基于自动增益控制理论的放大器电路设计
一种自动增益控制放大器的设计

一种自动增益控制放大器的设计摘要:本文介绍了一种自动增益控制放大器的设计方法,该方法采用反馈电路实现自动增益控制,使放大器在输入信号强度变化时保持输出信号稳定。
设计中采用了MOSFET管和电容的组合连接方式,使放大器具有高增益和低噪声系数,同时实现了高稳定性和可靠性。
实验结果表明,该自动增益控制放大器具有优良的性能,适用于信号放大和处理的多种应用场景。
关键词:自动增益控制;放大器设计;反馈电路;MOSFET管;电容连接;稳定性正文:1.引言随着科技的不断发展,信号处理技术在通信、电子、计算机等领域得到了广泛应用。
在众多信号处理技术中,信号放大是其中的重要环节之一。
而自动增益控制放大器是实现信号放大的重要器件之一。
它可以在输入信号强度变化时自动调整增益,使输出信号稳定。
因此,本文提出了一种自动增益控制放大器的设计方法,旨在提高放大器的性能和稳定性,并适用于多种信号处理场景。
2.设计原理自动增益控制放大器的设计原理是基于反馈电路实现自动调节增益。
如图1所示,当输入信号Uin经过放大器后,产生的输出信号Uout被反馈到放大器的控制端A处,与输入信号进行比较,产生一个误差电压Ue。
该误差电压被输入到一个控制器中进行处理,控制器通过调节放大器的增益,使误差电压接近于0,从而实现自动增益控制。
图1 自动增益控制放大器原理图在设计中,我们采用了MOSFET管和电容的组合连接方式,如图2所示。
MOSFET管可以提供高增益和低噪声系数,电容与MOSFET管的组合连接方式可以提供稳定性。
此外,在设计中还考虑了放大器的输出阻抗和带宽等因素,使放大器的性能更加优良。
图2 自动增益控制放大器组合连接示意图3.实验方法为验证设计的可行性和有效性,我们进行了一系列实验。
实验中,我们利用模拟电路软件对自动增益控制放大器进行模拟分析,并对其输出信号进行测量分析。
实验结果表明,该放大器具有优良的性能和稳定性。
4.实验结果与分析实验结果显示,该自动增益控制放大器在不同频率和输入信号强度下均能达到稳定的输出信号。
增益可自动控制的放大器的课程设计

增益可自动变换的放大器设计一、设计题目及主要技术指标1.设计题目增益可自动变换的放大器设计2.主要技术指标(1)放大器增益可在1倍 2倍 3倍 4倍四档间巡回切换,切换频率为1Hz。
(2)能够对任意一种增益进行选择和保持,能显示当前档位(演示:控制某个增益保持时间为4S)。
二、系统组成框图经过查阅书籍和相关资料,再有我们组讨论从而得出增益可自动变换的放大器设计的方案是:1、设计思路1).放大器的电压增益由反馈电阻控制,因此只要改变反馈电阻就能切换不同的增益范围。
2).增益的自动切换,可通过译码器输出信号,四选一控制模拟开关来实现不同反馈电阻的接入;3)、对某一种增益的选择、保持通常由芯片的地址输入和使能端控制;在进行巡回检测时,其增益的切换频率由时钟脉冲决定。
2、总体方框图三、单元电路设计与分析1、总体概述:增益可自动变换的放大器电路,由两个555,其中一个555组成的震荡电路产生频率为1Hz的振荡波形,再有第二个555组成的4秒脉冲电路实现对增益保持4秒的功能。
用74LS90实现计数器功能,用4选一模拟开关CD4052来控制接入放大器的反馈电阻的变换,从而实现增益为1倍,2倍,3倍,4倍的切换。
用74LS47来驱动数码管。
由uA741及其外围电路组成的同相放大器实现电压的放大。
2、NE555多谐振荡器说明:本电路需要两个脉冲信号,一个1HZ的时钟脉冲、一个4S的保持脉冲,所以需要两个555电路,分别产生1HZ的脉冲和4S的延时保持脉冲,两个信号都是从555的3脚输出的。
它的频率计算公式为:3、或门电路它的作用是:当两路信号同时输入时,高电平有效,故而当有4S的脉冲信号时,它便输出4S的脉冲信号,从而可以实现保持4S的功能。
4、五进制计数器本电路由74LS90实现,当74LS90的CP端(下降沿有效)输入一个脉冲信号时,计数器便计一个数,经过内部处理,从Q0 ~ Q3输出二进制编码。
当电路计数到100时,Q2便把1送到2和3脚,是计数器从00在开始计数。
增益可自动变换的放大器设计

增益可自动变换的放大器设计一、设计要求1、放大器增益可在1倍→2倍→3倍→4倍四档间巡回切换,切换频率为1赫兹。
2、能够对任意一种增益进行选择和保持(演示:控制某个增益保持时间为4秒)。
二、设计方案1、方案图:2、功能说明:此电路由电源电路,时钟脉冲产生电路,具有延时功能的脉冲产生、反相电路、计数电路、译码驱动电路、数码显示电路、具有选择功能的电路、电阻网络以及放大电路九部分组成。
增益可自动变换的放大器是通过以下方式来实现其功能的:时钟脉冲产生电路控制增益的切换频率,并通过计数电路对某一种增益进行选择;具有延时功能的脉冲产生电路通过对计数电路使能端的控制达到对某一种增益保持的目的;通过译码驱动显示电路显示不同的放大倍数;通过计数电路输出的信号控制具有选择功能的电路来实现不同反馈电阻的接入,从而实现了不同增益范围的切换。
三、电路设计与分析1、时钟脉冲产生电路、具有延时功能的脉冲产生电路及反向电路该部分电路的核心器件是555定时器,其中,时钟脉冲产生电路是由555定时器组成的多谐震荡器,具有延时功能的脉冲产生电路是由555定时器组成的单稳态触发器。
其具体电路如下:图一时钟脉冲产生电路图二具有延时功能的脉冲产生电路及反向电路555定时器(又称时基电路)是一个模拟与数字混合型的集成电路。
按其工艺分双极型和CMOS型两类,其应用非常广泛。
2、555定时器的组成和功能图1—1是555定时器内部组成框图。
它主要由两个高精度电压比较器A1、A2,一个RS触发器,一个放电三极管和三个5KΩ电阻的分压器而构成。
3、555定时器的应用如图所示的时钟脉冲产生电路是用555定时器组成的多谐震荡器,其工作波形如下所示:计算公式如下:输出高电平时间tpL=RP1C2ln2≈0.7RP1C2输出低电平时间tpH=(R2+RP1)C2ln2≈0.7(R2+RP1)C2振荡周期f=1/ tpL+tpH≈1.43/ (R2+RP1)C2由以上计算公式可知:通过确定电阻阻值及电容容值和调节电位器RP1可以实现频率为1赫兹的时钟脉冲输出。
自动增益放大系统的简易设计

自动增益放大系统的简易设计司马明【摘要】本设计以程控增益放大器AD603为核心,通过单片机STC89C52控制各模块,实现了输入信号及环境噪声幅度自动调节音量的自动增益控制音响放大器。
文章重点介绍了程控放大模块、噪声采集模块、有效值检测模块等主要电路模块。
系统从mp3或信号源输入音频(100 Hz~10 k Hz)信号给程控增益放大器AD603,将信号放大输出,通过峰值检测电路检测出输出信号,并送给单片机AD采样,与理想输出信号数值进行比较,若有多偏差,则通过调整对AD603的增益控制电压,从而实现带动600Ω负载或驱动8Ω喇叭。
【期刊名称】《企业技术开发:下旬刊》【年(卷),期】2016(035)001【总页数】2页(P11-12)【关键词】AD603 STC89C52 自动增益控制【作者】司马明【作者单位】武昌工学院,湖北武汉430065【正文语种】中文【中图分类】TN721.1控制方案的论证与选择方案一:采用AD603和运放构成电压比较减法电路实现。
将输入电压与理想电压的误差经相应的幅值和极性处理后作为AD603的控制信号,从而实现放大倍数的自动调节,实现输出电压的恒定。
该方案结构简单,制作容易成本低,但控制精度不够,适用性不强。
方案二:以单片机作为控制器件,通过单片机对输入信号进行AD采样,与理想输出信号比较得到误差,根据误差调整AD603增益控制电压,从而实现对AD603放大倍数的精确控制,实现输出电压的恒定。
该方案控制精确,控制速度快,系统整体稳定性高,功能改变和增加容易。
但系统的设计稍复杂。
通过对两个方案的综合对比,我们选用方案二。
1.2程控增益放大论证与选择方案一:使用多个高速运放和模拟开关构成程控增益放大。
通过控制模拟开关选择不同的反馈电阻实现可控增益。
这种方案结构简单,易实现,但由于模拟开关其导通电阻很大,使得各通道信号容易相互干扰,甚至影响通频带宽,同时若要实现增益连续可调,整体结构复杂,调试麻烦。
18093214增益可自动变换的放大器

增益可自动变换的放大器18093214一、 设计任务和要求(一) 设计一个增益可自动变换的直流放大器。
1. 输入信号为0-1V 时,放大三倍;为1-2V 的,放大两倍;为2-3V 的放大一倍;3V 以上的放大0.5倍; 2. 通过数码管显示当前放大电路的放大倍数,用0、1、2、3分别表示0.5、1、3倍即可。
3. 电源采用正负5V 电源供电。
二、设计思路1.放大模块设计通过改变前级放大器R2的电阻阻值可以放大倍数(可以通过开关选择R2的阻值)放大模块显示模块控制模块(通过电压比较器转换成数字信号)选通输入输出Q:但是如果用开关的话,就变成手动切换放大倍数,故我们选择模拟开关4066BD来自动切换,但随之而来的问题是控制4066BD开关的信号该如何产生。
A:我们通过138译码器来选通开关(通过比较器产生数字信号来控制开关)2、控制模块设计观察下图:输入0.5V时,输出 0 0 0;(高电平为1,低电平为0)输入为1.5V时,输出为0 0 1;输入为2.5V的时候,输出为0 1 1;输入为3.5v以上的,输出为 1 1 1;把这三路信号输入到74ls138芯片中分别可以打开Y0,Y4,Y6,Y7端口,这几个端口可以作为4066芯片的控制信号了!C B A Y 放大倍数选择电阻R20 0 0 Y0 3 30K1 0 0 Y42 20K1 1 0 Y6 1 10K1 1 1 Y7 0.5 5.1K如图:即为可变增益的放大器(无显示模块)3、显示模块用DCD HEX输入输出:权(16进制)显示C B A 1(8)Y42(4)Y33(2)Y24(1)Y10 0 0 0011 31 0 0 00102 1 1 0 0001 1 1 1 1 00000卡诺图:Y2卡诺图:Y11 X X XX 0 11 X X X 1XBC A 000111100 1最终作品:。
自动增益控制电路的设计与实现_图文.

自动增益控制电路的设计与实现实验报告北京邮电大学信息与通信工程学院一:课题名称自动增益控制电路的设计与实现二:摘要及关键词1、摘要:在处理输入的模拟信号时,经常会遇到通信信道或传感器衰减强度大幅变化的情况;另外,在其他应用中,如监控系统中的多个相同传感器返回的信号中,频谱结构和动态范围大体相似,而最大波幅却相差甚多的现象。
很多时候系统会遇到不可预知的信号,导致因为非重复性事件而丢失数据。
此时,可以使用带AGC(自动增益控制)的自适应前置放大器,使增益能随信号强弱而自动调整,以保持输出相对稳定。
本实验在介绍了AGC电路的基础上,采用了一种相对简单而有效实现预通道AGC的方法,电路中使用了一个短路双极晶体管直接进行小信号控制的方法。
2、关键词:驱动缓冲可变衰减自动增益控制电压跟随器反馈三:设计任务要求1、基本要求:1)设计实现一个AGC电路,设计指标以及给定条件为:输入信号0.5~50mVrms;输出信号:0.5~1.5Vrms;信号带宽:100~5KHz;2)设计该电路的电源电路(不要求实际搭建),用PROTEL软件绘制完整的电路原理图(SCH)及印制电路板图(PCB)2、提高要求:1)设计一种采用其他方式的AGC电路;2)采用麦克风作为输入,8Ω喇叭作为输出的完整音频系统。
3、探究要求:1)如何设计具有更宽输入电压范围的AGC电路;2)测试AGC电路中的总谐波失真(THD)及如何有效的降低THD。
四:设计思路及总体结构框架1、设计思路①该实验电路中使用了一个短路双极晶体管直接进行小信号控制的方法,从而相对简单而有效实现预通道AGC的功能。
如下图,可变分压器由一个固定电阻R1和一个可变电阻构成,控制信号的交流振幅。
可变电阻采用基极-集电极短路方式的双极性晶体管微分电阻实现为改变Q1电阻,可从一个由电压源和大阻值电阻R2组成的直流源直接向短路晶体管注入电流。
为防止R2影响电路的交流电压传输特性。
R2的阻值必须远大于R1.DetetorVGAInput Output反馈式AGC由短路三极管构成的衰减器电路②对正电流的I所有可用值(一般都小于晶体管的最大额定设计电流),晶体管Q1的集电极-发射极饱和电压小于它的基极-发射极阈值电压,于是晶体管工作在有效状态。
自动增益控制放大器的设计与实现
自动增益控制放大器的设计与实现程望斌1, 杨陈明1, 江 武1, 贺利苗2, 佘凯华1, 龙 杰1(1. 湖南理工学院 信息与通信工程学院, 湖南 岳阳 414006; 2. 湖南理工学院 经济与管理学院, 湖南 岳阳 414006) 摘 要: 为实现稳定输出, 需对放大器系统的增益进行自动控制. 本文提出了自动增益控制放大系统的总体设计方案, 并对主要功能模块进行了方案比较与论证, 重点对硬件系统和软件系统进行了详细设计, 最后对系统进行了完整测试, 并对检测结果进行了分析. 结果表明: 系统稳定可靠、操控方便, 具有较好的人机交互性能.关键词: 自动增益控制; MSP430单片机; 直流放大; PGA2310中图分类号: TN432 文献标识码: A 文章编号: 1672-5298(2015)02-0048-05Design and Realization of Automatic Gain Control AmplifierCHENG Wang-bin 1, YANG Chen-ming 1, JIANG Wu 1, HE Li-miao 2,SHE Kai-hua 1, LONG Jie 1(1. College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China;2. College of Economics and Management, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract : To achieve the stable output, amplifier system needs to be automatically regulated. This paper presents the automatic gain control amplifier system overall design, compares and demonstrates the main function module scheme. The hardware system and software system is emphasis designed in detail. Finally system is completely tested, and the testing results are analyzed. The results show that the system has good man-machine interactive performance and also the system is stable and reliable, in addition, and it is easy to control.Key words : automatic gain control; MSP430 microcomputer; Dc amplifier; PGA2310引言随着电子信息技术的迅速发展, 信号传输与增益控制技术广泛应用于军事、工业等行业, 具有较好的研发价值. 自动增益控制, 可以使系统的输出信号保持在一定范围内, 因此在信号传输领域得到广泛应用. 本文设计的数字式自动增益控制放大器, 是利用线性放大和压缩放大的有效组合对输出信号进行调整[1]: 当输入信号较弱时, 线性放大电路工作, 保证输出信号的强度; 当输入信号强度达到一定程度时, 启动压缩放大线路, 使输出幅度降低, 衰减输入信号, 从而实现放大器的自动增益控制.1 系统总体设计方案系统共分为三大部分: 第一部分为稳幅功能模块, 采用−95.5dB~31.5dB 程控放大, 通过NE5532跟随器, 实现稳幅功能. 比如对幅值在10mV~1V 的输入信号, 可使输入信号有效值稳定在353.5mV 左右, 且在其频率带宽范围内, 保证其幅频曲线稳定, 以及后级的功率放大电路稳定. 第二部分为峰值检波模块, 其采用AD637进行真有效值峰值检波. 第三部分为功率放大器, 采用运放NE5532, 在满功率带宽为100KHz 且幅值达到10V 时, 其压摆率为9V/us, 能够满足要求, 并且能支持±20V 供电. 再利用场效应管实现其输出电流的扩流, 就能使功率到达10W. 通过单片机MSP430G2553控制既实现了放大器电压增益Av 可自动调节并显示, 又降低了整个系统的成本. 因而系统效率高, 成本低, 可靠性和稳定性较强.输入信号经过电压跟随器, 将输入信号送给PGA2310自动调节增益AGC 模块, 通过控制器MSP430G2553对其进行控制. 而AD637真有效值检波模块是对PGA2310的输出信号进行峰值检波, 并收稿日期: 2015-04-05作者简介: 程望斌(1979− ), 男, 湖北崇阳人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 光电子技术、学科竞赛第28卷 第2期 湖南理工学院学报(自然科学版) Vol.28No.22015年6月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Jun. 2015第2期 程望斌, 等: 自动增益控制放大器的设计与实现 49将检测的真有效值反馈给单片机从而达到环路控制的目的[2]. 为了设计的更人性化, 特增加了显示模块, 能够显示AGC 放大器当前增益的分贝值. 功率放大部分是对AGC 模块的输出信号进行功率放大, 驱动10Ω的负载. 系统总体设计框图如图1所示.2 方案论证与选择(1) AGC 电路方案论证与选择方案一: 典型的是采用场效应管或三极管控制增益. 主要利用场效应管的可变电阻区(或三极管等效为压控电阻)实现增益控制[3].方案二: 采用TI 公司VCA810压控放大芯片, 用两级VCA810级联实现−40dB~40dB 的程控放大. VCA810具有低失调电压, 一级放大倍数最大范围−40dB~40dB, 且外围电路简单, 但由于单级放大倍数过大易引起自激, 故采用两级级联放大.方案三: 采用TI 公司PGA2310数字程控放大芯片, 单级放大倍数的最大范围−95.5dB~31.5dB, 并且内部含有两个相互独立的通道, 其构成的外围电路简单, 易操控, 精确度较高.方案比较: 方案一采用大量分立元件, 电路复杂, 稳定性差, 调试较繁琐, 且精度不够. 方案二需要两级级联, 实现效果较好, 但由于MSP430G2553内部没有DA, 需要外加DA 芯片控制, 搭建电路较复杂. 方案三能够直接由单片机控制, 电路简单, 容易实现.(2) 峰值检波电路方案论证与选择方案一: 基本的峰值检波电路是由二极管电路和电压跟随器组成的, 此电路能够检测的信号频率范围宽, 但受二极管导通压降等因素的影响, 检波精度差.方案二: 真有效值检波电路采用ADI 公司的AD637,该芯片真有效值rms V V =输出为信号的真有效值电压.方案比较: 方案一电路简单, 容易调试, 受器件的影响使得测量精度失准. 方案二采用集成芯片实现峰值检波, 外围电路搭建容易, 并且抗噪声性能好、精度高.(3) 功率放大方案论证与选择方案一: 由多个高速缓冲器BUF634并联实现扩流输出, 提升放大器带负载能力[4]. 方案二: 用分立元件构成末级放大电路, 利用集成运放和MOSFET 扩流来实现放大.方案比较: 方案一效果好但成本较高; 方案二虽然实现较为麻烦, 但是成本低廉, 效果较好. 故采用方案二.图1 系统总体设计框图50 湖南理工学院学报(自然科学版) 第28卷3 系统硬件设计3.1 PGA2310构成的程控AGC 电路程控AGC 电路如图2所示. 为提高信号的稳定性, 信号经信号输入端口至NE5532运放构成跟随缓冲电路. 将此信号输入至PGA2310 Vin-L 引脚, 其正负电源引脚各加入10uf 和0.1uf 的电容滤波, 然后PGA2310输出信号通过NE5532跟随器输入至AD637构成的真有效值检波电路, 最后MSP430单片机AD 采集检波后的直流信号. 设定当输入直流或交流时, 如果检波输出信号大于353mV 或小于353mV , 单片机自动检测并且调节PGA2310增益, 使PGA2310输出直流电压信号时幅值稳定在0.5V 左右, 输出交流信号时峰值稳定在1V 左右.3.2 AD637真有效值检波电路PGA2310程控输出信号输入至AD637 Vin 管脚, 当输入为0时, 调节RP2滑动变阻器使检波输出也为0; 当有输入信号时, 调节RP1滑动变阻器使输出信号为输入信号有效值, 得到正确的检波直流信号. 检波电路图如图3所示.图2 程控AGC 电路图图3 AD637真有效值检波电路图第2期 程望斌, 等: 自动增益控制放大器的设计与实现 51 3.3 功率放大为实现较好的功率放大要求, 后级需要驱动10Ω负载, 由于普通运放不能提供驱动负载所需功率, 所以必须进行功率放大以提供所需功率并且将信号放大2倍. 我们采用如图4所示运放加MOS管电路, 具有带负载能力强等优点.4 系统软件设计本系统软件设计部分基于MSP430单片机平台, 主要完成增益控制、AD采集、预置信息液晶显示和按键控制[5], 系统以友好的人机界面展现给用户. 系统设计流程图如图5所示.在图5中, 我们采用条件判断语句控制AGC模块的增益, 并且还添加了一些容错措施, 以达到AGC 放大器在频带内稳定输出的目的, 为后级的功率放大电路的稳定提供了保证.5 系统测试及结果分析5.1 测试仪器TDS1012双踪示波器、SU3080数字函数信号发生器、直流稳压电源、万用表等.图4 功率放大电路图图5 系统设计流程图52 湖南理工学院学报(自然科学版) 第28卷5.2 直流信号放大测试测试方法: 幅度可变的直流电压信号(0.01V/0.1V/1V)至测试输入端, 然后用双踪示波器测测试输出信号. 测试结果见表1.输入信号(mv) 输出信号理论值(mv) 输出信号测试值(mv) 相对误差(%)<0.01 10.00 9.89 1.1% 0.1 10.00 9.90 1% 1 10.00 10.02 0.2%测试条件: 输入直流电压信号(0.01V/0.1V/1V)分别由滑动变阻器分压得到. 5.3 交流信号放大测试测试方法:(1) 从函数发生器输入频率为10KHz 且幅值可变的交流电压信号(0.01V/0.1V/1V)至测试输入端, 然后用双踪示波器测试输出信号. 测试结果见表2.输入信号(mV) 输出信号理论值(mV) 输出信号测试值(mV) 相对误差(%) <0.01 10.00 9.88 1.2% 0.01 10.00 9.94 0.6% 1 10.00 10.03 0.3%(2) 从函数发生器输入信号幅值为1V 且频率可变的交流电压信号至测试输入端, 然后用双踪示波器测试输出信号. 测试结果见表3.输入信号(Hz) 输出信号理论值(mV) 输出信号测试值(mV) 相对误差(%)1 10.00 9.88 1.2% 10 10.00 9.86 1.4% 1000 10.00 9.89 1.1% 10K 10.00 9.92 0.8% 100K 10.00 9.91 0.9% 200K 10.00 9.89 1.1%5.4 测试结果分析由测试数据可知, 放大器增益控制, 交直流放大, 带宽和带负载能力等指标都达到了要求. 在测量输入信号幅值低于10mV 时, 由于输入信号幅度过小、噪声的掩盖和仪器磨损等原因, 所以此项测试结果有误差.6 总结本文设计的系统实际输入信号有效值达到5mV , 在现有的仪器条件下, 信号幅度输出小时噪声大, 导致输出波形噪声较大. 放大器在驱动 10Ω负载时, 通频带带宽超过 100KHz, 带内失真小, 但功率放大器对扩流MOSFET 需配对, 否则容易产生交越失真. 如果对功率放大电路进行改善, 就能拓宽带宽[6] , 增大信号载体的容量.参考文献[1] 陈亮名, 杨 昆. 基于宽带高增益的放大器设计[J]. 电子设计工程, 2014, 22(15): 146~148 [2] 赖小强, 李双田. 数字闭环自动增益控制系统设计与实现[J]. 网络新媒体技术, 2013, 2(3): 40~44 [3] 李怀良, 庹先国, 朱丽丽, 等. 中低频宽动态范围AGC 放大器设计[J]. 电测与仪表, 2013, 50(566): 96~99 [4] 于国义, 张 乐, 崔先慧, 等. 用于CMOS 图像传感器的AGC 放大器设计[J]. 中国科技, 2013, 8(1): 10~13 [5] 李晓宇, 宫 平, 李杉杉, 等. 自增益电路在激光测距中的应用[J]. 电子设计工程, 2014, 22(18): 77~78, 83 [6] 陈铖颖, 黑 勇, 戴 澜, 等. 面向助听器应用的低功耗自动增益控制环路[J]. 微电子学, 2013, 43(4): 464~467表1 直流信号放大测试结果表2 交流信号放大测试结果(信号频率为10KHz)表3 交流信号放大测试结果(信号幅值为1V)。
程控增益放大器的几种通用设计方法
程控增益放大器的几种通用设计方法程控增益放大器(AGC)是一种能够自动调节增益的放大器,它能够在输入信号强弱不一的情况下保持输出信号的稳定性。
在许多无线通信系统和音频设备中,AGC都扮演着重要的角色。
本文将介绍几种常见的程控增益放大器的通用设计方法,帮助读者更好地了解和应用AGC技术。
一、基于反馈的AGC设计方法反馈是一种常见的控制方法,通过对输出信号进行采样并与输入信号进行比较,然后根据比较结果对增益进行调节。
基于反馈的AGC设计方法一般包括以下几个关键步骤:1. 采样输出信号。
通过使用信号检测器或功率检测器来对输出信号进行采样,获取其能量或功率的信息。
2. 与输入信号进行比较。
将采样得到的输出信号能量或功率与输入信号进行比较,得到它们之间的差异。
3. 根据比较结果调节增益。
根据比较结果来控制放大器的增益,使输出信号的能量或功率保持在一个稳定的水平。
基于反馈的AGC设计方法的优点是稳定性高、响应速度快,适用于大多数AGC应用场景。
这种方法也存在一些缺点,比如对反馈路径的稳定要求高、容易产生回音等问题。
与基于反馈的AGC设计方法相对应的是基于前馈的AGC设计方法。
前馈AGC的核心思想是在信号放大前通过控制环路对输入信号进行预处理,从而实现对放大器增益的控制。
基于前馈的AGC设计方法一般包括以下几个关键步骤:1. 使用可变增益放大器。
在输入信号经过放大之前,通过可变增益放大器对信号进行预处理,调节增益来实现对输入信号的控制。
2. 设置控制环路。
设计控制环路,通过对控制信号进行调制来控制可变增益放大器的增益,从而实现对输出信号的稳定控制。
3. 调节控制参数。
通过调节控制环路的一些参数,比如控制信号的幅度、频率等来控制放大器的增益。
随着数字技术的发展,越来越多的AGC设计方法开始采用数字控制的方式。
基于数字控制的AGC设计方法一般包括以下几个关键步骤:1. 数字信号处理。
将输入信号进行数字化处理,并通过一些算法对信号的能量或功率进行测量和分析。
基于VCA610自动增益放大器的设计
2015 届毕业设计说明书基于VCA610的自控增益放大器的设计院部:电气与信息工程学院学生姓名:许君指导教师:职称专业:电子信息工程班级:电子XXXX班完成时间:2015年6月摘要社会的进步离不开先进的生产力,而生产力的提高需要依托强大的技术支持,尤其是自动增益控制技术。
自动增益控制(AGC)在各行各业都有着广泛的应用,比如:仪器仪表与检测技术、低压电器技术、自动控制技术、工业机器人技术和工业通信技术。
自动增益控制技术与生活息息相关,对它的学习也显得格外重要。
设计一个自控增益放大器,可以采用VCA610放大器来搭建自动增益放大电路,电路设计简单,易于实现信号的自动控制。
基于VCA610的自动增益控制系统,采用MSP430F169单片机作为控制器,对VCA610放大器提供控制电压,使其控制的信号输出稳定的幅值,输出的交流信号通过OPA620放大电路、三极管推挽电路;输出的直流信号通过放大电路、扩流电路;信号分别经过交直流处理,带负载能力得到提高,能够实现设计要求,这样一个完整的基于VCA610的自控增益放大系统就搭建完成了,通过仿真调试,根据结果,分析得出结论。
通过VCA610自动增益放大电路的学习,能够加强人们对自动增益控制电路的认识,由浅入深,以此来学习更加复杂、设计更加优良的自动增益控制电路。
这样就能够使自控技术更加的成熟、先进,使大家的生活更加丰富多彩。
关键词:自动增益控制;MSP430F169;VCA610;放大器;调试ABSTCACTThe progress of the society is inseparable from the advanced productive forces, and productivity rely on strong technical support, especially the automatic gain control technology. Automatic gain control (AGC) has been widely used in all walks of life, for example: Instrumentation and testing technology, low voltage electrical technology, automatic control technology, industrial robot technology and communication technology industry. Automatic gain control technology is closely related to life, and to study the technology is very important.VCA610 amplifier can be used to build automatic gain amplifier circuit for designing an automatic gain amplifier, the design is simple, and easy to realize automatic control of signals. The automatic gain control system is based on VCA610, using MSP430F169 microcontroller as controller, the controller provides control voltage for VCA610 amplifier, and make its control signal output stable, The output of the AC signal through OPA620 amplification circuit and transistor push-pull circuit; The DC signal output through magnifying circuit and expanding flow circuit; Signal is treated respectively with AC/DC, and Load will be enhanced , so, it will reach to the design requirements, a complete automatic gain amplifier system which is set up completed by VCA610, through simulating and debugging, reach to results, and draw a conclusion.Through studying VCA610 automatic gain amplifier circuit, it can strengthen people's knowledge of automatic gain control circuit, in order to learn more complex, more excellent design of automatic gain control circuit. It was able to further automatic control technology mature and advanced, in addition ,it make people's lives more colorful.Keywords automatic gain control; MSP430F169; VCA610; amplifier; debugging目录1 绪论 (1)1.1 研究课题的背景及意义 (1)1.2 研究课题的主要工作 (2)2 总体设计思想与方案 (3)2.1 总体设计思想 (3)2.2 总体设计概述 (3)2.3 方案选择 (4)2.3.1 控制器的选择 (4)2.3.2 信号处理电路的选择 (5)2.3.3 方案总结 (8)3 硬件系统的设计 (10)3.1 主要器件介绍 (10)3.1.1 MSP430F169单片机 (10)3.1.2 VCA610运放芯片 (11)3.1.3 OPA620运放芯片 (11)3.1.4 OPA2604放大芯片 (12)3.1.5 LM317电压稳压器 (12)3.1.6 12864液晶显示 (13)3.2 单元电路设计 (14)3.2.1 MSP430F169单片机最小系统 (14)3.2.2 下载电路 (16)3.2.3 LCD12864液晶显示电路 (17)3.2.4 VCA610自动控制电路 (18)3.2.5 直流电路 (19)3.2.6 交流电路 (20)4 软件系统的设计 (21)4.1 软件设计概述 (21)4.2 软件模块程序 (21)4.2.1 液晶显示模块程序设计 (21)4.2.2 数模转换程序设计 (22)5系统调试及结果分析 (23)5.1 系统调试简介 (23)5.2 仿真测试 (23)5.2.1 直流模块仿真测试 (23)5.2.2 交流模块仿真测试............................................ 错误!未定义书签。
自动增益控制放大器
自动增益控制放大器摘要:本自动增益控制放大器系统以MSP430G2553为核心,由TLC085实现前级放大,由单片机按键或自动控制DAC7811结合TLC085实现对末级增益控制,可观察AGC电压。
整个系统使用+5V单电源供电,使用LP2950-33稳压管转+3.3V 给单片机MSP430G2553 Launchpad供电。
关键词:MSP430G2553 DAC7811 自动增益控制单电源供电一、方案设计1.1 方案设计与比较1.1.1 电源部分的设计方案一:利用电阻分压得到3.3V,实现简单,但是会引来额外功耗,且不稳定。
方案二:利用LP2950-33芯片稳压得到3.3V,稳压效果好,系统稳定性好。
题目提供LP2950-33芯片,实现方便,所以采用方案二。
1.1.2 前级放大器部分的设计本题仅仅提供了TLC085一种运放,故采用其作为前级放大,放大器增益要求最大40dB。
放大器增益可控范围在输入信号频率为10KHz时大于35dB,因此在该级放大5dB。
1.1.3 末级自动增益控制的设计方案一:采用AD603来实现自动增益控制电路。
AD603是低噪、90MHz带宽增益可调的集成运放,如增益用分贝表示,则增益与控制电压成线性关系。
改变管脚间的连接电阻,可使增益处在上述范围内。
方案二:利用单片机MSP430G2553内部ADC10采集放大信号的峰峰值,根据其大小控制DAC7811,从而控制TLC085的放大倍数,此可以实现自动增益控制。
也可通过键盘显示器手动控制。
实现简单可靠,根据题目要求,采用此方案。
1.1.4 AGC电压的生成单片机MSP430G2553按照放大倍数生成对应的PWM波,再经过低通滤波,生成直流电平,该直流电平与放大器的放大倍数成正比,同时与放大器输出峰峰值成正比。
二、硬件电路设计2.1 系统框图本系统主要有稳压模块、前级放大器模块、次级增益自动控制模块3个部分组成。
如图所示:图2-1 系统框图2.1.1稳压电路设计根据LP2950的芯片资料可以很容易得出下图的电压转换电路,电容C1的选择是在芯片资料给的最小2.2uF 的基础上,通过面包板实验得到的比较合适的取值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无锡机电高等职业技术学校毕业论文(设计)题目基于自动增益控制理论的放大器电路设计学校无锡机电高等职业技术学校班级0710专业应用电子技术姓名奚立豪学号指导教师朱雪芳二O一一年十一月二十五日目录第一章引言 (4)第二章自动增益控制 (4)第2. 1节自动增益控制 (4)2.1.1自动增益控制基本概念 (4)2.1.2自动增益控制的原理 (5)第2. 2节自动增益控制放大器 (5)第2. 3节本课题的研究内容 (5)第三章自动增益控制放大器的电路设计 (6)第3. 1节方案选择 (6)第3. 2节压随器工作原理 (8)第3. 3节整流电路工作原理 (8)第3. 4节滤波 (9)第3. 5节增益控制工作原理 (9)第3. 6节电路元器件选择 (10)3.6.1运算放大器 (10)3.6.2场效应管的选择 (11)3.6.3其他元器件的选择 (11)第四章放大器电路的调试及实验结果 (12)第4. 1节放大器电路的调试 (12)第4. 2节实验结果及存在问题 (12)第五章总结 (14)摘要:自动增益控制电路已广泛用于各种接收机、录音机和信号采集系统中,另外在光纤通信、微波通信、卫星通信等通信系统以及雷达、广播电视系统中也得到了广泛的应用。
本课题主要研究应用于音频放大的前级电压放大,因此设计的电路需容纳的频带范围应较宽,以至于使语音信号通过。
由于语音信号的频带范围为300hz-3400hz,所以该电路所应设计的频带范围应在300hz-3400hz之间,并且电路应该实现增益的闭环调节,通过此电路可以实现增益的自动调整,以至于使音频信号强时自动减小放大器的倍数,信号弱时自动增大放大器的倍数,从而实现音量的自动调节。
本课题介绍了自动增益控制的概念原理以及对自动增益控制放大器各部分的工作原理,最后对系统的测试结果以及设计与实现中应该注意的问题也做了详细分析。
关键词:放大器;自动增益控制;电压跟随器;滤波器第一章引言随着微电子技术、计算机网络技术和通信技术等行业的迅速发展,自动增益控制电路越来越被人们熟知并且广泛的应用到各个领域当中。
自动增益控制线路,简称AGC线路,A是AUTO(自动),G是GAIN(增益),C是CONTROL(控制)。
它是输出限幅装置的一种,是利用线性放大和压缩放大的有效组合对输出信号进行调整。
当输入信号较弱时,线性放大电路工作,保证输出声信号的强度;当输入信号强度达到一定程度时,启动压缩放大线路,使声输出幅度降低,满足了对输入信号进行衰减的需要。
也就是说,AGC功能可以通过改变输入输出压缩比例自动控制增益的幅度,扩大了接收机的接收范围,它能够在输入信号幅度变化很大的情况下,使输出信号幅度保持恒定或仅在较小范围内变化,不至于因为输入信号太小而无法正常工作,也不至于因为输入信号太大而使接收机发生饱和或堵塞。
在电路设计中,这种线路被大量的运用,从尖端的雷达技术到日常的广播电视系统,自动增益控制无疑很好的解决了各种技术中存在的信号强度问题。
目前,实现自动增益控制的手段有很多,在本文中,主要研究的是如何以放大器来实现自动增益控制的目的,也就是自动增益控制放大器。
第二章自动增益控制第2. 1节自动增益控制2. 1. 1自动增益控制的基本概念接收机的输出电平取决于输入信号电平和接收机的增益。
由于各种原因,接收机的输入信号变化范围往往很大,信号弱时可以是一微伏或几十微伏,信号强时可达几百毫伏,最强信号和最弱信号相差可达几十分贝。
这个变化范围称为接收机的动态范围。
影响接收机输入信号的因素很多,例如:发射台功率的大小、接收机离发射台距离的远近、信号在传播过程中传播条件的变化(如电离层和对流层的骚动、天气的变化)、接收机环境的变化(如汽车上配备的接收机),以及人为产生的噪声对接收机的影响等。
为了防止强信号引起的过载,需要增大接收机的动态范围,这就要有增益控制电路。
能够使放大电路的增益自动地随信号强度而调整的控制电路,简称自动增益控制AGC (Automatic Gain Control)电路,它能够在输入信号幅度变化很大的情况下,使输出信号幅度保持恒定或仅在较小范围内变化,不至于因为输入信号太小而无法正常工作,也不至于因为输入信号太大而使接收机发生饱和或堵塞。
常用来使系统的输出电平保持在一定范围之内,因而也可以称为自动电平控制。
当前,该电路已广泛用于各种接收机、录音机和信号采集系统中,另外在光纤通信、微波通信、卫星通信等通信系统以及雷达、广播电视系统中也得到了广泛的应用。
AGC电路目前概括起来有模拟AGC和数字AGC电路。
AGC环路可以放在模拟与数字电路之间,增益控制算法在数字部分来实现,合适的增益设置反馈给模拟可变增益放大器(VGA)。
现在出现的自动增益控制方法可以分为以下3类:基于电路反馈的自动增益控制;基于光路反馈的自动增益控制;光路反馈和电路反馈相结合的自动增益控制。
本文中要研究的是基于电路反馈的利用放大器实现的自动增益控制。
2. 1. 2自动增益控制的原理自动增益控制电路的作用是:当输入信号电压变化很大时,保持接收机输出电压恒定或基本不变。
具体地说,当输入信号很弱时,接收机的增益大,自动增益控制电路不起作用;当输入信号很强时,自动增益控制电路进行控制,使接收机的增益减小。
这样,当接收信号强度变化时,接收机的输出端的电压或功率基本不变或保持恒定。
因此对AGC电路的要求是:在输入信号较小时,AGC电路不起作用,只有当输入信号增大到一定程度后,AGC电路才起控制作用,使增益随输入信号的增大而减少。
为实现上述要求,必须有一个能随外来信号强弱而变化的控制电压或电流信号,利用这个信号对放大器的增益自动进行控制。
由上述分析可知,调幅中频信号经幅度检波后,在它的输出中除音频信号外,还含有直流分量。
直流分量大小与中频载波的振幅成正比,也即与外来高频信号成正比。
因此,可将检波器输出的直流分量作为AGC控制信号。
AGC电路工作原理:可以分为增益受控放大电路和控制电压形成电路。
增益受控放大电路位于正向放大通路,其增益随控制电压U0而改变。
控制电压形成电路的基本部件是AGC整流器和低通平滑滤波器,有时也包含门电路和直流放大器等部件。
第2. 2节自动增益控制放大器目前,实现自动增益控制的手段很多,典型的有压控放大器,也就是本文所要研究的自动增益控制放大器。
它是通过调整放大器一个控制端的电压,就可以实现调节这个放大器的增益。
因此,我们就可以通过反馈电路采集输出端的电压,通过调整网络后(调整网络的功能就是规定的调整策略)加到放大器的控制端.就可以实现自动增益控制。
第2. 3节本课题的研究内容本文设计的电路主要是应用于音频放大的前级电压放大,因此设计的电路需容纳的频带范围应较宽,以至于使语音信号通过。
由于语音信号的频带范围为300hz-3400hz,所以该电路所应设计的频带范围应在300hz-3400hz之间,并且电路应该实现增益的闭环调节,通过此电路可以实现增益的自动调整,以至于使音频信号强时自动减小放大器的倍数,信号弱时自动增大放大器的倍数,从而实现音量的自动调节。
第三章自动增益控制放大器的电路设计第3.1节方案选择方案(一):利用电阻电容来实现自动增益控制:图1由图1可以看出,此方案是通过自动调节RP1(调节低频)、RP2(调节高频)来实现对输入信号的增益控制。
当RP1的滑动端在最左端时,电容C1被短路,音频信号经R1、R2送至运放的反相输入端,运放输出信号经过R1、RP1与C2并联后反馈回来,此时低音增益达到最大值。
当RP1到右端时,音频信号经过R1、RP1、R2送到运放的反相输入端,运放输出信号经过R1、C2反馈回来,此时增益到最小值。
同理,RP2的滑动端在最左端时,高音增益到最大,在最右端时,高音增益到最小。
本电路虽然实现简单,没有复杂的构造,但由于高低音的转折区分不明显,导致电路的性能的不完善,在高低音分界时,不能准确的确定增益的调节是通过哪一个滑动电阻,也就不能稳定的实现自动增益控制,因此不可选。
方案(二):通过两级放大器级联实现自动增益控制:图2 由图2可以看出,此方案是通过两级放大器的级联来控制自动增益调节的。
此图采用了AD603来实现自动增益控制电路。
AD603是低噪、90MHz带宽增益可调的集成运放,如增益用分贝表示,则增益与控制电压成线性关系。
管脚间的连接方式决定了可编程的增益范围,增益在-11~+30dB时的带宽为90MHz,增益在+9~+41dB时具有9MHz带宽,改变管脚间的连接电阻,可使增益处在上述范围内。
本电路经两级AD603级联后放大的信号,一路由J2送入下一级信号通道,另一路则输入到三极管。
三极管的发射极PN结完成AGC检波,三极管PNP、NPN之间,形成的电流之差,经过集电极C2后,在C2上形成一个压降,当C2上的电荷达到一定量时,有反馈电流送回,则形成AGC控制电压VAGC。
输入信号增大时,三极管的集电极电流之差也跟着增大,反馈回到AD603之后使输出VAGC相应减小;同样,输入信号减小时,VAGC则会增大,即VAGC与输入信号的强度成反比,符合AGC电压反向控制要求。
本方案结果较为理想,并且通过两级放大器的级联使增益控制范围增宽,性能比较稳定,但在与第三种方案进行综合比对时,我们采用了第三种方案。
方案(三):利用放大器和场效应管共同组成的电路实现自动增益控制图3由图3可见,整个电路由包括场效应管在内的压控增益放大器,整流滤波电路,直流放大器组成,实现增益的闭环控制。
信号自输入端进入到电路中,运放A1构成压随器,作为输入级。
由运放A2构成反向放大器,其增益由场效应管的源极和漏极之间的电阻决定。
输出电压经过整流电路和滤波电路形成压控电压,加到场效应管的栅极,当压控电压发生变化时,源极和漏极之间的电阻亦发生变化,因此放大器的放大倍数也发生变化,因此当音频信号强时自动减小放大器的倍数,信号弱时自动增大放大器的倍数,从而实现音量的自动调节,达到自动增益控制的目的。
本电路利用场效应管为压控元件的特性,通过改变其栅极的电压,进而改变其漏极和源极之间的电阻,从而可以改变放大器的增益,达到自动增益控制的目的。
由于本电路结构原理简单且性能优良,成本相对较低,自动增益控制效果也比较稳定。
因为第一种方案性能不十分稳定,自动增益控制的准确性不够完善、而第二种方案相对成本较高,在进行综合比较时,最终决定选择第三种方案来完成自动增益控制放大器的设计。
第3. 2节压随器工作原理经分析得知,信号自输入端进入到电路中,经过电容隔直后,通过运放A1构成的压随器。
因为电压跟随器容易产生阻塞,所以外接电阻可以防止其产生阻塞。
压随器输入与输出的值相等,对信号不进行放大,对整个电路的前级起隔离作用,对后级起缓冲作用。