ;(2)证明n Q 在同一个圆上,并求该圆的圆心M 和半径r ; (3)过n Q 引圆M 的切线,记切线与x 轴的交点为n R ,求证:122n OR OR OR +++< .在。

镇江市2023-2024学年高三上学期期中考试数学试卷(含答案)

江苏省镇江市2023-2024学年高三上学期期中考试数学试卷姓名一、单选题:本大题共8小题,每题5分,共40分.在每小题提供的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}22log 1,230,A x x B x x x A B =<=+-=⋃=则 ( ) A .(3,2)-B.C .(0,2)D .2.已知复数(12)2,z i z i z -=+=满足则 ( ) A .15B.C .1D .3.已知ABC G ABC ∆∆中,点为所在平面内一点,则“30AB AC AG +-=uu u r uu u r uuu r r”是“G ABC ∆点为重心”的A .充分不必要条件B.C .充要条件D .4.已知26,13x y x y x y+=+均为正数,且,则的最小值为 ( ) A .12B.C .20D .5.已知函数()sin().()f x x y f x θ=+=甲:函数数()f x 为偶函数;丙:当()x f x π=时,函数取得极值;丁:函数()y f x =图象的一个对称中心为(,0)π.甲、乙、丙、丁四人对函数()f x 的论述中有且只有两人正确,则实数θ的值为 ( )A .()2k k Z π∈ B. C .1()2k k Z π+∈ D . 6.棱长都相等的正四棱锥的侧面与底面所成的二面角大小为α,两相邻侧面所成的二面角大小为β,则( )A .4πα<B.C .2αβα<<D .7.已知330,sin sin ,3ln sin 3ln sin ,3sin 3sin 2a b c παββαβαβα<<<==-=-则下列选项正确的是A .b c a >>B.C .b a c >>D .( )8.等比数列{}10121011101212121111,,()()()0n n na a a a a a a a a a =>-+-++->中,则满足L 的最大整数n 为 A .2021B.C .2023D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列结论正确的是 ( ) A .若0,c ca b c a b>>>>则B .C .若1,1,22a ba b a b ⋅+=>为正数满足则 D .若2,,2a b aba b a b+≥+为正数则10.已知函数3()1()f x x x f x αβ'=-++的导函数为,两个极值点为,,则 ( )A .()f x 有三个不同的零点B .C .()()1f f αβ+=D .的切线11.已知数列{}11003,n n a a d n S ==-中,,公差前项和为,则 ( ) A .数列n S n ⎧⎫⎨⎬⎩⎭为等差数列 B .当值取得最大C .存在不同的正整数,i j i j S S =,使得D .值最大12.在正三棱柱111112312,ABC A B C AB AA P AP AB AC AA λλλ-===++中,已知空间点满足uu u r uu u r uu u r uuu r,则( )A .当1231112P B BCC λλλ===时,为正方形对角线交点B .当C .当313P ABC λ=-时,三棱锥的体积为D .当1312,1P AP BC λλλλ=+=⊥且时,有且仅有一个点,使得三、填空题:本大题共4小题,每小题5分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上.13.已知向量(3,1),(1,0),(1,2),()=a b c c a mb m ===⊥+若,则r r r r r r.14.已知三个互不相等的一组实数,,a b c 成等比数列,适当调整顺序后,这三个数又能成等差数列,满足条件的一组实数,,a b c 为 .15.半径为32r O r O O 的球内有一圆锥的高为,底面圆周在球的球面上,则求的体积与该圆锥的体积之比为 .16.海岛上有一座高塔,高塔顶端是观察台,观察台海拔1000m .在观察台上观察到有一轮船,该轮船航行的速度和方向保持不变,上午11时,测得该轮船在海岛北偏东060,俯角为030处,11时20分测得该轮船在海岛北偏西060,俯角为060处,则该轮船的速度为 /m h ,再经过 分钟后,该轮船到达海岛的正西方向.四、解答题:本大题共6小题,共70分,请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.已知集合{}2221210.2A x B x x x m x ⎧⎫=≥=--+<⎨⎬-⎩⎭,集合(1)若2()R m C A B =⋂,求;(2)若 ,求实数m 的取值范围.在以下两个条件中任选一个补充在第(2)问中,并给出解答 . ①“x A ∈”是“x B ∈”的充分不必要条件;②.A B B ⋂=18.设函数3()log (933)x x f x k k =-⋅-,其中为常数.(1)当2()k f x =时,求的定义域;(2)若对任意[1,)()x x f x x k ∈+∞≥,关于的不等式恒成立,求实数的取值范围.19.在1,,cos sin()sin sin().632ABC A B C a b c C A C A ππ∆+--=中,角,,对边分别, (1)求B ;(2)若1ABC AC ABC ∆=∆为锐角三角形,且,求周长的取值范围.20.已知数列{}13.12nn n na a n N a a *+∈=+对任意满足(1)如果数列{}n a 为等差数列,求1a ;(2)如果132a =,①是否存在实数λ,使得数列1n a λ⎧⎫-⎨⎬⎩⎭为等比数列?如果存在,请求出所有的λ,如果不存在,请说明为什么?②求数列{}n a 的通项公式.21.如图,四棱锥.P ABCD PD ABCD -⊥的底面为平行四边形,底面 (1)若平面PDB PBC BC BD ⊥⊥平面,证明:; (2)若四边形32ABCD PD DC M PC PM MC N PB ===是正方形,,点在棱上,且满足,点是棱上的动点,问:当点N PD DMN 在何处时,直线与平面所成角的正弦值取最大值.22.已知函数()ln .1a f x x x =-+ (1)若函数()f x 存在两个不同的极值点12,x x a ,求实数的取值范围; (2)在(1)的条件下,不等式12()()412ln02f x f x kke k x x +-+≥+-恒成立,求实数的最小值,并求此时a 的值.镇江市2023-2024学年高三上学期期中考试数学试卷姓名一、单选题:本大题共8小题,每题5分,共40分.在每小题提供的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}22log 1,230,A x x B x x x A B =<=+-=⋃=则 ( A ) A .(3,2)-B.C .(0,2)D .2.已知复数(12)2,z i z i z -=+=满足则 ( C ) A .15B.C .1D .3.已知ABC G ABC ∆∆中,点为所在平面内一点,则“30AB AC AG +-=uu u r uu u r uuu r r”是“G ABC ∆点为重心”的A .充分不必要条件B.C .充要条件D .4.已知26,13x y x y x y+=+均为正数,且,则的最小值为 ( D ) A .12B.C .20D .5.已知函数()sin().()f x x y f x θ=+=甲:函数数()f x 为偶函数;丙:当()x f x π=时,函数取得极值;丁:函数()y f x =图象的一个对称中心为(,0)π.甲、乙、丙、丁四人对函数()f x 的论述中有且只有两人正确,则实数θ的值为 ( B )A .()2k k Z π∈ B. C .1()2k k Z π+∈ D . 6.棱长都相等的正四棱锥的侧面与底面所成的二面角大小为α,两相邻侧面所成的二面角大小为β,则( D )A .4πα<B.C .2αβα<<D .7.已知330,sin sin ,3ln sin 3ln sin ,3sin 3sin 2a b c παββαβαβα<<<==-=-则下列选项正确的是A .b c a >>B.C .b a c >>D .( A )8.等比数列{}10121011101212121111,,()()()0n n na a a a a a a a a a =>-+-++->中,则满足L 的最大整数n 为 A .2021B.C .2023D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列结论正确的是 ( BCD ) A .若0,c ca b c a b>>>>则B .C .若1,1,22a ba b a b ⋅+=>为正数满足则 D .若2,,2a b aba b a b+≥+为正数则10.已知函数3()1()f x x x f x αβ'=-++的导函数为,两个极值点为,,则 ( BD )A .()f x 有三个不同的零点B .C .()()1f f αβ+=D .的切线11.已知数列{}11003,n n a a d n S ==-中,,公差前项和为,则 ( ABD ) A .数列n S n ⎧⎫⎨⎬⎩⎭为等差数列 B .当值取得最大C .存在不同的正整数,i j i j S S =,使得D .值最大12.在正三棱柱111112312,ABC A B C AB AA P AP AB AC AA λλλ-===++中,已知空间点满足uu u r uu u r uu u r uuu r,则( ACD )A .当1231112P B BCC λλλ===时,为正方形对角线交点 B .当 C .当32313P ABC λ=-时,三棱锥的体积为D .当1312,1P AP BC λλλλ=+=⊥且时,有且仅有一个点,使得三、填空题:本大题共4小题,每小题5分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上.13.已知向量(3,1),(1,0),(1,2),()=a b c c a mb m ===⊥+若,则r r r r r r3- .14.已知三个互不相等的一组实数,,a b c 成等比数列,适当调整顺序后,这三个数又能成等差数列,满足条件的一组实数,,a b c 为 4,2,1-- .15.半径为32r O r O O 的球内有一圆锥的高为,底面圆周在球的球面上,则求的体积与该圆锥的体积之比为329. 16.海岛上有一座高塔,高塔顶端是观察台,观察台海拔1000m .在观察台上观察到有一轮船,该轮船航行的速度和方向保持不变,上午11时,测得该轮船在海岛北偏东060,俯角为030处,11时20分测得该轮船在海岛北偏西060,俯角为060处,则该轮船的速度为 100039 /m h ,再经过 10 分钟后,该轮船到达海岛的正西方向.四、解答题:本大题共6小题,共70分,请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.已知集合{}2221210.2A x B x x x m x ⎧⎫=≥=--+<⎨⎬-⎩⎭,集合(1)若2()R m C A B =⋂,求;(2)若 ,求实数m 的取值范围.在以下两个条件中任选一个补充在第(2)问中,并给出解答 . ①“x A ∈”是“x B ∈”的充分不必要条件;②.A B B ⋂=17.解:(1)22,12m A x=≥-中:18.设函数3()log (933)x xf x k k =-⋅-,其中为常数.(1)当2()k f x =时,求的定义域;(2)若对任意[1,)()x x f x x k ∈+∞≥,关于的不等式恒成立,求实数的取值范围. 18.解:(1)32()log (9233)x x k f x ==-⋅-时,,19.在1,,cos sin()sin sin().632ABC A B C a b c C A C A ππ∆+--=中,角,,对边分别, (1)求B ;(2)若1ABC AC ABC ∆=∆为锐角三角形,且,求周长的取值范围.19.解:(1)有条件得1cos cos()sin sin(A )332C A C ππ---=,20.已知数列{}13.12nn n na a n N a a *+∈=+对任意满足(1)如果数列{}n a 为等差数列,求1a ;(2)如果132a =,①是否存在实数λ,使得数列1n a λ⎧⎫-⎨⎬⎩⎭为等比数列?如果存在,请求出所有的λ,如果不存在,请说明为什么?②求数列{}n a 的通项公式.20.解:(1)112112311211933129,6121218112a a a a a a a a a a a a +====+++++,21.如图,四棱锥.P ABCD PD ABCD -⊥的底面为平行四边形,底面 (1)若平面PDB PBC BC BD ⊥⊥平面,证明:; (2)若四边形32ABCD PD DC M PC PM MC N PB ===是正方形,,点在棱上,且满足,点是棱上的动点,问:当点N PD DMN 在何处时,直线与平面所成角的正弦值取最大值.21.证明:(1)PD ABCD ⊥底面Q ,22.已知函数()ln .1a f x x x =-+ (1)若函数()f x 存在两个不同的极值点12,x x a ,求实数的取值范围; (2)在(1)的条件下,不等式12()()412ln02f x f x kke k x x +-+≥+-恒成立,求实数的最小值,并求此时a 的值.22.解:(1)2221(2)1()0(1)x(1)a x a x f x x x x +++'=+==++,。

高二数学期中试题(含答案)

班级 姓名 学号 装 订 线高二年级文科数学试题一、选择题(本题共12个小题)1.下面四个命题(1) 0比i -大(2)两个复数互为共轭复数,当且仅当其和为实数(3) 1x yi i +=+的充要条件为1x y ==(4)如果让实数a 与ai 对应,那么实数集与纯虚数集一一对应, 其中正确的命题个数是 ( ) A .0 B .1 C .2 D .32.13()i i --的虚部为 ( ) A .8i B .8i - C .8 D .8-3.使复数为实数的充分而不必要条件是由 ( )A .z z -= B .z z = C .2z 为实数D .z z -+为实数4.设456124561212,,z i i i i z i i i i =+++++⋅⋅⋅⋅ 则12,z z 的关系是( ) A .12z z = B .12z z =- C .121z z =+ D .无法确定 5. 2020(1)(1)i i +--的值是 ( )A . 1024-B . 1024C . 0D .10246.已知2()(1,)n n f n i i i n N -=-=-∈集合{}()f n 的元素个数是( ) A. 2 B. 3 C. 4 D. 无数个7.正三棱锥的侧棱与底面的对边 ( ) A. 平行 B. 垂直 C.相交 D.以上皆错8.数列2,5,11,20,,47,x …中的x 等于 ( ) A .28 B .32 C .33 D .279.已知正六边形ABCDEF ,在下列表达式①EC CD BC ++;②DC BC +2;③ED FE +;④FA ED -2中,与AC 等价的有( )A .1个B .2个C .3个D .4个 10.函数]2,0[)44sin(3)(ππ在+=x x f 内 ( ) A .只有最大值 B .只有最小值C .只有最大值或只有最小值D .既有最大值又有最小值11.如果821,,a a a ⋅⋅⋅为各项都大于零的等差数列,公差0≠d ,则( ) A .5481a a a a > B .5481a a a a < C .5481a a a a +>+ D .5481a a a a = 12.函数xy 1=在点4=x 处的导数是 ( )A .81 B .81- C .161 D .161- 二、填空题(本题共4个小题)13.若(2)a i i b i -=-,其中a 、b R ∈,i 使虚数单位,则22a b +=_________。

江苏省苏州市2023-2024学年高二上学期期中考试数学试题含解析

2023~2024学年第一学期高二期中调研试卷数学(答案在最后)注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共4页、包含单项选择题(第1题~第8题),多项选择题(第9题~第12题).填空题(第13题~第16题)、解答题(第17题~第22题).本卷满分150分,答题时间为120分钟.答题结束后,请将答题卡交回.2.答题前,请您务必将自己的学校、班级、姓名、考试号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效,作答必须用0.5毫米黑色墨水的签字笔,请注意字体工整,笔迹清楚.一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项填涂在答题卡相应的位置上.1.直线320x y +-=的方向向量为()A.()1,3- B.()1,3 C.()3,1- D.()3,1【答案】A 【解析】【分析】根据直线的斜率得到直线的一个方向向量为()1,k ,再求其共线向量即可.【详解】由题意得直线320x y +-=的斜率为-3,所以直线的一个方向向量为()1,3-,又()()1,31,3-=--,所以()1,3-也是直线320x y +-=的一个方向向量.故选:A.2.等差数列{}n a 中,若39218a a +=,则263a a +的值为()A.36B.24C.18D.9【答案】B 【解析】【分析】由等差数列通项公式求基本量得5146d a a +==,再由2639532a a a a a +=++即可求值.【详解】令{}n a 的公差为d ,则3911122(2)831218a a a d a d a d +=+++=+=,即5146d a a +==,则2624683953218624a a a a a a a a a +=+++=++=+=.故选:B3.与直线3x﹣4y+5=0关于y 轴对称的直线方程是()A.3x+4y+5=0 B.3x+4y﹣5=0C.3x﹣4y+5=0D.3x﹣4y﹣5=0【答案】B 【解析】【分析】分别求出直线3450x y -+=与坐标轴的交点,分别求得关于y 轴的对称点,即可求解直线的方程.【详解】令0x =,则54y =,可得直线3450x y -+=与y 轴的交点为5(0,)4,令0y =,则53x =-,可得直线3450x y -+=与x 轴的交点为5(,0)3-,此时关于y 轴的对称点为5(,0)3,所以与直线3450x y -+=关于y 轴对称的直线经过两点55(0,),(,0)43,其直线的方程为15534x y +=,化为3450x y +-=,故选B .【点睛】本题主要考查了直线方程点的求解,以及点关于线的对称问题,其中解答中熟记点关于直线的对称点的求解,以及合理使用直线的方程是解答的关键,着重考查了推理与运算能力,属于基础题.4.经过原点和点()3,1-且圆心在直线350x y +-=上的圆的方程为()A.()()22510125x y -++= B.()()22125x y ++-=C.()()22125x y -+-= D.2252539x y ⎛⎫-+=⎪⎝⎭【答案】D 【解析】【分析】令圆心为(,53)x x -,由圆所经过的点及两点距离公式列方程求出圆心坐标,即可写出圆的方程.【详解】由题设,令圆心为(,53)x x -,又圆经过原点和点()3,1-,所以()()()2222253363r x x x x =+-=-+-,整理可得53x =,故圆心为5(,0)3,所以半径平方2259r =,则圆的方程为2252539x y ⎛⎫-+= ⎪⎝⎭.故选:D5.设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递减数列”是“存在正整数0N ,当0n N >时,0n a <”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】由等差数列的通项公式和一次函数性质,结合充分、必要性定义判断条件间的推出关系即可.【详解】令{}n a 公差为d 且0d ≠的无穷等差数列,且11(1)()n n d a a a dn d =+-=+-,若{}n a 为递减数列,则0d <,结合一次函数性质,不论1a 为何值,存在正整数0N ,当0n N >时0n a <,充分性成立;若存在正整数0N ,当0n N >时0n a <,由于0d ≠,即{}n a 不为常数列,故1()n a dn a d =+-单调递减,即0d <,所以{}n a 为递减数列,必要性成立;所以“{}n a 为递减数列”是“存在正整数0N ,当0n N >时,0n a <”的充分必要条件.故选:C6.已知点()4,3P ,点Q 在224x y +=的圆周上运动,点M 满足PM MQ =,则点M 的运动轨迹围成图形的面积为()A.πB.2πC.3πD.4π【答案】A 【解析】【分析】设(,)M x y ,00(,)Q x y ,由动点转移法求得M 点轨迹方程,由方程确定轨迹后可得面积.【详解】设(,)M x y ,00(,)Q x y ,由PM MQ =得M 是线段PQ 中点,∴002423x x y y =-⎧⎨=-⎩,又Q 在圆224x y +=上,22(24)(23)4x y -+-=,即223(2)()12x y -+-=,∴M 点轨迹是半径为1的圆,面积为πS =,故选:A .7.等比数列{}n a 中,123453a a a a a ++++=,222221234515a a a a a ++++=,则12345a a a a a -+-+=()A.5-B.1-C.5D.1【答案】C 【解析】【分析】由等比数列前n 项和公式写出已知与待求式后,进行比较,已知两式相除即得.【详解】设公比为q ,显然1q ≠±,则由题意得5121012(1)31(1)151a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,两式相除得51(1)51a q q +=+,所以551112345[1()](1)51()1a q a q a a a a a q q--+-+-+===--+,故选:C.8.过点()2,0P 作圆2241x y y +-=的两条切线,设切点分别为,A B ,则PAB 的面积为()A.8B.2C.8D.【答案】A 【解析】【分析】写出圆的标准方程得圆心为(0,2)C,半径r =,进而有||CP =,由圆的切线性质得||||BP AP ==,sin BPC BPC ∠=∠=,2BPA BPC ∠=∠,最后应用倍角正弦公式、三角形面积公式求PAB 面积.【详解】由题设,圆的标准方程为22(2)5x y +-=,圆心为(0,2)C,半径r =,所以||CP =,如下图示,切点分别为,A B,则||||BP AP ===,所以||||sin ||||BC BP BPC BPC CP CP ∠==∠==2BPA BPC ∠=∠,所以15sin sin 22sin cos 4BPA BPC BPC BPC ∠=∠=∠∠=,所以11||||sin 2248PAB S BP AP BPA =∠==.故选:A二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求、全部选对得5分,选对但不全得2分,选错或不答得0分,请把正确的选项填涂在答题卡相应的位置上.9.已知直线:0l x my m ++=,若直线l 与连接()()3,2,2,1A B -两点的线段总有公共点,则直线l 的倾斜角可以是()A.2π3 B.π2C.π4D.π6【答案】ABC 【解析】【分析】求出直线l 过的定点,从而求得,AC BC k k ,进而利用数形结合可得直线l 倾斜角的范围,由此得解.【详解】因为直线:0l x my m ++=可化为()10x y m ++=,所以直线l 过定点()0,1C -,又()()3,2,2,1A B -,所以()21130AC k --==---,()11120BC k --==-,故直线AC 的倾斜角为3π4,直线BC 的倾斜角为π4,结合图象,可知直线l 的倾斜角范围为π3π,44⎡⎤⎢⎥⎣⎦,故ABC 正确,D 错误.故选:ABC.10.设,n n S T 分别是等差数列{}n a 和等比数列{}n b 的前()*Nn n ∈项和,下列说法正确的是()A.若15160a a +>,15170a a +<,则使0n S >的最大正整数n 的值为15B.若5nn T c =+(c 为常数),则必有1c =-C.51051510,,S S S S S --必为等差数列D.51051510,,T T T T T --必为等比数列【答案】BCD 【解析】【分析】A 由已知可得129152d a d -<<-,且0d <,再应用等差数列前n 项和公式及0n S >得1201a n d<<-,即可判断;B 由等比数列前n 项和公式有11511n n n b b q T c q q =-=+--,即可判断;C 、D 根据等差、等比数列片段和的性质直接判断.【详解】令{}n a 的公差为d ,则11(1)()n n d a a a dn d =+-=+-,所以151611517122902300a a a d a a a d +=+>⎧⎨+=+<⎩,故129152d a d -<<-,且0d <,使211(1)()0222n n n d dS na d n a n -=+=+->,则1201a n d <<-,而122930a d <-<,即121(30,31)ad-∈,故030n <≤,所以使0n S >的最大正整数n 的值为30,A 错;令{}n b 的公比为q 且0q ≠,则()11115111nnn n b q b b q T c qq q-==-=+---(公比不能为1),所以1511q b q =⎧⎪⎨=-⎪-⎩,即1c =-,B 对;根据等差、等比数列片段和的性质知:51051510,,S S S S S --必为等差数列,51051510,,T T T T T --必为等比数列,C 、D 对.故选:BCD11.已知等比数列{}n a 的公比为q ,前()*Nn n ∈项和为nS,前()*Nn n ∈项积为nT ,若1132a=,56T T =,则()A.2q = B.当且仅当6n =时,n T 取得最小值C.()*11N ,11n n T T n n -=∈< D.n n S T >的正整数n 的最大值为11【答案】AC 【解析】【分析】根据56T T =确定6a ,561a q a =求出q 的值确定A ,根据数列项的变化,确定B ,利用等比数列的基本量运算判断C ,根据n n S T >转化二次不等式,从而确定正整数n 的最大值判断D.【详解】对于A ,因为56T T =,所以6651T a T ==,因为56132a q a ==,解得2q =,故A 正确;对于B ,注意到61a =,故15,Z n n ≤≤∈时,01n a <<,7,Z n n ≥∈时,1n a >,所以当5n =或6n =时,n T 取得最小值,故B 错误;对于C ,()()()21111215*221231222N ,11n n n nnn n n n T a a a a a q n n --+++--===⋅=∈< ,()()()()2111011111112105*221112111222N ,11n n n n nn n n n T a a a a q n n -----+++----===⋅=∈< ,所以()*11N ,11n n T T n n -=∈<,故C 正确;对于D ,()1512112n n n a q S q--==-,21122n n n T -=,因为n n S T >,所以211252212n nn -->,即211102212n n n -+->,所以211102212n n n -+->,即211102n n n -+>,所以131322n <<,正整数n 的最大值为12,故D 错误,故选:AC.12.已知圆22:4C x y +=,圆22:860M x y x y m +--+=()A.若8m =,则圆C 与圆M 相交且交线长为165B.若9m =,则圆C 与圆M 有两条公切线且它们的交点为()3,4--C.若圆C 与圆M 恰有4条公切线,则16m >D.若圆M 恰好平分圆C 的周长,则4m =-【答案】AD 【解析】【分析】A 、B 将圆M 化为标准形式,确定圆心和半径,判断圆心距与两圆半径的关系,再求相交弦长判断;C 由题意知两圆相离,根据圆心距大于两圆半径之和及圆的方程有意义求参数范围;D 由题意相交弦所在直线必过(0,0)C ,并代入相交弦方程求参数即可.【详解】A :8m =时圆22:(4)(3)17M x y -+-=,则(4,3)M,半径r =,而圆22:4C x y +=中(0,0)C ,半径2r '=,所以||5CM =,2||2CM -<<+,即两圆相交,此时相交弦方程为4360x y +-=,所以(0,0)C 到4360x y +-=的距离为65d =,故相交弦长为1625=,对;B :9m =时圆22:(4)(3)16M x y -+-=,则(4,3)M ,半径4r =,同A 分析知:42||42CM -<<+,故两圆相交,错;C :若圆C 与圆M 恰有4条公切线,则两圆相离,则||2CM r r r '>+=+,而圆22:(4)(3)25M x y m -+-=-,即r =所以250162525m m ->⎧⎪⇒<<⎨<⎪⎩,错;D :若圆M 恰好平分圆C 的周长,则相交弦所在直线必过(0,0)C ,两圆方程相减得相交弦方程为8640x y m +--=,将点代入可得4m =-,对.故选:AD三、填空题:本题共4小题,每小题5分,共20分,请把答案写在答题卡相应的位置上.13.若{}n a 是公差不为0的等差数列,248,,a a a 成等比数列,11a =,n S 为{}n a 的前()*Nn n ∈项和,则1210111S S S +++ 的值为___________.【答案】2011【解析】【分析】由等差数列中248,,a a a 成等比数列,解出公差为d ,得到n a ,求出n S ,裂项相消求1210111S S S +++ 的值.【详解】设等差数列{}n a 公差为d ,248,,a a a 成等比数列,由2428a a a =,则()()()211137a d a d a d +=++,即()()()213117d d d +=++,由0d ≠,得1d =,所以()11n a a n d n =+-=,则有()()1122n n n a a n n S ++==,得()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭,所以121011111101111112021211221311S S S ⎛⎫⎛⎫+++=-+-++=-= ⎪ ⎪⎝⎭⎝⎭- .故答案为:201114.平面直角坐标系xOy 中,过直线1:7310l x y -+=与2:430l x y +-=的交点,且在y 轴上截距为1的直线l 的方程为_______________.(写成一般式)【答案】9550x y +-=【解析】【分析】设交点系方程,结合直线过(0,1)求方程即可.【详解】由题设,令直线l 的方程为731(43)0x y x y λ-+++-=,且直线过(0,1),所以031(043)02λλ-+++-=⇒=,故直线l 的方程为9550x y +-=.故答案为:9550x y +-=15.如图,第一个正六边形111111A B C D E F 的面积是1,取正六边形111111A B C D E F 各边的中点222222,,,,,A B C D E F ,作第二个正六边形222222A B C D E F ,然后取正六边形222222A B C D E F 各边的中点333333,,,,,A B C D E F ,作第三个正六边形,依此方法一直继续下去,则前n 个正六边形的面积之和为_______________.【答案】3414n ⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦【解析】【分析】根据题设分析出前n 个正六边形的面积是首项为1,公比为34的等比数列,应用等比数列前n 项和公式求面积和.【详解】由题设知:后一个正六边形与前一个正六边形的边长比值为2,故它们面积比为34,所以前n 个正六边形的面积是首项为1,公比为34的等比数列,所以前n 个正六边形的面积之和31()344[1()]3414nn S -==--.故答案为:34[1()]4n-16.已知实数,,a b c 成等差数列,在平面直角坐标系xOy 中,点()4,1A ,O 是坐标原点,直线:230l ax by c ++=.若直线OM 垂直于直线l ,垂足为M ,则线段AM 的最小值为___________.【答案】【解析】【分析】由等差数列的性质及直线方程有:()(3)0l a x y c y +++=,求出直线所过的定点,结合已知M 在以||OB 为直径的圆上,且圆心33(,22C -,半径为2,问题化为求()4,1A 到该圆上点距离的最小值.【详解】由题设2b a c =+,则:()30l ax a c y c +++=,即:()(3)0l a x y c y +++=,令03303x y x y y +==⎧⎧⇒⎨⎨+==-⎩⎩,即直线l 恒过定点(3,3)B -,又OM l ⊥,所以M 在以||OB 为直径的圆上,且圆心33(,)22C -,半径为2,要求AM 的最小值,即求()4,1A 到该圆上点距离的最小值,而52||2CA =,所以min 22AM =-=四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.17.已知直线()1:2120l x a y ---=,()()()2:22130R l a x a y a ++++=∈.(1)若12l l ⊥,求实数a 的值;(2)若1//l 2l ,求12,l l 之间的距离.【答案】(1)1a =-或52;(2【解析】【分析】(1)由两线垂直的判定列方程求参数即可;(2)由两线平行的判定列方程求参数,注意验证是否存在重合情况,再应用平行线距离公式求距离.【小问1详解】由12l l ⊥,则2(2)(1)(21)0a a a +--+=,即22350a a --=,所以(25)(1)0a a -+=,可得1a =-或52.【小问2详解】由1//l 2l ,则22121a a a++=-,可得250a a +=,故0a =或5-,当0a =,则1:220l x y +-=,2:230l x y ++=,此时满足平行,且12,l l=;当5a =-,则1:310l x y +-=,2:310l x y +-=,此时两线重合,舍;综上,1//l 2l 时12,l l18.已知等差数列{}n a ,前()*Nn n ∈项和为n S ,又294,90a S ==.(1)求数列{}n a 的通项公式n a ;(2)设9n n b a =-,求数列{}n b 的前n 项和n T .【答案】(1)2n a n =(2)()()228,14,N 832,5,N n n n n n T n n n n **⎧-≤≤∈⎪=⎨-+≥∈⎪⎩【解析】【分析】(1)根据等差数列的求和公式和等差数列的通项公式即得.(2)由992n n b a n =-=-,令920n c n =->求出n 的取值范围,再分段求出数列{}n b 的前n 项和nT 【小问1详解】设等差数列的公差为d ,首项为1a ,因为990S =,所以()199599902a a S a +===,所以510a =,由5231046a a d -==-=,解得2d =,又24a =,所以()()224222n a a n d n n =+-=+-⨯=;【小问2详解】992n n b a n=-=-设92n c n =-,{}n c 的前n 项和为n S ,得()279282n n S n n n +-=⨯=-,920n c n =->,得92n <当14n ≤≤时,0n c >,即n n b c =,所以214,8n n n T S n n≤≤==-当5n ≥时,得0n c <,所以n n b c =-,则()()12456n n T c c c c c c =+++-+++ ()()224442328832n n S S S S S n n n n =--=-=--=-+综上所述:()()228,14,N 832,5,N n n n n n T n n n n **⎧-≤≤∈⎪=⎨-+≥∈⎪⎩19.已知数列{}n a 的首项123a =,且满足121n n na a a +=+.(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)设()11n n n b a --=,求数列{}n b 的前2n 项和2n S .【答案】(1)证明见解析(2)4134n n-⨯【解析】【分析】(1)121n n n a a a +=+,取倒数得1112n n n a a a ++=,化简整理即可判断11n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)法一:将2n S 转化为()1111n n a +⎧⎫⎛⎫⎪⎪--⎨⎬ ⎪⎪⎪⎝⎭⎩⎭的前n 项和,结合(1)中结论即可得解;法二:结合(1)中结论得()1112n n n b -⎛⎫=--- ⎪⎝⎭,应用分组求和及等比数列的前n 项和公式即可得解.【小问1详解】因为1122,13n n n a a a a +==+,所以0n a ≠,所以11111222n n n n a a a a ++==+,所以1111122n n a a +-=-,即11111(1)2n na a +-=-因为11211,1032a a =-=≠,1111121n na a +-=-,所以11n a ⎧⎫-⎨⎬⎩⎭是以12为首项,12为公比的等比数列;【小问2详解】法一:21234212111111n n nS a a a a a a -=-+-++- 1234212111111111111n n a a a a a a -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=---+---++-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭易知()1111n n a +⎧⎫⎛⎫⎪⎪--⎨⎬ ⎪⎪⎪⎝⎭⎩⎭是以12为首项,12-为公比的等比数列,所以2221111122412133412n n n n n S ⎡⎤⎛⎫⎛⎫--⎢⎥ ⎪- ⎪⎝⎭-⎢⎥⎣⎦⎝⎭===⨯⎛⎫-- ⎪⎝⎭;法二:由(1)1112n n a ⎛⎫-= ⎪⎝⎭,所以1112n n a ⎛⎫=+ ⎪⎝⎭,所以()()111112n nn n n b a ---⎛⎫==--- ⎪⎝⎭所以22211111224120133412n n n n n S ⎡⎤⎛⎫⎛⎫⎛⎫---⎢⎥ ⎪ ⎪- ⎪⎝⎭⎝⎭-⎢⎥⎣⎦⎝⎭=-==⨯⎛⎫-- ⎪⎝⎭.20.如图,等腰梯形ABCD 中,AB ∥CD ,28AB CD ==,,AB CD 间的距离为4,以线段AB 的中点为坐标原点O ,建立如图所示的平面直角坐标系,记经过,,,A B C D 四点的圆为圆M .(1)求圆M 的标准方程;(2)若点E 是线段AO 的中点,P 是圆M 上一动点,满足24PO PE ≥,求动点P 横坐标的取值范围.【答案】(1)2216524x y ⎛⎫+-= ⎪⎝⎭(2)652,2⎡⎢⎣⎦【解析】【分析】(1)根据圆所过点的坐标求解圆的方程即可.(2)根据P 是圆M 上一动点,满足24PO PE ≥,设P 点坐标带入化简求解,依据图像即可得出答案.【小问1详解】如图,因为28AB CD ==,,AB CD 间的距离为4,所以()()()()4,0,4,0,2,4,2,4A B C D --,经过,,,A B C D 四点的圆即经过,,A B C 三点的圆,法一:AB 中垂线方程即0x =,BC 中点为()3,2,04242BC k -==--,所以BC 的中垂线方程为()1232y x -=-,即1122y x =+,联立01122x y x =⎧⎪⎨=+⎪⎩,得圆心坐标10,2M ⎛⎫ ⎪⎝⎭,()2216540022MB ⎛⎫=-+- ⎪⎝⎭所以圆M 的标准方程为2216524x y ⎛⎫+-= ⎪⎝⎭;法二:设圆M 的一般方程为()2222040x y Dx Ey F D E F ++++=+->,代入()()()4,0,4,0,2,4A B C -,4160416024200D F D F D E F -++=⎧⎪++=⎨⎪+++=⎩解得0116D E F =⎧⎪=-⎨⎪=-⎩,所以圆M 的标准方程为2216524x y ⎛⎫+-= ⎪⎝⎭;法三:以AB 为直径的圆方程为()()2440x x y +-+=,直线:0AB y =,设圆M 的方程为()()2440x x y y λ+-++=,代入()2,4C ,解得1λ=-,所以圆M 的标准方程为2216524x y ⎛⎫+-= ⎪⎝⎭;【小问2详解】()2,0E -,设圆M 上一点(),P x y ,()(),,2,PO x y PE x y =--=--- ,因为24PO PE ≥,所以()()()224x x y y ---+--≥,即222240x y x ++-≥,由222240x y x ++-≥对应方程为圆()22222240125x y x x y ++-=⇒++=所以P 点在圆()22125x y ++=上及其外部,22221602240x y y x y x ⎧+--=⎨++-=⎩解得122,4x x ==,所以两圆交点恰为()()4,0,2,4B C ,结合图形,当圆M 上一点纵坐标为12时,横坐标为342x =>,所以点P横坐标的取值范围是2,2⎡⎢⎣⎦..21.平面直角坐标系xOy 中,直线0:3213x y l +-=,圆M :22128480x y x y +--+=,圆C 与圆M 关于直线l 对称,P 是直线l 上的动点.(1)求圆C 的标准方程;(2)过点P 引圆C 的两条切线,切点分别为,A B ,设线段AB 的中点是Q ,是否存在定点H ,使得QH 为定值,若存在,求出该定点H 的坐标;若不存在,请说明理由.【答案】(1)224x y +=(2)存在;64,1313H ⎛⎫⎪⎝⎭【解析】【分析】(1)利用对称求出C 点坐标,即可得到圆C 的标准方程;(2)设P 点坐标,,A B 在以PC 为直径的圆N 上,由圆C 与圆N 求公共弦AB ,得直线AB 过定点T ,Q 点是在以CT 为直径的圆上,所以存在点H 是CT 的中点,使得QH 为定值.【小问1详解】圆M 化成标准方程为()()22644x y -+-=,圆心()6,4M ,半径为2,设圆心()00,C x y ,圆C 与圆M 关于直线l 对称,直线0:3213x y l +-=的斜率为32-,所以00004263643213022y x x y -⎧=⎪-⎪⎨++⎪⨯+⨯-=⎪⎩,解得0000x y =⎧⎨=⎩,所以()0,0C ,圆C 的方程为224x y +=.【小问2详解】因为P 是直线l 上的动点,设132,32P t t ⎛⎫- ⎪⎝⎭,,PA PB 分别与圆C 切于,A B 两点,所以,CA PA CB PB ⊥⊥,所以,A B 在以PC 为直径的圆N上,圆N 的方程()22221331334242t t x t y t ⎡⎤⎛⎫⎛⎫-+--=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即22132302x y tx t y ⎛⎫+-+-= ⎪⎝⎭AB 为圆C 与圆N 的公共弦,由222240132302x y x y tx t y ⎧+-=⎪⎨⎛⎫+-+-= ⎪⎪⎝⎭⎩,作差得AB 方程为1323402tx t y ⎛⎫---= ⎪⎝⎭即()1323402t x y y -+-=令23013402x y y -=⎧⎪⎨-=⎪⎩得1213813x y ⎧=⎪⎪⎨⎪=⎪⎩,设128,1313T ⎛⎫ ⎪⎝⎭,所以直线AB 过定点128,1313T ⎛⎫ ⎪⎝⎭,又Q 是AB 中点,所以CQ AB ⊥,则有Q 点是在以CT 为直径的圆上,所以存在点H 是CT 的中点,使得12QH CT =为定值,坐标为64,1313H ⎛⎫ ⎪⎝⎭.22.记首项为1的递增数列为“W -数列”.(1)已知正项等比数列{}n a ,前()*Nn n ∈项和为n S ,且满足:222n n a S +=+.求证:数列{}n a 为“W -数列”;(2)设数列{}()*Nn b n ∈为“W -数列”,前()*N n n ∈项和为n S ,且满足()32*1N n i n i b S n ==∈∑.(注:3333121n i n i bb b b ==+++∑ )①求数列{}n b 的通项公式n b ;②数列{}()*N n c n ∈满足33n n n b b c =,数列{}n c 是否存在最大项?若存在,请求出最大项的值,若不存在,请说明理由.(参考数据: 1.44≈≈)【答案】(1)证明见解析(2)①n b n =;②存在;最大项为31c =【解析】【分析】(1)利用等比数列中,n n a S 的关系求解;(2)利用等差数列的定义以及,n n a S 的关系求解,并根据数列的单调性求最值.【小问1详解】设正项等比数列{}n a 的公比为()0q q >,因为222n n a S +=+,则3122n n a S ++=+,两式相减得3212n n n a a a +++-=,即()()()2112210n n a q q a q q ++--=-+=,因为0,0n a q >>,所以2q =,222n n a S +=+中,当1n =时,有3122=+a a ,即11422a a =+,解得11a =,因此数列{}n a 为“W -数列”;【小问2详解】①因为()32*1N n i n i bS n ==∈∑所以3211b b =,又{}n b 为“W -数列”,所以11b =,且1n n b b +>,所以{}n b 各项为正,当2n ≥,321n i ni b S ==∑①,13211n i n i b S --==∑②,①一②得:3221n n n b S S -=-,即()()311n n n n n b S S S S --=-+,所以21n n n b S S -=+③,从而211n n n b S S ++=+④,④-③得:2211n n n n b b b b ++-=+,即()()111n n n n n n b b b b b b ++++-=+,由于{}n b 为“W -数列”,必有10n n b b ++>,所以11n n b b +-=,()2n ≥,又由③知2221b S S =+,即22122b b b =+,即22220b b --=得22b =或21b =-(舍)所以211b b -=,故()*11n n b b n N +-=∈所以{}n b 是以1为首项,公差是1的等差数列,所以n b n =;②303n n n c =>,所以31113n n c n c n ++⎛⎫= ⎪⎝⎭,令311113n n c n c n ++⎛⎫=< ⎪⎝⎭,得 2.27n >≈,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省镇江市三所省重点高中2009-2010学年第一学期期中联考高二数学试卷(文科)江苏省句容高级中学 江苏省大港中学 江苏省扬中高级中学2009年11月 命题人:樊荣良一.填空题:本大题共14小题,每小题5分,共70分.1.方程022=++-+m y x y x 表示一个圆,则m 的范围是_____________ 2.抛物线28x y =的焦点坐标为_________3.已知21F F 、为椭圆192522=+yx的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =______________。

4.若双曲线12222=-by ax 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是______________ 5.设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为______________6.如果直线1+=kx y 与圆0422=-+++my kx y x 交于M 、N 两点,且M 、N 关于直线0=+y x 对称,则=+m k _________7.现给出一个算法,算法语句如下图,若其输出值为1,则输入值x 为 8.下图中流程图表示的算法的运行结果是_________9.阅读右框中伪代码,若输入的n 为50,则输出的结果是 .(第9题)10.若点A 的坐标()2,3,F 为抛物线x y 22=的焦点,点P 在该抛物线上移动,为使得P A P F +取得最小值,则P 点的坐标为________ .11.过点()0,4-作直线l 与圆0204222=--++y x y x 交于A 、B 两点,若AB=8,则直线l 的方程为___________________________12.如图,某人向圆内投镖,如果他每次都投中圆内,那么他投中正方形区域的概率为 (结果用分数表示)13. 设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 14.P 为椭圆22143xy+=上的一点,M 、N 分别是圆22(1)4x y ++=和22(1)1x y -+=上的点,则|PM | + |PN |的最大值为 .二.解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)将一颗骰子先后抛掷2次,观察向上的点数,问: (1)共有多少种不同的可能结果?(2)点数之和是5的倍数的可能结果有多少种? (3)点数之和是5的倍数的概率是多少?16.(本题满分15分)抛物线顶点在原点,焦点是圆0422=-+x y x 的圆心。

(1)求抛物线的方程。

(2)直线l 的斜率为2,且过抛物线的焦点,与抛物线交于A 、B 两点,求弦AB 的长。

(3)过点P (1,1)引一弦,使它被点P 平分,求这条弦所在的直线方程。

17.(本题满分15分)直角三角形ABC 的顶点坐标()0,2-A ,直角顶点()22,0-B ,顶点C 在x 轴的正半轴上,点P 为线段OA 的中点 (1)求BC 边所在直线方程。

(2)M 为直角三角形ABC 外接圆的圆心,求圆M 的方程。

(3)若动圆N 过点P 且与圆M 内切,求动圆的圆心N 的轨迹方程。

18.(本题满分15分) 设F 1、F 2分别为椭圆C :2222by ax +=1(a >b >0)的左、右两个焦点.(1)若椭圆C 上的点A (1,23)到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标;(2)设点P 是(1)中所得椭圆上的动点,当P 在何位置时,21PF F ∠最大,说明理由,并求出最大值。

19.(本题满分15分)已知抛物线1C 的顶点在坐标原点,它的准线经过双曲线2C :22221x y ab-=的一个焦点1F 且垂直于2C 的两个焦点所在的轴,若抛物线1C 与双曲线2C 的一个交点是2(33M .(1)求抛物线1C 的方程及其焦点F 的坐标; (2)求双曲线2C 的方程及其离心率e .20.(本题满分16分)已知圆C 与两坐标轴都相切,圆心C 到直线x y -=的距离等于2。

(1)求圆C 的方程。

(2)若直线1:=+ny m x l ()2,2>>n m 与圆C 相切,求证246+≥mn08-09学年度第一学期三校期中联考高二数学(文)试卷答案2008年11月 命题人:樊荣良 审题人:一.填空题:本大题共14小题,每小题5分,共70分.1.方程022=++-+m y x y x 表示一个圆,则m 的范围是_____2<m ________2.抛物线28x y =的焦点坐标为__⎪⎭⎫⎝⎛321,0_______ 3.已知21F F 、为椭圆192522=+yx的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =_______8_______。

4.若双曲线12222=-by ax 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是____5_______ 5.设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为______1342222=-y x ________6.如果直线1+=kx y 与圆0422=-+++my kx y x 交于M 、N 两点,且M 、N 关于直线0=+y x 对称,则=+m k ____0_____7.现给出一个算法,算法语句如下图,若其输出值为1,则输入值x 为 1或-2 8.下图中流程图表示的算法的运行结果是___7______9.阅读右框中伪代码,若输入的n 为5010.若点A 的坐标为(3,2),F 为抛物线22y x =的焦点,点P 在该抛物线上移动,为使得P A P F +取得最小值,则P 点的坐标为(2,2) 11.过点()0,4-作直线l 与圆0204222=--++y x y x 交于A 、B 两点,若AB=8,则直线l 的方程为__020125=++y x _或_4-=x ____ 12.如图,某人向圆内投镖,如果他每次都投中圆内, 那么他投中正方形区域的概率为2π13. 设椭圆的两个焦点分别为F 1、、F ,过F 作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为14.P 为椭圆22143xy+=上的一点,M 、N 分别是圆22(1)4x y ++=和22(1)1x y -+=上的点,则|PM | + |PN |的最大值为 7 .二.解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)将一颗骰子先后抛掷2次,观察向上的点数,问: (1)共有多少种不同的可能结果?(2)点数之和是5的倍数的可能结果有多少种? (3)点数之和是5的倍数的概率是多少? 解:(1)36 (5分) (2)7 (5分) (3)736(4分)16.(本题满分15分)抛物线顶点在原点,焦点是圆0422=-+x y x 的圆心。

(1)求抛物线的方程。

(2)直线l 的斜率为2,且过抛物线的焦点,与抛物线交于A 、B 两点,求弦AB 的长。

(3)过点P (1,1)引一弦,使它被点P 平分,求这条弦所在的直线方程。

解:(1)28y x = (5分) (2)AB=10 (5分) (3)034=--y x (5分)17.(本题满分15分)直角三角形ABC 的顶点坐标()0,2-A ,直角顶点()22,0-B ,顶点C 在x 轴的正半轴上,点P 为线段OA 的中点(1)求BC 边所在直线方程。

(2)M 为直角三角形ABC 外接圆的圆心,求圆M 的方程。

(3)若动圆N 过点P 且与圆M 内切,求动圆的圆心N 的轨迹方程。

解:(1)BC :2222-=x y (5分)(2)外接圆M 的方程()9122=+-y x (9分) (3)得到3=+PN MN (11分)轨迹1454922=+yx(15分)18.(本题满分15分) 设F 1、F 2分别为椭圆C :2222by ax +=1(a >b >0)的左、右两个焦点.(1)若椭圆C 上的点A (1,23)到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标;(2)设点P 是(1)中所得椭圆上的动点,当P 在何位置时,21PF F ∠最大,说明理由,并求出最大值。

解:(1)椭圆C 的焦点在x 轴上,由椭圆上的点A 到F 1、F 2两点的距离之和是4, 得2a =4,即a =2. ………2分又点A (1,23)在椭圆上,因此222)23(21b +=1得b 2=3,于是c 2=1.…4分所以椭圆C 的方程为3422y x +=1,………5分焦点F 1(-1,0),F 2(1,0). ……………7分 (2)设2211,r PF r PF ==,则c21PF F ∠=()124242122212222221--+=-+r r cr r r r cr r =21121222212=-≥-ab r r b12分当且仅当21r r =即()3,0±P 时,cos 21PF F ∠取得最小值21 14分因为x y cos =在()π,0递减,所以21PF F ∠的最大值为3π15分19.(本题满分15分)已知抛物线1C 的顶点在坐标原点,它的准线经过双曲线2C :22221x y ab-=的一个焦点1F 且垂直于2C 的两个焦点所在的轴,若抛物线1C 与双曲线2C 的一个交点是2(33M .(1)求抛物线1C 的方程及其焦点F 的坐标; (2)求双曲线2C 的方程及其离心率e .解:(1)由题意可设抛物线1C 的方程为22y px =. (2分)把2(,33M 代入方程22y px =,得2p = (4分)因此,抛物线1C 的方程为24y x =. (5分) 于是焦点(1,0)F (7分) (2)抛物线1C 的准线方程为1y =-,所以,1(1,0)F - (8分) 而双曲线2C 的另一个焦点为(1,0)F ,于是17522333a M F M F =-=-= 因此,13a =(10分)又因为1c =,所以22289b c a =-=.于是,双曲线2C 的方程 为2211899xy-= (12分)因此,双曲线2C 的离心率3e =. (14分)20.(本题满分16分)已知圆C 与两坐标轴都相切,圆心C 到直线x y -=的距离等于2。

(1)求圆C 的方程。

(2)若直线1:=+ny m x l ()2,2>>n m 与圆C 相切,求证246+≥mn 。

相关文档
最新文档