1.3.2 奇偶性(一) 学案(人教A版必修1)
奇偶性(原版)

1.3.2 奇偶性教学设计一、教材分析1.教材的地位与作用①内容选自人教版《高中课程标准实验教科书》A版必修1第一章第三节。
②奇偶性是函数的一个重要性质。
有了函数的奇偶性,对于某些函数来说,我们只需要研究它的一部分即可;另外,它的研究也为今后幂函数、三角函数的性质等后续内容的深入研究起着铺垫的作用。
③奇偶性的教学无论是在知识还是水平方面对学生的教育起着非常重要的作用,所以本节课充满着数学方法论的渗透教育,同时又是数学美的集中表达。
2.学情分析①已经学习了函数的单调性,对于研究函数的性质的方法已经有了一定的理解。
即使他们尚不知函数奇偶性,但学生在初中已经学习过图形的轴对称与中心对称,对图象的特殊对称性早已有一定的感性理解。
②在研究函数的单调性方面,学生懂得了由形象到具体,然后再由具体到一般的科学处理方法,具备一定数学研究方法的感性理解。
③高一学生具备一定的观察水平,但观察的深刻性还有待于提升。
④高一学生的心理具备一定的稳定性,有明确的学习动机,能自觉配合教师完成教学内容。
二、教学目标1.知识与技能①理解函数奇偶性的含义,掌握判断函数奇偶性的方法。
②能用定义来判断函数的奇偶性。
③掌握奇偶函数的图像性质。
2.过程与方法①从数和形两个角度理解函数的奇偶性。
②培养学生数形结合的思想,感悟由形象到具体,再从具体到一般地研究方法。
3.情感态度与价值观①体会具有奇偶性函数的图像对称的性质,感受数学的对称美,体验数学研究的严谨性。
②通过函数奇偶性概念的形成过程,培养学生的观察、归纳、抽象的水平,同时渗透数形思想,从特殊到一般的数学思想。
三、重点与难点1.重点:函数奇偶性的概念与判断2.难点:函数奇偶性的判断四、教法1.多媒体与板书相结合2.以引导发现法为主,直观演示法、设疑诱导法为辅五、教学过程1 新课导入师:同学们,上节课我们研究了函数很重要的一个性质——单调性,那么这节课我们就要来研究一下函数的另一个重要性质——奇偶性。
高一数学人教A版必修1课件1321函数的奇偶性

总结:(1)偶函数 一般地,如果对于函数 f(x)的定义域内 每 一个 x,都有 f(-x)=f(x) ,那么函数 f(x)就叫做偶函数. (2)奇函数 一般地,如果对于函数 f(x)的定义域内 每 一个 x,都有 f(-x)=-f(x) ,那么函数 f(x)就叫做奇函数.
【归纳提升】 (1)奇偶函数的定义域关于原点对称,如 果函数的定义域不关于原点对称,则此函数既不是奇函数也 不是偶函数.
(6)显然函数 f(x)的定义域关于原点对称. 当 x>0 时,-x<0,f(-x)=x2-x=-(x-x2)=-f(x), 当 x<0 时,-x>0,f(-x)=-x-x2=-(x2+x)=-f(x), ∴f(-x)=-f(x), ∴函数 f(x)为奇函数.
2 利用函数的奇偶性求解析式
学法指导:利用函数奇偶性求函数解析式 利用函数奇偶性求函数解析式的关键是利用奇偶函数的 关系式 f(-x)=-f(x)或 f(-x)=f(x)成立,但要注意求给定哪 个区间的解析式就设这个区间上的变量为 x,然后把 x 转化 为-x(另一个已知区间上的解析式中的变量),通过适当推导, 求得所求区间上的解析式.
[例 2] 已知函数 y=f(x)的图象关于原点对称,且当 x>0 时,f(x)=x2-2x+3.试求 f(x)在 R 上的表达式,并画出它的图 象,根据图象写出它的单调区间.
[分析] 由函数图象关于原点对称可知 y=f(x)是奇函 数.利用奇函数性质可求得解析式.
[解析] ∵函数 f(x)的图象关于原点对称. ∴f(x)为奇函数,则 f(0)=0, 设 x<0,则-x>0,∵x>0 时,f(x)=x2-2x+3, ∴f(x)=-f(-x)=-(x2+2x+3)=-x2-2x-3 于是有:
1.3.2 函数的奇偶性

有时判定f(-x)=±f(x)比较困难,可考虑判定 f(-x)±f(x)=0或判定f(x)/f(-x)=±1.
六,当堂训练 巩固提高
判断下列函数的奇偶性小组讨论质疑完善解题步骤
(1) f (x) x 1 x
(3) f (x) 5
(5) f (x) x 1
(2) f (x) x2 1
为后面研究奇函 数图象性质 埋下伏笔
赵州桥又名安济桥,建于隋炀帝大业年间 (公元 595-605)年间,是著名匠师李春建造。桥长64.40米, 跨径37.02米,是当今世界上跨径最大、建造最早的单 孔敞肩型石拱桥。这是世界造桥史的一个创造。
y=f(x)
y
(-m,f(m))
O
y
O
f (x)=x2
学生已学过单调性,对探索函数奇偶性有良好的基础,
而且初中学过轴对称图形和中心对称图形,但对对称
图形的抽象几何意义及特征用函数符号抽象表示很困
(二)教学目标:
难
1.知识与技能
(1).使学生理解奇函数、偶函数的概念及其几 何意义;
(2).使学生掌握判断函数奇偶性的方法。
2.过程与方法.
(1).培养学生判断、推理的能力;
②图象法: 看图象是否关于原点或y轴对称。
例1,2巩固基本概念
五 小组独立完成多媒体 展示答案 例 1.思考判断(正确的打“√”,错误的打“×”) (1)奇、偶函数的定义域都关于原点对称.( )
(2)若函数 y=f(x)满足 f(x)-f(-x)=0,则 y=f(x)是
偶函数;若函数 y=f(x)满足 f(x)+f(-x)=0,则 y=f(x)
1、对定义域中的每一 个x,-x是也在定义 域内;
人教A版高中同步学案数学必修第一册精品课件 第五章 三角函数 第1课时 周期性、奇偶性

故该函数既是奇函数又是偶函数.
探究点三 函数奇偶性与周期性的综合问题
【例3】定义在上的函数()既是偶函数,又是周期函数,若()的最小正周期为π,
π
5π
∵ (−) = |sin(−)| + cos(−) = |sin | + cos = (),∴函数()是偶函数.
(2)() =
解 () =
3
sin(
4
3
sin(
4
+
3
4
+
3π
);
2
3π
)
2
=
3
−cos ,
4
3
4
∈ .
∵ (−) = −cos(− ) = −cos = (),
第五章 三角函数
5.4 三角函数的图象与性质
5.4.2 正弦函数、余弦函数的性质
第1课时 周期性、奇偶性
1
基础落实·必备知识全过关
2
重难探究·能力素养全提升
【课标要求】1.理解周期函数、周期、最小正周期的定义.2.会求正弦函数、余弦函数的
周期,并会应用.3.掌握正弦函数、余弦函数的奇偶性,会判断简单三角函数的奇偶性.
1
3
(4) = |cos |, ∈ .
解 函数 = |cos |的图象如图(实线部分)所示.
由图象可知, = |cos |的最小正周期为π.
规律方法求三角函数的最小正周期的常用方法
(1)公式法,即先将函数化为 = sin( + ) + 或 = cos( + ) +
【成才之路】2014-2015学年高中数学 1.3.2 奇偶性 第1课时 函数的奇偶性课件 新人教A版必修1

[分析] (1) 定义域关于原点对称 得到a,b所满足 → fx关于y轴对称 的关系,进而求值
(2)利用奇偶性质求值. (3)利用奇偶性确定 m 的值,再求单调区间.
[解析] (1)因为偶函数的定义域关于原点对称,所以 a-1 1 =-2a,解得 a=3. 1 2 又函数 f(x)=3x +bx+b+1 为二次函数,结合偶函数图象 的特点,易得 b=0.
2.了解奇函数和偶函数图象的对称性.
●温故知新 旧知再现 1 .轴对称图形:如果一个图形上的任意一点关于某一条 直线 的对称点仍是这个图形上的点,就称该图形关于该直线 _____
对称轴 . 成轴对称图形,这条直线称作该轴对称图形的________
2 .中心对称图形:如果一个图形上的任意一点关于某一 ____ 点 的对称点仍是这个图形上的点,就称该图形关于该点成中 心对称图形,这个点称作该中心对称图形的 __________. 对称中心 (-a,b) ,关于原 3.点P(a、b)关于y轴的对称点为P′__________ (-a,-b ) 点的对称点P″__________ .
1 2 2x +1,x>0 (4)f(x)= -1x2-1,x<0 2
.
[分析] → 定义域关于原点对称 利用函数奇偶性 — 的定义进行判断 → 研究f-x与 → 分段函数需分 段来研究 fx的关系
[解析]
(1)函数f(x)=x+1的定义域为实数集R,关于原点
对称.
= -f(x)=-x3. „可类推出:f(-x) ____
新知导学
1.偶函数和奇函数 偶函数 定 义 奇函数 f(-x)=_____ -f(x) 函数f(x)叫做奇函数 图象关于_____ 原点 对称
2020高中数学A版新教材必修1学案导学案 第三章 3.2.2 奇偶性

-3 B.f(2)<f 2 <f(-1)
-3 C.f(2)<f(-1)<f 2
-3 D.f(-1)<f 2 <f(2) 解析 ∵f(-x)=f(x),∴f(x)为偶函数,
∴f(2)=f(-2).
又 f(x)在区间(-∞,-1]上是增函数,且-2<-3<-1. 2
-x2-x,x<0, 综上可知 f(x)=
x2-x,x≥0. (2)设 x<0,-x>0, 则 f(-x)=(-x)2+(-x)-1=x2-x-1, 又 f(x)在 R 上为偶函数,∴当 x∈(-∞,0)时,f(x)=f(-x)=x2-x-1. 题型四 函数单调性与奇偶性的应用 方向 1 比较大小问题 【例 4-1】 若对于任意实数 x 总有 f(-x)=f(x),且 f(x)在区间(-∞,-1]上是 增函数,则( )
-∞,-5 5,+∞
单调递减区间是
2和2
.
4.(1)中的函数在区间(-∞,-2]与[2,+∞)上单调性相反,(2)中的函数在区间
-5,0 0,5 2 与 2 上单调性相同.
1.函数的奇偶性 奇、偶函数的定义域关于原点对称
奇偶性
定义
图象特点
设函数 f(x)的定义域为 I,如果 x∈I,都有-x∈I,且
为________________________________________________________.
解析 因为函数 f(x)在区间[-3,-1]上是减函数,所以 f(-1)<f(-2)<f(-3).
又函数 f(x)是偶函数,则 f(-x)=f(x).即 f(-1)=f(1),f(-2)=f(2),
函数的奇偶性教学设计.doc
函数的奇偶性教学设计孟凡勋内蒙古乌兰浩特一小X-3 -2 -10 1 2 3 fM = x 2 (1)这两个函数图象有什么共同特征?X ・3 •2 0 1 2 3 /(无)=W辅助教学。
6教学策略分析从一线教学來看,两数的奇偶性教学要比单调性的教学较为容易一些,也正因如此一 些一线教师对奇偶性的教学重视不够,基本上是以广而告之式的教学方式进行教学,然后抛 出大量的习题让学生去做。
事实上,高一的学生还没有完全适应高中数学的特点,这种教学 方式不仅会让一部分学生不能适应,而U 还会造成学生不重视概念课的教学,不能体会到概 念的形成过程、不能对概念的本质进行深入的挖掘、不能形成对概念的深刻认识。
学生会错 误的认为高中数学就是解题。
长此以往对学生的学习极为不利。
为此在教学中学生要领悟概 念的生成过程,体会数学的基本思想和方法,本节课的核心思想是数形结合思想。
高一的学 生在领悟思想方法的过程中需要过程和载体,本节内容就是一节体会思想方法的重要载体的 课。
在教学中,给学生较多的时间去作图,思考、举例、沟通是非常重要的。
也是符合新课 程理念的。
因此在教学中采用自主合作,问题导学等教学方法。
教学以“数学知识发生发展的过程和理解数学知识的心理过程为基本线索”让知识自 然的流入学生的头脑之中。
在得到函数的的奇偶性定义时尽可能多的让学生多举出奇函数或 偶函数的例子,如果调动学生的能力不够或启发不当,会造成学生的学习不自然,教师的教 学强加于人,同时概念教学培养学生思维能力的作用会大打折扣。
本节课的教学流程如下:7教学过程(1) 教学引言一直击课题引言在函数的单调性学习中,我们先是从几个特殊的函数图象开始,通过对函数图象 的观察,也即对“形”的认识,从数学直观上体验到函数图彖的上升或下降,乂进一步从“数” 的角度给出函数的单调性定义。
本节课我们用同样的方法来研究函数的奇偶性。
设计意图所谓好的开始是成功的一半,老师的儿句引言对本节课的学习起到提纲挈领 的作用。
1.3.2函数的奇偶性(第1课时)教学设计
函数的奇偶性(第1课时)教学设计嵊州市三界中学竹林烽一.教材分析1 教材的地位与作用内容选自人教版A版必修1第一章第三节;函数奇偶性是研究函数的一个重要策略,因此成为函数的重要性质之一,它的研究也为今后幂函数、三角函数的性质等后续内容的深入起着铺垫的作用;奇偶性的教学无论是在知识还是在能力方面对学生的教育起着非常重要的作用,因此本节课充满着数学方法论的渗透教育,同时又是数学美的集中体现。
2 学情分析已经学习了函数的单调性,对于研究函数的性质的方法已经有了一定的了解。
尽管他们尚不知函数奇偶性,但学生在初中已经学习过图形的轴对称与中心对称,对图象的特殊对称性早已有一定的感性认识;在研究函数的单调性方面,学生懂得了由形象到具体,然后再由具体到一般的科学处理方法,具备一定数学研究方法的感性认识;高一学生具备一定的观察能力,但观察的深刻性及稳定性也都还有待于提高;高一学生的学习心理具备一定的稳定性,有明确的学习动机,能自觉配合教师完成教学内容。
二.目的分析教学目标:1、奇函数的概念;2、偶函数的概念;3、函数奇偶性的判断;过程与方法目标:1、培养学生的类比,观察,归纳能力;2、渗透数形结合的思想方法,感悟由形象到具体,再从具体到一般的研究方法情感态度与价值观目标:1、对数学研究的科学方法有进一步的感受;2、体验数学研究严谨性,感受数学对称美重点与难点重点:函数奇偶性的概念难点:函数奇偶性的判断三.教法、学法、教学手段教法自学辅导法、讨论法、讲授法学法归纳——讨论——练习教学手段多媒体电脑四.过程分析(一)情境导航、引入新课问题提出源于生活,那么我们现在正在学习的函数图象,是否也会具有对称的特性呢是否也体现了图象对称的美感呢(二)构建概念、突破难点考察下列两个函数:1 2思考1:这两个函数的图象有何共同特征思考2:对于上述两个函数,f1与f-1,f2与f-2,f与f-有什么关系一般地,若函数=f的图象关于轴对称,当自变量任取定义域中的一对相反数时,对应的函数值相等。
高中数学 13 函数的基本性质 2 函数的奇偶性学案 新人教A版必修1 学案
函数的奇偶性●知识梳理1.奇函数:对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x)〔或f(x)+f(-x)=0〕,则称f(x)为奇函数.2.偶函数:对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x)〔或f(x)-f(-x)=0〕,则称f(x)为偶函数.3.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.(3)若奇函数的定义域包含数0,则f(0)=0.(4)奇函数的反函数也为奇函数.(5)定义在(-∞,+∞)上的任意函数f(x)都可以唯一表示成一个奇函数与一个偶函数之和.●点击双基1.下面四个结论中,正确命题的个数是①偶函数的图象一定与y轴相交②奇函数的图象一定通过原点③偶函数的图象关于y轴对称④既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R)A.1B.2C.3解析:①不对;②不对,因为奇函数的定义域可能不包含原点;③正确;④不对,既是奇函数又是偶函数的函数可以为f(x)=0〔x∈(-a,a)〕.答案:Af(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx是A.奇函数解析:由f(x)为偶函数,知b=0,有g(x)=ax3+cx(a≠0)为奇函数.答案:Af (x )在区间[-1,0]上是减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是A.f (cos α)>f (cos β)B.f (sin α)>f (cos β)C.f (sin α)>f (sin β)D.f (cos α)>f (sin β)解析:∵偶函数f (x )在区间[-1,0]上是减函数,∴f (x α、β是锐角三角形的两个内角, ∴α+β>90°,α>90°-β.1>sin α>cos β>0.∴f (sin α)>f (cos β).答案:Bf (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则a =___________,b =___________. 解析:定义域应关于原点对称,故有a -1=-2a ,得a =31. 又对于所给解析式,要使f (-x )=f (x )恒成立,应b =0. 答案:31 0 5.给定函数:①y=x 1(x ≠0);②y=x 2+1;③y=2x ;④y=log 2x ;⑤y=log 2(x+12 x ). 在这五个函数中,奇函数是_________,偶函数是_________,非奇非偶函数是__________. 答案:①⑤②③④●典例剖析【例1】 已知函数y=f (x )是偶函数,y=f (x -2)在[0,2]上是单调减函数,则A.f (0)<f (-1)<f (2)B.f (-1)<f (0)<f (2)C.f (-1)<f (2)<f (0)D.f (2)<f (-1)<f (0)剖析:由f (x -2)在[0,2]上单调递减,∴f (x )在[-2,0]上单调递减.∵y=f (x )是偶函数,∴f (x )在[0,2]上单调递增.又f (-1)=f (1),故应选A.答案:A【例2】 判断下列函数的奇偶性:(1)f (x )=|x+1|-|x -1|;(2)f (x )=(x -1)·xx -+11; (3)f (x )=2|2|12-+-x x ; (4)f (x )=⎩⎨⎧>+<-).0()1(),0()1(x x x x x x 剖析:根据函数奇偶性的定义进行判断.解:(1)函数的定义域x ∈(-∞,+∞),对称于原点.∵f (-x )=|-x+1|-|-x -1|=|x -1|-|x+1|=-(|x+1|-|x -1|)=-f (x ),∴f (x )=|x+1|-|x -1|是奇函数.xx -+11≥0,得-1≤x <1,其定义域不对称于原点,所以f (x )既不是奇函数也不是偶函数. (3)去掉绝对值符号,根据定义判断.由⎩⎨⎧≠-+≥-,02|2|,012x x 得⎩⎨⎧-≠≠≤≤-.40,11x x x 且 故f (x )的定义域为[-1,0)∪(0,1],关于原点对称,且有xf (x )=2212-+-x x =xx 21-,这时有f (-x )=x x ---2)(1=-xx 21-=-f (x ),故f (x )为奇函数. (4)∵函数f (x )的定义域是(-∞,0)∪(0,+∞),并且当x >0时,-x <0,∴f (-x )=(-x )[1-(-x )]=-x (1+x )=-f (x )(x >0).当x <0时,-x >0,∴f (-x )=-x (1-x )=-f (x )(x <0).故函数f (x )为奇函数.评述:(1)分段函数的奇偶性应分段证明.(2)判断函数的奇偶性应先求定义域再化简函数解析式.【例3】 (2005年东城区模拟题)函数f (x )的定义域为D={x|x ≠0},且满足对于任意x 1、x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明;(3)如果f (4)=1,f (3x+1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值X 围.(1)解:令x 1=x 2=1,有f (1×1)=f (1)+f (1),解得f (1)=0.(2)证明:令x 1=x 2=-1,有f [(-1)×(-1)]=f (-1)+f (-1).解得f (-1)=0. 令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ).∴f (x )为偶函数.(3)解:f (4×4)=f (4)+f (4)=2,f (16×4)=f (16)+f (4)=3.∴f (3x+1)+f (2x -6)≤3即f [(3x+1)(2x -6)]≤f (64).(*)∵f (x )在(0,+∞)上是增函数,∴(*)等价于不等式组⎩⎨⎧≤-+>-+64)62)(13(,0)62)(13(x x x x 或⎩⎨⎧≤-+-<-+,64)62)(13(,0)62)(13(x x x x 或⎪⎪⎩⎪⎪⎨⎧≤≤--<>537,313x x x 或或⎪⎩⎪⎨⎧∈<<-.,331R x x ∴3<x ≤5或-37≤x <-31或-31<x <3. ∴x 的取值X 围为{x|-37≤x <-31或-31<x <3或3<x ≤5}. 评述:解答本题易出现如下思维障碍:(1)无从下手,不知如何脱掉“f ”.解决办法:利用函数的单调性.(2)无法得到另一个不等式.解决办法:关于原点对称的两个区间上,奇函数的单调性相同,偶函数的单调性相反.深化拓展已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b ),2b >a 2,那么f (x )·g (x )>0的解集是 A.(22a ,2b )B.(-b ,-a 2) C.(a 2,2b )∪(-2b ,-a 2)D.(22a ,b )∪(-b 2,-a 2) 提示:f (x )·g (x )>0⇔⎩⎨⎧>>0)(,0)(x g x f 或⎩⎨⎧<<.0)(,0)(x g x f ∴x ∈(a 2,2b )∪(-2b ,-a 2). 答案:C【例4】 (2004年某某模拟题)已知函数f (x )=x+x p +m (p ≠0)是奇函数. (1)求m 的值.(2)(理)当x ∈[1,2]时,求f (x )的最大值和最小值.(文)若p >1,当x ∈[1,2]时,求f (x )的最大值和最小值.解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ).∴-x -x p +m=-x -xp -m. ∴2m=0.∴m=0.(2)(理)(ⅰ)当p <0时,据定义可证明f (x )在[1,2]上为增函数.∴f (x )max =f (2)=2+2p ,f (x )min =f (1)=1+p. (ⅱ)当p >0时,据定义可证明f (x )在(0,p ]上是减函数,在[p ,+∞)上是增函数. ①当p <1,即0<p <1时,f (x )在[1,2]上为增函数,∴f (x )max =f (2)=2+2p ,f (x )min =f (1)=1+p. ②当p ∈[1,2]时,f (x )在[1,p ]上是减函数.在[p ,2]上是增函数.f (x )min =f (p )=2p .f (x )max =max{f (1),f (2)}=max{1+p ,2+2p }. 当1≤p ≤2时,1+p ≤2+2p ,f (x )max =f (2);当2<p ≤4时,1+p ≥2+2p ,f (x )max =f (1). ③当p >2,即p >4时,f (x )在[1,2]上为减函数,∴f (x )max =f (1)=1+p ,f (x )min =f(2)=2+2p . (文)解答略.评述:f (x )=x+xp (p >0)的单调性是一重要问题,利用单调性求最值是重要方法.函数的基本性质要点精讲1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x 都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x 都有f(-x)=f(x),则称f(x)为偶函数。
高中数学_奇偶性教学设计学情分析教材分析课后反思
1.3.2奇偶性一【教学目标】1.理解函数的奇偶性及奇偶性函数的图象特征;2.学会运用函数图象理解和研究函数的性质;3.学会判断函数的奇偶性; 二【教学重难点】教学重点:函数的奇偶性及其几何意义教学难点:判断函数的奇偶性 三【教学过程】师:在日常生活中,我们经常会接触到一些外形十分对称的物体,比如蝴蝶,北京的故宫,它们是什么对称图形?还有双鱼年画,太极图案,它们是什么对称图形?这些对称物体向人们展示了一种美---对称美,对称美给人民带来了美的享受,其实这种美在数学中也有大量的反应,如函数图象关于y 轴和原点对称,这节课我们一起来学习函数的这个性质——函数的奇偶性(引出课题)首先,大家回顾一下在初中所学的函数中,哪些函数的图象是对称的? 生:二次函数,一次函数,反比例函数师:很好!那接下来我们以2x y =和x y -=2为例来探究它们的性质特征,先来看第一个问题。
问题1:观察两个函数图象并思考以下问题: (1)这两个函数图象有什么共同特征吗?(2)相应的两个函数值对应表是如何体现这些特征的?生:这两个函数图象都关于y 轴对称.师:那么如何利用函数的解析式描述函数的图象关于y 轴对称呢?x-3 -2 -1 0 1 2 3-222yx表1表2填写表1和表2,从这个表格中,大家发现了什么规律? 生:当自变量x 取一对相反数时,相应的函数值相等。
师:我们不妨以2x y =为例,对于2)(x x f =,有)3(9)3(f f ==- )2(4)2(f f ==- )1(1)1(f f ==- 等等问题:对函数2)(x x f =,是否对于定义域内任取一对相反数x 和x -,都有)()(x f x f =-呢?能用函数解析式给出证明吗?生:是 )()()(22x f x x x f ==-=- )()(x f x f =-∴师:很好!对于函数2)(x x f =来说,对于定义域R 内任意一个x ,都有)()(x f x f =-,这时我们称函数2)(x x f =为偶函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.2 奇偶性(一)自主学习1.掌握函数的奇偶性的定义和判断方法.2.理解奇函数和偶函数的图象的特点.1.阅读课本内容填写下表:2.(1)0.(2)有没有既是奇函数又是偶函数的函数?举例说明.f (x )=0,x ∈[-1,1].对点讲练函数奇偶性的判断【例1】 判断下列函数的奇偶性:(1)f (x )=x 3+x 5; (2)f (x )=2x 2+2x x +1; (3)f (x )=1-x 2+x 2-1; (4)f (x )=4-x 2|x +2|-2. 解 (1)函数的定义域为R .f (-x )=(-x )3+(-x )5=-(x 3+x 5)=-f (x ).∴f (x )是奇函数.(2)函数的定义域为{x |x ≠-1},不关于原点对称,∴函数f (x )既不是奇函数也不是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,得x =±1, 此时f (x )=0,x ∈{-1,1}.∴f (x )既是奇函数又是偶函数.(4)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +2|-2≠0, ∴f (x )的定义域为[-2,0)∪(0,2],关于原点对称.此时f (x )=4-x 2|x +2|-2=4-x 2x . 又f (-x )=4-(-x )2-x=-4-x 2x =-f (x ), ∴f (x )=4-x 2|x +2|-2为奇函数. 规律方法 (1)用定义判定函数奇偶性的一般步骤为:①先求定义域,考查定义域是否关于原点对称;②有时需在定义域内对函数解析式进行变形、化简,再找f (-x )与f (x )的关系;判断函数奇偶性可用的变形形式:若f (-x )+f (x )=0,则f (x )为奇函数;若f (-x )-f (x )=0,则f (x )为偶函数.(2)奇(偶)函数的性质①f (x )为奇函数,定义域为D ,若0∈D ,则必有f (0)=0;②在同一个关于原点对称的定义域上,奇函数+奇函数=奇函数;偶函数+偶函数=偶函数;奇函数×奇函数=偶函数;偶函数×偶函数=偶函数. 变式迁移1 判断下列函数的奇偶性:(1)f (x )=x 2-|x |; (2)f (x )=|x +1|-|x -1|; (3)f (x )=x -1+1-x .解 (1)既是奇函数,又是偶函数.∵f (x )=0,f (-x )=0,∴f (-x )=f (x )且f (-x )=-f (x ).(2)函数的定义域为R ,∵f (-x )=|-x +1|-|-x -1|=|x -1|-|x +1|=-(|x +1|-|x -1|)=-f (x ),∴f (x )=|x +1|-|x -1|是奇函数.(3)由⎩⎪⎨⎪⎧x -1≥0,1-x ≥0,知x =1, ∴函数f (x )的定义域为{1},不关于原点对称.故f (x )既不是奇函数,也不是偶函数.分段函数奇偶性的证明【例2】 已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x +3 (x <0)-x 2+2x -3 (x >0),判断f (x )的奇偶性. 解 (1)当x <0时,-x >0,f (-x )=-(-x )2+2(-x )-3=-x 2-2x -3=-f (x ).(2)当x >0时,-x <0,f (-x )=(-x )2+2(-x )+3=x 2-2x +3=-(-x 2+2x -3)=-f (x ),综上可知f (x )为奇函数.规律方法 (1)对于分段函数奇偶性的判断,须特别注意x 与-x 所满足的对应关系,如x >0时,f (x )满足f (x )=-x 2+2x -3,-x <0满足的不再是f (x )=-x 2+2x -3,而是f (x )=x 2+2x +3.(2)要对定义域内的自变量都要考察,如本例分为两种情况,如果本例只有(1)就说f (-x )=-f (x ),从而判断它是奇函数是错误的、不完整的.(3)分段函数的奇偶性判断有时也可通过函数图象的对称性加以判断.变式迁移2 判断函数f (x )=⎩⎪⎨⎪⎧ x -1 (x >0)0 (x =0)x +1 (x <0)的奇偶性.解 当x <0时,-x >0,f (-x )=-x -1=-(x +1)=-f (x ),另一方面,当x >0时,-x <0,f (-x )=-x +1=-(x -1)=-f (x ),而f (0)=0,∴f (x )是奇函数.抽象函数奇偶性的判断【例3】已知函数f(x),x∈R,若对任意实数a,b都有f(a+b)=f(a)+f(b).求证:f(x)为奇函数.证明设a=0,则f(b)=f(0)+f(b),∴f(0)=0.又设a=-x,b=x,则f(0)=f(-x)+f(x).∴f(-x)=-f(x).∴f(x)是奇函数.规律方法抽象函数奇偶性的判定是根据定义,即寻求f(x)与f(-x)的关系,需根据这样的目标,认真分析函数所满足的条件式的结构特征,灵活赋值.变式迁移3 函数f(x),x∈R,且f(x)不恒为0.若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1)·f(x2).求证:f(x)为偶函数.证明令x1=0,x2=x,则得f(x)+f(-x)=2f(0)f(x)①又令x1=x,x2=0,得f(x)+f(x)=2f(x)f(0)②由①、②得f(-x)=f(x),∴f(x)是偶函数.1.在奇函数与偶函数的定义域中,都要求x∈D,-x∈D,这就是说,一个函数不论是奇函数还是偶函数,它的定义域都一定关于坐标原点对称.如果一个函数的定义域关于坐标原点不对称,那么这个函数就失去了是奇函数或是偶函数的条件.2.解题中可以灵活运用f(x)±f(-x)=0对奇偶性作出判断.3.奇函数f(x)若在x=0处有意义,则必有f(0)=0.课时作业一、选择题1.已知函数f(x)=1x2(x≠0),则这个函数()A.是奇函数B.既是奇函数又是偶函数C.是偶函数D.既不是奇函数又不是偶函数答案 C解析∵x≠0,∴f(-x)=1(-x)2=1x2=f(x),∴f(x)是偶函数.2.奇函数y =f (x ) (x ∈R )的图象必过点( )A .(a ,f (-a ))B .(-a ,f (a ))C .(-a ,-f (a )) D.⎝⎛⎭⎫a ,f ⎝⎛⎭⎫1a 答案 C解析 ∵y =f (x )是奇函数,过(-a ,f (-a ))点,而f (-a )=-f (a )∴y =f (x )过点(-a ,-f (a )).3.函数y =(x +1)(x -a )为偶函数,则a 等于( )A .-2B .-1C .1D .2答案 C解析 结合选项,当a =1时,y =x 2-1,显然为偶函数. 4.如图是一个由集合A 到集合B 的映射,这个映射表示的是( )A .奇函数而非偶函数B .偶函数而非奇函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数答案 C解析 因为f (x )=0,x ∈{-2,2},满足f (-x )=±f (x ).所以该映射表示的既是奇函数又是偶函数.5.若f (x )=ax 2+bx +c (a ≠0)是偶函数,则g (x )=ax 3+bx 2+cx 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数答案 A解析 ∵f (x )是偶函数,∴f (-x )=f (x ),即ax 2-bx +c =ax 2+bx +c ,∴b =0,此时g (x )=ax 3+cx (a ≠0),由于g (-x )=a (-x )3+c (-x )=-(ax 3+cx )=-g (x ),∴g (x )是奇函数.二、填空题6.已知函数f (x )=ax 2+bx +3a +b 为偶函数,其定义域为[a -1,2a ],则a =________,b =________.答案 130 解析 ∵f (x )是定义域为[a -1,2a ]的偶函数,∴a -1=-2a ,∴a =13. 又f (-x )=f (x ),∴13x 2-bx +1+b =13x 2+bx +1+b . ∴b =0.7.下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③既是奇函数,又是偶函数的函数一定是f (x )=0 (x ∈R );④偶函数的图象关于y 轴对称,其中正确的命题有________个.答案 1解析 ①错误,如偶函数f (x )=1x 2的图象与纵坐标轴不相交. ②错误,如奇函数f (x )=1x不过原点. ③错误,如f (x )=0,x ∈[-1,1],既是奇函数又是偶函数.④正确.8.已知f (x )=ax 3+bx -8,且f (-2)=10,则f (2)=__________.答案 -26解析 ∵f (-x )+f (x )=-16,∴f (2)+f (-2)=-16,∴f (2)=-26.三、解答题9.判断下列函数的奇偶性.(1)f (x )=2x -1+1-2x ; (2)f (x )=x 4+x ;(3)f (x )=⎩⎪⎨⎪⎧ x 2+2 (x >0)0 (x =0)-x 2-2 (x <0); (4)f (x )=x 3-x 2x -1. 解 (1)定义域为⎩⎨⎧⎭⎬⎫12,不关于原点对称.该函数既不是奇函数也不是偶函数.(2)定义域为R ,关于原点对称,f (1)=2,f (-1)=0,∴f (-1)≠-f (1),f (-1)≠f (1),故其既不是奇函数也不是偶函数.(3)定义域为R ,关于原点对称.当x >0时,-x <0,f (-x )=-(-x )2-2=-(x 2+2)=-f (x );当x <0时,-x >0,f (-x )=(-x )2+2=-(-x 2-2)=-f (x );当x =0时,f (0)=0.故该函数为奇函数.(4)函数的定义域为{x |x ∈R 且x ≠1},不关于原点对称.所以函数f (x )=x 3-x 2x -1既不是奇函数也不是偶函数. 10.已知f (x )是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x ,y ,f (x )都满足f (x ·y )=y ·f (x )+x ·f (y ).(1)求f (1),f (-1)的值; (2)判断f (x )的奇偶性,并说明理由.解 (1)∵f (x )对任意x ,y 都有f (x ·y )=y ·f (x )+x ·f (y ),令x =y =1时,有f (1·1)=1·f (1)+1·f (1),∴f (1)=0.令x =y =-1时,有f [(-1)·(-1)]=(-1)·f (-1)+(-1)·f (-1),∴f (-1)=0.(2)∵f (x )对任意x ,y 都有f (x ·y )=y ·f (x )+x ·f (y ),∴令x =t ,y =-1,有f (-t )=-f (t )+t ·f (-1).将f (-1)=0代入得f (-t )=-f (t ),∴函数f (x )在(-∞,+∞)上为奇函数.。