等腰三角形的判定课件(3)

合集下载

2024版等腰三角形的判定新人教版ppt课件

2024版等腰三角形的判定新人教版ppt课件

2024/1/28
20
05
课堂小结与拓展延伸
2024/1/28
21
总结本节课重点内容
01
等腰三角形的定义和性质
等腰三角形是两边相等的三角形,具有轴对称性和一些特殊的性质,如
底角相等、高线、中线和角平分线重合等。
02
等腰三角形的判定方法
通过比较三角形的边长或角度,可以判断一个三角形是否为等腰三角形。
具体方法包括SSS全等判定、SAS全等判定和ASA全等判定等。
2024/1/28等腰三角形在实际问题中有广泛的应用,如建筑设计、工程测量和地理
测量等领域。通过应用等腰三角形的性质和判定方法,可以解决一些实
际问题。
22
拓展延伸:等边三角形判定方法简介
三边相等
等边三角形的三边长度相等,可以通过比较三角形的三边长度来判断一个三角形是否为等边 三角形。
2024/1/28
若三角形中有两角相 等,则这个三角形是 等腰三角形。
14
结合其他知识点综合应用
结合勾股定理
在直角三角形中,若两条直角边相等,则该三 角形为等腰直角三角形。
结合相似三角形
若两个三角形相似且对应边成比例,则这两个 三角形为等腰三角形。
结合三角函数
在等腰三角形中,若已知顶角和一边长,可利 用三角函数求出其他边长和角度。
课程目标
通过本课时的学习,学生应能掌握 等腰三角形的定义、性质及判定方 法,并能运用所学知识解决相关问 题。
4
等腰三角形定义及性质
• 定义:有两边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底 边与腰的夹角叫做底角。
$item2_c{单击此处添加正文,文字是您思想的提炼,为了最终呈现发布的良好效果单击此处添加正文单击此处添加 正文,文字是您思想的提炼,为了最终呈现发布的良好效果单击此处添加正文单击此处添加正文,文字是一二三四 五六七八九十一二三四五六七八九十一二三四五六七八九十一二三四五六七八九十一二三四五六七八九十单击此处 添加正文单击此处添加正文,文字是您思想的提炼,为了最终呈现发布的良好效果单击此处添加正文单击此处添加 正文,文字是您思想的提炼,为了最终呈现发布的良好效果单击此处添加正文单击5*48}

等腰三角形的判定PPT授课课件

等腰三角形的判定PPT授课课件
(4)为了测量小车运动过程中下半程的平均速度,某同学让 小车从B点由静止释放,测出小车到达C点的时间,从 而计算出小车运动过程中下半程的平均速度。他的做 法正确吗?__不__正__确__,理由是__因__为__所__测___时__间__不__是__运__ _动__过__程__中__下__半__程__的__时__间__(_或__小__车__从__A_到___C_的__过__程__中__通__过_
感悟新知
又AB=AC, ∴∠B=∠C ∴∠B=∠C=∠A =60°. ∴△ABC是等边三角形.
知2-导
感悟新知
结论
知2-导
有一个角是60°的等腰三角形是等边三角形.
感悟新知
知2-讲
1.三个角都是60°的三角形是等边三角形. 2.有一个角是60°的等腰三角形是等边三角形.
特别解读 在等腰三角形中,只要有一个角是60°,无
1.下列三角形:
知2-练
①有两个角等于60°的三角形;
②有一个角等于60°的等腰三角形;
③三个外角(每个顶点处各取一个外角)都相等的三角形;
④一腰上的中线也是这条腰上的高的等腰三角形.
其中是等边三角形的有( D ) A.①②③ B.①②④C.①③④ D.①②③④
感悟新知
知2-练
2.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,
能力提升练
【点拨】A、C 两点间的距离为 s=10.20 cm,物体由 A 点至 C 点所用的时间为 t=0.02 s×2=0.04 s,物体在 AC 段运动的平均 速度 v=st=100..2004csm=255 cm/s=2.55 m/s。
【答案】10.20;2.55
能力提升练
(3)实验中为了方便计时,应使斜面的坡度较__小___ (填“大” 或“小”)。

13.等腰三角形的判定PPT课件(华师大版)

13.等腰三角形的判定PPT课件(华师大版)

两角相等 的三角形
互为逆命题
等腰三角形的判定 方法
基本模型
A
B
C
等腰三角形的判定定理是证明 线段相等的一种重要 的方法
等腰三角形性质与判定 的区分


变式模型
三 角 形 的 判
A
3
D
21

B
C
已知:⊿ABC中,∠B=∠C
求证:A⊿BA=BACC等腰三角形
证明:经过点A作AD⊥BC,垂足为D. A
∴ ∠1= ∠2=90°
练习 在ΔABC中,OB平分∠ABC, OC平分∠ACB,过O点作MN ∥BC.
A (2)线段BM、CN与MN 的长度有什么关系?
M 3 1
O
6
N
∴MN=BM+CN
5
2
4
B
C
(3) ΔAMN的周长=AB+AC吗?为什么?
∵ ΔAMN的周长= AM+MN+AN
=AM+
+AN
=AB +AC
两边相等 的三角形
∵ AD∥BC
E

A1 2
D
∴ ∠1=∠B ( 两直线平行, 同位角相等 )
∠2=∠C ( 两直线平行,内错角相等) B
C
∴∠1=∠2 ( 等量代换 )
即 AD平分∠CAE ( 角平分线的定义 )
如图,OA=OB, AB∥DC, 求证:OC=OD. 分析:
(1)从求证看: 要证 OC=OD
需证 ∠D=∠C
(2)从已知看:
由OA=OB 得到 ∠B=∠A 由AB∥DC得到∠D= ∠B ∠C= ∠A
所以:∠D=∠C
如图,OA=OB, AB∥DC, 求证:OC=OD.

13.等腰三角形的判定PPT课件(华师大版)

13.等腰三角形的判定PPT课件(华师大版)

1 在△ABC中,∠A和∠B的度数如下,能判定△ABC 是等腰三角形的是( ) A.∠A=50°,∠B=70° B.∠A=70°,∠B=40° C.∠A=30°,∠B=90° D.∠A=80°,∠B=60°
2 如图,∠B=∠C=36°,∠ADE=∠AED=72°,则 图中的等腰三角形有( ) A.3个 B.4个 C.5个 D.6个
3 在下列三角形中,若AB=AC,则不能被一条直线分 成两个小等腰三角形的是( )
等腰三角形的两种判定方法: (1)当三角形有两条边相等时,应用“有两条边相 等的三角形是等腰三角形”来判定. (2)当三角形中有两个角相等时,应用“如果一个 三角形有两个角相等,那么这两个角所对的边也相 等” 来证明.
例2 如图13.3-10,在△ABC中,∠ABC,∠CAB 的平分线交于点P,过点P作DE∥AB,分别 交BC,AC于点D,E. 求证:DE=BD+AE.
图13.3-10
导引:要证: DE=BD+AE ,而由图13.3-10知 DE=DP+PE.因此只需证: BD+AE=DP+PE即可. 即需证BD=DP,AE=PE, 而要证这两边相等,只需证明它们所对的角 相等;因此我们可以从证角相等作为切入口 进行证明.
性质
等边
等角.
判定
例3 如图13.3-11,在△ABC中,AB=AC,EF交 AB
于点E,交AC的延长线于点F,交BC于点D,且
BE=CF. 求证:DE=DF.
导引:要证DE=DF,可构造以DE
和DF为对应边的全等三角形,
不妨过点E作EG∥AC交BC于
点G,则只要证明△EDG≌
△FDC即可,缺少的条件可
3 (中考·陕西)如图,在△ABC中,∠A=36°,AB =AC,BD是△ABC的角平分线,若在边AB上截取 BE=BC,连接DE,则图中等腰三角形共有( ) A.2个 B.3个 C.4个 D.5个

《等腰三角形的判定》课件

《等腰三角形的判定》课件

需要测量三边的长度
适用于实际场景中测量的情况
2
方法二:判断两边是否相等
需要判断两条边的长度是否相等Biblioteka 如果两条边相等,则为等腰三角形
等腰三角形的性质
性质一:两个底角相等
等腰三角形的两个底角相等
性质二:高线垂直于底边
等腰三角形的高线垂直于底边
总结
本课程介绍了等腰三角形的定义、判断方法和性质 等腰三角形在数学和几何学中都具有重要的应用和意义 希望通过本课程,您能掌握判断等腰三角形的方法和理解其性质
《等腰三角形的判定》PPT课件
等腰三角形的判定 前言 - 本课程将讲解如何判定一个三角形是否为等腰三角形 - 等腰三角形是几何中的重要基本概念
等腰三角形定义
等腰三角形是指有两条边相等的三角形。 它的第三条边被称为底边,而两条相等的边被称为等腰边。
判断等腰三角形的方法
1
方法一:判断三边长度是否相等

等腰三角形ppt课件

等腰三角形ppt课件

THANKS
感谢观看
工程绘图
在工程绘图中,等边三角形 可用于表示某些特定的角度 或距离关系,简化绘图过程 。
标志设计
由于等边三角形具有对称性 和稳定性,因此在标志设计 中常被用作基本图形元素, 如交通标志中的警告标志。
数学教育
在数学教育中,等边三角形 常被用作教学工具,帮助学 生理解几何形状、角度和边 长关系等基本概念。
如果一个三角形有两个角相等 ,那么这两个角所对的边也相
等。
等腰三角形性质总结
性质1
等腰三角形的两个底角相等。
性质2
等腰三角形的顶角平分线、底 边上的中线、底边上的高互相 重合,简称“三线合一”。
性质3
等腰三角形的对称轴是底边的 垂直平分线。
性质4
等腰三角形是轴对称图形,只 有一条对称轴。
02 等腰三角形面积 与周长计算
06 课件总结与回顾
关键知识点总结
定义
两边相等的三角形称为等腰三角 形。
性质
等腰三角形的两个底角相等;底 边上的中线、高线和顶角的平分 线三线合一。
关键知识点总结
等腰三角形的判定
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角 对等边)。
推论:三个角都相等的三角形是等边三角形。
特点
等腰三角形是轴对称图形,对称轴是 底边的垂直平分线。
等腰三角形判定定理
01
02
03
04
边边边定理
如果两个三角形的三边分别相 等,则这两个三角形全等。
边角边定理
如果两个三角形有两边和夹角 分别相等,则这两个三角形全
等。
角边角定理
如果两个三角形有两个角和夹 边分别相等,则这两个三角形

《等腰三角形》三角形的证明PPT课件(第3课时)

《等腰三角形》三角形的证明PPT课件(第3课时)

课堂检测,巩固新知
1.用反证法证明命题“钝角三角形中必有一个内角小于45°”时,首先应该假
设这个三角形中( D )
A.有一个内角小于45° B.每一个内角都小于45° C.有一个内角大于等于45° D.每一个内角都大于等于45° 2.如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,过点O作BC的平行线与AB ,AC分别相交于点M,N.若AB=5,AC=6,求△AMN的周长.
证明:∵∠BAC=75°,∠ACB=35° ∴∠ABC=180°-∠BAC-∠ACB=70° ∵BD平分∠ABC ∴∠DBC=∠ABC=35° ∴∠DBC=∠ACB=35° ∴DB=DC ∴△BCD为等腰三角形
开放训练,体现应用
变式训练2 如图,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC 的平分线BD交边ຫໍສະໝຸດ C于点D.求证:△BCD为等腰三角形.
AB=DC,
证明:在△ABD和△DCA中,BD=CA,
AD=DA,
∴△ABD≌△DCA(SSS) ∴∠ADB=∠DAC ∴EA=ED ∴△AED是等腰三角形
开放训练,体现应用
例2 (教材第9页例3)用反证法证明:一个三角形中不能有两个角是直角.
已知:△ABC. 求证:∠A,∠B,∠C中不能有两个角是直角.
相等,要么不相等.假设AB=AC,那么根据“等边对等角”
论坛 :
定理可得∠C=∠B,但这与已知条件∠B≠∠C相矛盾,因
www. 1ppt.
此AB≠AC.
cn
反证法概念:P先PT假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件 相矛盾的结果课,件从而证明命题的结论一定成立.我们把这种方法叫做反证法.
即“等角对等边”.

等腰三角形的判定定理ppt课件

等腰三角形的判定定理ppt课件

B
D
C
概念归纳
如果一个三角形有两个角相等,那么这个三角
形是等腰三角形,也可以简单地说成“在同一
个三角形中,等角对等边”.
几何语言
它也是一个判定两条线段相等根据之一.
在△ABC中,
∵∠B=∠C(已知),
∴AC=AB(在同一个三角形中,等角对等边),
即△ABC为等腰三角形.
练一练
1.判断下列证明过程是正确的吗?
120°
75°或30°或 ⁠
时,△ ABC 是等腰三角形.
易错点:分类讨论时忽略一种情况而漏解
分层练习-巩固
9.[2024·温州期中]如图,上午8时,渔船从 A 处出发,以20海里/时的速度向正
西方向航行,9时30分到达 B 处.从 A 处测得灯塔 C 在南偏西30°方向,
距 A 处30海里处,则 B 处到灯塔 C 的距离是(
A
除此之外,还有其他判定方法吗?
问题① 如图,在△ABC中,AB=AC,图中有哪些角相等?
∠B=∠C
在三角形中等边对等角
B
C
合作学习
在纸上任意画线段BC,分别以点B和点C为顶点,以BC为一边,
在BC的同侧画两个相等的角,两角的另一边相交于点 A.
①量一量,线段AB与 AC 相等吗?
A
②其他同学的结果与你的相同吗?
O
140°
140°
25 °
75
50 °°
20°
°
20
B
A
80
°
80°
2525
°°
50 °
P
B
随堂练
1.在△ABC 中,∠A 和∠B 的度数如下,能判定△ABC 是等腰三角形的是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.将一张长方形纸片ABCD按图中那样折叠,若AE=3,
AB=4,BE=5,则重叠部分的面积为( C ) A.6 B.8 C.10 D.12
10.如图,AD和BC交于点O,AB∥DC,OA=OB, 试说明△OCD是等腰三角形.
解:∵OA=OB,∴∠A=∠B,又∵AB∥CD,∴∠C =∠B,∠D=∠A,∴∠C=∠D,∴OC=OD, ∴△OCD是等腰三角形
3.在△ABC中,若∠A=80°,∠B=20°,则有( C ) A.AB=AC B.AC=BC C.AB=BC D.AB=AC=BC 4.在△ABC中,∠A和∠B的度数如下,能判定△ABC是 等腰三角形的是( B ) A.∠A=50°,∠B=70° B.∠A=70°,∠B=40° C.∠A=30°,∠B=90° D.∠A=80°,∠B=60°
19.如图,∠BAC=∠ABD,AC=BD,点O是AD,BC 的交点,点E是AB的中点.试判断OE和AB的位置关系, 并给出证明.
解:OE⊥AB.证明:在△BAC和△ABD中,AC=BD, ∠BAC=∠ABD,AB=BA,∴△BAC≌△ABD, ∴∠OBA=∠OAB,∴OA=OB,又∵AE=BE, ∴OE⊥AB
5.如图,在△ABC中,∠B=∠C=45°,AD是边BC上 的中线,那么△ABD的形状为_等__腰__直__角__三__角__形________. 6.如图,在△ABC中,BD⊥AC,∠A=50°,∠CBD= 25°,若AC=5 cm,则AB=__5_c_m____.
第5题图
第6题图
7.如图,在△ABC中,AB=AC,D是AB上一点,过D作 DE⊥BC于E,并与CA的延长线相交于F,试判断△ADF的 形状,并说明理由.
17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O, AC=BD.求证: (1)BC=AD; (2)△OAB是等腰三角形.
证明:(1)∵AC⊥BC,BD⊥AD,∴∠D=∠C=90°, 在Rt△ACB和Rt△BDA中,AB=BA,AC=BD, ∴△ACB≌△BDA(HL),∴BC=AD (2)∵△ACB≌△BDA,∴∠CAB=∠DBA,∴OA=OB, 即△OAB是等腰三角形
13.如图,已知OC平分∠AOB,CD∥OB,若OD=1 cm, 则CD等于( B ) A.0.5 cm B.1 cm C.2 cm D.无法确定
14.如图所示的正方形网格中,网格线的交点称为格 点.已知A,B是两格点,如果C也是图中的格点,且使 得△ABC为等腰三角形,那么点C的个数有( C ) A.6个 B.7个 C.8个 D.9个
解:△ADF是等腰三角形.理由:在 △ABC中,∵AB=AC,∴∠B=∠C, ∵DE⊥BC,∴∠DEB=∠DEC=90°, ∴∠BDE+∠B=90°,∠F+∠C=90°, ∴∠BDE=∠F,∵∠BDE=∠ADF, ∴∠ADF=∠F,∴AF=AD,∴△ADF是 等腰三角形
知识点2:等腰三角形的性质与判定的综合运用 8.如图,等腰△ABC的顶角∠A=36°,BD是∠ABC 的平分线,AD=4 cm,则BD的长度为( B ) A.3 cm B.4 cm C.5 cm D.6 cm
18.如图,一艘轮船在近海处由南向北航行,点C是灯塔, 轮船在A处测得灯塔在其北偏西38°的方向上,轮船又从A 向北航行30海里到B,测得灯塔在其北偏西76°的方向上. (1)求∠ACB的度数; (2)轮船在B处时,到灯塔C的距离是多少?
解:(1)∵∠NAC=38°,∠NBC=76°,∠NBC= ∠ACB+∠NAC,∴∠ACB=∠NBC-∠NAC=76°- 38°=38° (2)∵∠ACB=∠NAC=38°,∴AB=BC,∵AB=30海 里,∴BC=30海里.即轮船在B处时,到灯塔C的距离是 30海里
15.在如图所示的三角形中,若AB=AC,则能被一条 直线分成两个小等腰三角形的是( D )
A.(1)(2)(3) C.(2)(3)(4)
B.(1)(2)(4) D.(1)(3)(4)
16.如图,在△ABC中,D,E分别是AC,AB上的点,BD 与CE交于点O,给出下列三个条件:①∠EBO=∠DCO; ②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个 条件可判定△ABC是等腰三角形①__③__或__②__③.(填序号)
20.如图,OA平分∠BAC,∠1=∠2.求证:△Aቤተ መጻሕፍቲ ባይዱC是等 腰三角形.
证明:过点O作OD⊥AB于D,OE⊥AC于E,则△BOD和 △COE都是直角三角形,∵OA平分∠BAC,OD⊥AB, OE⊥AC,∴OD=OE,∵∠1=∠2,∴OB=OC, ∴Rt△BOD≌Rt△COE,∴∠ABO=∠ACO,∴∠ABC =∠ACB,∴AB=AC,∴△ABC是等腰三角形
知识点3:用尺规作等腰三角形 11.已知等腰三角形的底边长为a,顶角的平分线长为b, 求作这个等腰三角形.
解:(1)作线段AB=a; (2)作线段AB的垂直平分线MN,与AB交于点D; (3)在MN上取一点C,使CD=b; (4)连接AC,BC,则△ABC就是所求作的三角形
12.如图,∠B=∠C=36°,∠ADE=∠AED=72°,则 图中的等腰三角形的个数为( D ) A.3个 B.4个 C.5个 D.6个
13.3 等腰三角形
13.3.1 等腰三角形
第2课时 等腰三角形的判定
如果一个三角形有_两__个__角___相等,那么这两个角所对的边 也__相__等____,简写成__等__角__对__等__边__.
知识点1:等腰三角形的判定
1.如图,在△ABC中,∠B=∠C,AB=5,则AC的 长为( D ) A.2 B.3 C.4 D.5 2.在△ABC中,∠A∶∠B∶∠C=1∶1∶2,则 △ABC是( D ) A.等腰三角形 B.直角三角形 C.锐角三角形 D.等腰直角三角形
相关文档
最新文档