【数学】河北省邢台市第二中学2015-2016学年高二上学期第二次月考(理)
河北省邢台市第二中学2013-2014学年高二下学期第二次月考语文试题

河北省邢台市第二中学2013-2014学年高二下学期第二次月考语文试题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1~3题。
1984年美国开发出从数字数据打印出3D物体的“3D打印技术”,并在2年后开发出第一台商业3D打印机。
之所以叫“打印机”,是因为它借鉴了打印机的喷墨技术,只不过,普通的打印机是在纸上喷一层墨粉,形成二维(2D)文字或图形,而3D打印则能“打”出三维的立体实物。
以一个手电筒为例,3D打印机能通过电脑将手电筒进行立体扫描,创建三维设计图,之后对这个立体原型进行“切片”,分成一层一层的,之后,打印机就将原材料按照设计图一层一层地“喷”上去,直到最终造出一个手电筒,只不过3D打印机喷出的不是墨粉,而是融化的树脂、金属或者陶瓷等材料。
3D打印这种增材制造技术一下子就吸引了美国空军,他们认为,如果将这种技术用在武器制造上,产生的威力将是惊人的。
在传统的战斗机制造流程中,飞机的3D模型设计好后,需要花费长期的投入制造水压成型设备,而使用3D打印技术后,零件的成型速度、应用速度会大幅度提高。
在航空工业上广泛被使用的一种金属是钛,它的密度只有钢铁的一半,强度却远胜于绝大多数合金,如果通过激光将钛熔化并一层层喷出飞机,无疑将大大提高美国战机的制造速度。
为此,1985年,在五角大楼主导下,美国秘密开始了钛合金激光成形技术研究,不过,由于在制造过程中钛合金变形、断裂的技术难题无法解决,美国始终无法生产高强度、大尺寸的激光成形钛合金构件,只能进行小尺寸钛合金部件的打印或进行钛合金零件表面修复。
我国于1999年开始金属零件的激光快速成形技术研究,集中开展了镍基高温合金及多种钛合金的成形研究,形成了多套具有工业化示范水平的激光快速成形系统和装备;掌握了金属零件激光快速成形的关键工艺及组织性能控制方法,所成形的钛合金及力学性能均达到或超过锻件的水平,为该技术在上述材料零件的直接制造方面奠定了基础。
河北省邢台市第二中学2014-2015学年高二上学期第三次月考历史试题

河北省邢台市第二中学2014-2015学年高二上学期第三次月考历史试题一、选择题(本大题共35小题,每小题2分,共70分)1.有位史学家这样评论战国时期的“诸子百家”:“战国时代,诸子百家风行一时,各家中有顺势而活动的,想要因势利导,借助权力改造社会;也有逆势而动的,知其不可而为,想依据理想改造社会。
”下列各项中,“想要因势利导,借助权力改造社会”的是( ) A.道家B.墨家C.儒家D.法家2. 儒家“尊王”“忠君”思想的精神实质,从都不是让人们无条件地服从君权,或无止境地强化王室权威,而是敏感于地方势力的膨胀,以及诸侯兴起、地方权力过大破坏天下安宁的教训。
从儒家思想演变的进程看,最能佐证这一观点的是( )A.孔子提出仁者爱人,贵贱有序B.荀子主张君舟民水,礼法并用C.董仲舒倡行独尊儒术,天下一统D.朱熹主张格物致知,反躬践实3.头村位于江西南城县上唐镇境内。
数百年,这里流传着南宋理学家——朱熹老先生讲学赋诗的佳话。
据老人们说,头村还曾改名为“活水乡”,以表示对朱熹此讲学赋诗的纪念。
朱熹讲学中最有可能出现的言论是( )A.爱人者,人恒爱之;敬人者,人恒敬之B.学以至圣的修养关键在于致良知C.天下之治乱,不在一姓之兴亡D.儒家应设法“正君心”干预政治4.河南嵩山少林寺内有一“三教合一”碑(右图)。
整幅画看上去是佛祖释迦牟尼正面像,若遮住画像一边,左面就是老子侧像,遮住另一边,右面则是孔子侧像。
与这幅画寓意最相近的现象是( )A.“天人感应”说的提出B.火药的发明C.理学的形成D.京剧的诞生5.冯友兰在《中国哲学史》一书中写道:(明清)在这个时期,在某些方面,中国的文化有了重大进展……官方方面,程朱学派的地位甚至比前朝更为巩固。
非官方方面,程朱学派和陆王学派在清朝都发生了重大的反动。
这里的“反动”是指( )A.宋明理学的统治地位丧失B.对传统儒学地位的彻底否定C.对传统儒家思想的批判继承D.倡导“自由”“平等”思想6.某文学青年喜欢自诩尊重史实,酷爱续写武侠名著。
河北省邢台市第二中学2013-2014学年高二下学期第二次月考数学(理)试题

河北省邢台市第二中学2013-2014学年高二下学期第二次月考数学(理)试题 一、选择题(60分)1.复数2i 1i -3⎪⎭⎫⎝⎛+=( )A .-3+4iB .-3-4iC .3-4iD .3+4i2曲线3x y =在点)1,1(处的切线与x 轴、直线2=x 所围成的三角形的面积为( )A.34 B.37 C.35 D.38 3、已知直线kx y =是x y ln =的切线,则k 的值为( )A.e 2 B.e 1- C.e 1 D.e2- 4.设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件8. 设,,x y R ∈ 则“2x ≥且2y ≥”是“224x y +≥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9、设常a R ∈,集合A ={|(1)()0x x x a --≥},B ={|1x x a ≥-},若A B =R ,则a 的取值范围为( ) A .(-∞,-2) B .(-∞,2] C .(2,+∞) D .[2,+∞)10.已知f (x )=x 3+x ,若a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值( )A .一定大于0B .一定等于0C .一定小于0D .正负都有可能11.若点P 在曲线y =x 3-3x 2+(3-3)x +34上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( )A .[0,π2)B .[0,π2)∪[2π3,π)C .[2π3,π)D .[0,π2)∪(π2,2π3]12.等比数列{a n }中a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…·(x -a 8),则f ′(0)=( )A .26B .29C .212D .215二、填空题(20分)13、函数13)(3+-=x x x f 在闭区间]0,3[-上的最大值与最小值分别为: 14.由曲线2y x =与2x y =所围成的曲边形的面积为________________ 15.观察下列不等式213122+< 353121122<++474131211222<+++……照此规律,第五个...不等式为 . 16. 函数g (x )=ax 3+2(1-a )x 2-3ax 在区间⎝⎛⎭⎪⎫-∞,a 3内单调递减,则a 的取值范围是________.三、解答题(共6题,70分)17.(10分)已知集合P ={x |x 2-8x -20≤0}, S ={x |1-m ≤x ≤1+m }(1)是否存在实数m ,使”x ∈P ”是”x ∈S ”的充要条件?若存在,求m 的取值范围;若不存在说明理由;(2)是否存在实数m ,使”x ∈P ”是”x ∈S ”的必要条件?若存在,求m 的取值范围。
河北省邢台市第二中学2014-2015学年高二上学期第二次月考数学(理)试卷

一、选择题(每题5分,共60分,将正确选项涂在答题卡上) 1.椭圆的焦点坐标是()A.B.C.D.的准线方程是() A. B. C. D. 4. 两个事件对立是两个事件互斥的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分又不必要条件 5、如图所示的圆盘由八个全等的扇形构成,指针绕中心旋转,可能随机停止,则指针停止在阴影部分内的概率是() A B C D 6. 若抛物线的焦点与椭圆的右焦点重合,则P的值为( )A -2B 2C 4D 8 7.双曲线,则的 A. B.C. .D. 8.设椭圆的两个焦点分别为、,过作椭圆长轴的垂线交椭圆于点M,若为等腰直角三角形,则椭圆的离心率为() A. B. C. D. 9.某程序框图如图,该程序运行后输出的的值是() A. B. C. D.,过P(1,0)的直线与双曲线只有一个公共点,则的条数共有() A....是椭圆的两个焦点,点是椭圆上一点,且,则的面积为() A.7 B. C. D. 12. 直线经过P(1,1)且与双曲线交于A、B两点,如果点P是线段AB的中点,那么直线的方程为()A、2x-y-1=0B、2x+y-3=0C、x-2y+1=0D、不存在 二、填空题(每题5分,共20分,将正确答案写在答题纸上) 13.若直线:与圆锥曲线C交于A(,),B(,)两点,若,则=_______. 14.点是顶点为原点、焦点在x上抛物线抛物线的值为. 15. 已知、是椭圆的两个焦点,满足的点总在椭圆的内部(不包括边界),则椭圆的离心率的取值范围为. 16.下列命题中, ①命题<” 的否定是>”; ②是的充要条件; ③一个命题的逆命题为真,它的否命题也一定为真; ④“9<<15”是“方程表示椭圆”的充要条件. ⑤设是以、为焦点的双曲线一点,且,若的面积为,则双曲线的虚轴长为6; 其中真命题的是(将正确命题的序号填上). 三、解答题:(第17题10分,其它各12分,共70分,将规范的答题过程写在答题纸上.) 17.(本题满分10分) 已知;若是的充分非必要条件,求实数的取值范围.及曲线C上任意一点,满足,求曲线C的方程,并写出其焦点坐标和离心率. 20. (本题满分12分) 已知直线交双曲线于A、B不同两点,若点是线段AB的中点,求直线的方程及线段AB的长度 21.(本题满分12分) 已知中心在原点的椭圆C的左焦点F(,0),右顶点A(2,0)。
河北省邢台市第二中学2015-2016学年高二数学上学期第三次月考试题 理

2014级高二上学期第3次月考数学(理)试卷一、选择题(每题5分,共60分) 1.已知直线1:260l ax y ++=和直线22:(1)10l x a y a +-+-=相互垂直,则a 的值为( ) A.1- B.23 C. 1 D.23或1 2.已知点P 是抛物线x y 22=上的一个动点,则点P 到点)2,0(的距离与P 到该抛物线准线的距离之和的最小值是( ) A.217B.3C. 5D. 293.某几何体的三视图如图所示,则该几何体的体积为( )A 、3560B 、200C 、3580 D 、2404.已知双曲线62x -32y =1的焦点为F 1、F 2,点M 在双曲线上且MF 1⊥x 轴,则F 1到直线F 2M 的距离为 ( ) A.563 B.665 C.56 D.655.已知圆22:(2)(1)3C x y -++=,从点(1,3)P --发出的光线,经x 轴反射后恰好经过圆心C ,则入射光线的斜率为 ( ) A .43-B .23-C .43D .236.已知p :函数2()1f x x mx =++有两个零点, q :x R ∀∈,244(2)10x m x +-+>.若若p q ⌝∧为真,则实数m 的取值范围为 ( )A .(2,3)B .(,1](2,)-∞+∞C .(,2)[3,)-∞-+∞D .(,2)(1,2]-∞-7.过点(1P 作圆221Ox y :+=的两条切线,切点分别为A 和B ,则弦长||AB =( )154:22=-y x C AB .2 CD .48.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 且斜率为12的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为 ( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 9.已知直线l :为常数)k kx (2y +=过椭圆)0(12222>>=+b a by a x 的上顶点B 和左焦点F ,且被圆422=+y x截得的弦长为L,若L ≥则椭圆离心率e 的取值范围是( ) A.. ⎥⎦⎤⎝⎛550,B. 0⎛ ⎝⎦C. ⎥⎦⎤ ⎝⎛5530,D. ⎥⎦⎤ ⎝⎛5540, 左、右焦点分别为12,,F F P 为C 的右支上一点,且 10.已知双曲线的212F F PF =,则12PF PF ⋅等于( )A.24B.48C.50D.5611.已知三棱锥A BCD -中,2AB AC BD CD ====,2BC AD =,直 线AD 与底面BCD 所成角为3π,则此时三棱锥外接球的体积为( ) A .8π B.3 C.3 D.312.已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( ) A .2 B .3 CD二、填空题(每题5分,共20分)13.如图,111A B C ABC -是直三棱柱,90BCA ∠= ,点1D 、1F 分别是11A B ,11AC 的中点,若1BC CA CC ==,则1BD 与1AF 所成角的余弦值为14.已知p :112x ≤≤,q :()(1)0x a x a --->,若p 是q ⌝的充分不必要条件,则实数a 的取值范围是 .15.已知椭圆的左焦点为1F ,右焦点为2F .若椭圆上存在一点P ,满足线段2PF 相切于以椭圆的短轴为直径的圆,切点为线段2PF 的中点,则该椭圆的离心率为 .16.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C上且AK ,则AFK ∆的面积为三、解答题(17题10分,其他题每题12分,共60分) 17.已知关于x ,y 的方程C: 22240xy x y m +--+=.(1)当m 为何值时,方程C 表示圆.(2)若圆C 与直线l: x+2y-4=0相交于M ,N 两点,且MN,求m 的值.18.如图,在三棱柱111-ABC A B C 中,侧棱1AA ⊥底面ABC,,⊥AB BC D 为AC的中点,12A A AB ==,3BC =.(1)求证:1//AB 平面1BC D ; (2)求四棱锥11-B AAC D 的体积.DC 1A 1B 1CBA19.抛物线24y x =的焦点为F ,过点F 的直线交抛物线于A ,B 两点.(1)若2AF FB =,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值. 20.(本题满分15分) 如图,已知AB ⊥平面BEC,AB ∥CD,AB=BC=4,CD=2,,△BEC 为等边三角形.(Ⅰ)求证:平面ABE ⊥平面ADE ;(Ⅱ)求二面角A DE B --的平面角的余弦值.21.已知点P 是椭圆2212x y +=上的任意一点,12,F F 是它的两个焦点,O 为坐标原点,动点Q 满足12OQ PF PF =+ .(1)求动点Q 的轨迹E 的方程;(2)若与坐标轴不垂直的直线l 交轨迹E 于A ,B 两点且OA ⊥OB ,求三角形OAB 面积S 的取值范围.22.(本小题满分13分)已知双曲线C 的中心在坐标原点,焦点在x轴上,离心率e =虚轴长为2.(Ⅰ)求双曲线C 的标准方程;(Ⅱ)若直线:l y kx m =+与双曲线C 相交于A ,B 两点(A B ,均异于左、右顶点),且以AB 为直径的圆过双曲线C 的左顶点D ,求证:直线l 过定点,并求出该定点的坐标参 考 答 案1--5.BABCC 6--10.CADBC 11--12.DB 13.10,2⎡⎤⎢⎥⎣⎦15.35 16.8 17.(1)5<m (2)4=m试题解析:(1)方程C 可化为 m y x -=-+-5)2()1(22 显然05>-m 时方程C 表示圆.即5<m(2)圆的方程化为 m y x -=-+-5)2()1(22,圆心C (1,2),半径 m r -=5则圆心C (1,2)到直线l:x+2y-4=0的距离为 5121422122=+-⨯+=d5221,54==MN MN 则 ,有 222)21(MN d r +=,,)52()51(522+=-∴m 得 4=m18.(1)见解析;(2)3.【解析】(1)证明:连接1BC ,设1BC 与1BC 相交于点O ,连接OD , ∵ 四边形11BCC B 是平行四边形, ∴点O 为1BC 的中点. ∵D 为AC 的中点,∴OD 为△1AB C 的中位线, ∴ 1//OD AB . ∵OD ⊂平面1BC D ,1⊄AB 平面1BC D ,∴1//AB 平面1BC D . (2)∵1⊥AA 平面ABC ,1AA ⊂平面11AAC C ,∴ 平面ABC ⊥平面11AAC C ,且平面ABC 平面11AAC C AC =.作BE AC ⊥,垂足为E ,则BE ⊥平面11AAC C ,∵12AB BB ==,3BC =, 在Rt △ABC 中,AC ===,AB BC BE AC == ,∴四棱锥11-B AAC D 的体积()1111132V AC AD AA BE =⨯+126=3=.∴四棱锥11-B AAC D 的体积为3.19.(1)±;(2)面积最小值是4.EODC 1A 1B 1CBA试题解析:(1)依题意知F (1,0),设直线AB 的方程为1x my =+.将直线AB 的方程与抛物线的方程联立,消去x 得2440y my --=.设11(,)A x y ,22(,)B x y ,所以124y y m +=,124y y =-.①因为2AF FB =,所以122y y =-.②联立①和②,消去12,y y ,得m =.所以直线AB 的斜率是±.(2)由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2AOB S ∆.因为12122||||2AOB S OF y y ∆=⨯⋅⋅-==,所以当m =0时,四边形OACB 的面积最小,最小值是4.20.(Ⅰ)证明见解析;(Ⅱ)4【解析】试题解析:(Ⅰ)取BE 的中点F 、AE 的中点G ,连结FG 、GD 、CF∴1GF 2=AB ,GF//AB 1DC 2=AB ,CD//AB∴CD GF =,CD//GF ∴CFGD 是平行四边形 ∴CF//GD AB ⊥平面C BE ,∴CF AB ⊥CF ⊥BE ,AB BE =B ,∴CF ⊥平面ABE CF//DG ,∴DG ⊥平面ABEDG ⊂平面D A E ,∴平面ABE ⊥平面D A E (另证:可证得GD ∠B 是二面角D B -AE -的平面角在GD ∆B 中,计算可得:G B =DG =D B =满足222D G DG B =B +故GD 2π∠B =,∴平面ABE ⊥平面D A E 6分) (Ⅱ)过G 作G FD H ⊥于H ,过H 作D HM ⊥E 于M ,由GF BE ⊥,FC BE ⊥,可得BE ⊥平面GFCD ,平面D BE ⊥平面GFCD ,从而G H ⊥平面D BE ,由此可得D E ⊥平面G HM ,即G ∠MH 就是二面角D A -E -B 的平面角 , 因为G H =,G 5M =,MH =故cos G G MH ∠MH ==M ,即二面角D A -E -B 的平面角的余弦值为(另解:过AE 中点G 作G D M ⊥E 于M ,连结BM ,可证得G ∠MB 就是二面角D A -E -B 的平面角 在G ∆MB 中,计算可得:G B =G 5M =,5BM =故cos G G MH ∠MH ==M ,即二面角D A -E -B 的平面角的余弦值为4)21.(1)14822=+y x ;(2)三角形OAB 面积S 的取值范围为8(,3.【解析】试题解析:(1)动点Q 满足=+.又,设Q (x ,y ),则=﹣=﹣(x ,y )=.∵点P 在椭圆上,则,即.(2)①当OA 斜率不存在或为零时,S==2,②当OA 斜率存在且不为零时,设OA :y=kx (k≠0),代入x 2+2y 2=8,得,,∴|OA|2=x 2+y 2=,∵OA ⊥OB ,以﹣代换k ,同理可得,∴S 2=|OA|2|OB|2==424216(21)252k k k k ++++=8=8,∵≥=4,当且仅当k=±1时等号成立.而k=±1时,AB 与x 轴或y 轴垂直,不合题意.∴∈(4,+∞),∴,∴.因此三角形OAB 面积S 的取值范围为8(,3.22.(Ⅰ)2214x y -=(Ⅱ)直线l 过定点,定点坐标为1003⎛⎫- ⎪⎝⎭,试题解析:(Ⅰ)由题设双曲线的标准方程为22221(0,b 0)x y a a b -=>>,由已知得:c a 22b =,又222a b c +=,解得2,1a b ==,∴双曲线的标准方程为2214x y -=.(Ⅱ)设1122(x ,y ),(x ,y )A B ,联立2214y kx mx y =+⎧⎪⎨-=⎪⎩ ,得222(14k )84(m 1)0x mkx ---+=, 故2222212221221406416(14k )(m 1)0814k 4(m 1)14k k m k mk x x x x ⎧-≠⎪∆=+-+>⎪⎪⎨+=-⎪⎪-+⎪=⎩- , 22221212121224(k )(k )k ()14m k y y x m x m x x mk x x m k-=++=+++=- , 以AB 为直径的圆过双曲线C 的左顶点(2,0)D -,1AD BD k k ∴=-,即1212122y yx x ⋅=-++,1212122()40y y x x x x ∴++++= 22222244(1)1640141414m k m mkk k k --+∴+++=---, 22316200m mk k ∴-+=.解得:12m k =,2103km =. 当12m k =时,l 的方程为(2)y k x =+,直线过定点(20)-,,与已知矛盾; 。
河北省邢台市第二中学2014-2015学年高一上学期第二次月考地理试题word版含答案

河北省邢台市第二中学2014-2015学年高一上学期第二次月考地理试题(满分:100分时间:90分钟)一、单项选择题(每题2分,共70分)北京时间2011年11月3 日1时36分6秒,“天宫一号目标飞行器与“神舟八号飞船成功实现首次交会对接。
读下图,完成1-4题。
1.“神舟八号”轨道舱与返回舱分离后(如图丙),轨道舱还要在太空停留一段时间来进行一系列的科学实验,留在太空的轨道舱属于()A.自然天体 B.人造天体 C.陨星 D.小行星2.图甲中天体M可能是()①水星②火星③天王星④金星⑤木星⑥土星⑦海王星A.②⑥ B.④⑤ C.③⑦ D.①④3.图示包括几级天体系统()A.3级 B.1级 C.4级 D.2级4.图甲中的阴影区域表示的是()A.黄道面B.赤道面 C.地球公转轨道 D.赤道5.关于晨昏线的叙述错误的 ( )A.晨昏线是昼半球与夜半球分界线 B.晨昏线任何时候都平分地球C.晨昏线上的太阳高度为零 D.在夏至日,晨昏线与地轴在同一平面内且与太阳光垂直右图中太阳光线从右侧照射过来,读图完成6—7题。
6.当晨昏线处在CD位置时,下列叙述正确的是( )A.赤道上昼夜平分 B.北半球各地昼长达最大值C.南半球各地正处于冬季 D.北极圈以内出现极昼7.当晨昏线从CD移向AB时,下列叙述正确的是( )A.太阳直射点逐渐向南移动 B.南半球极昼范围增大C.地球公转速度始终不变 D.北半球各地夜渐短昼渐长一艘由太平洋驶向大西洋的船经过P地(53ºS、75ºW)时,一名中国船员拍摄到海上落日景观,洗印出的照片上显示拍照时间为9时(北京时间)。
据此回答8-9题。
8.该船员拍摄照片时,P地的地方时为(),此时南半球的昼夜长短状况为()A.22时、昼短夜长 B.14时、昼长夜短C.20时、昼长夜短 D.16时、昼夜等长9.拍摄照片的当天,漠河(约53ºN)的夜长约为()A.16时 B.14小时C.10小时 D.12小时2010年上海世博会于北京时间4月30日晚8:10分在世博文化中心正式开幕,家住纽约(西五区)的玛丽也想看开幕式直播。
高三数学上学期第二次月考试卷 理(含解析)-人教版高三全册数学试题

2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>04.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣26.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.278.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.49.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.2011.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=__________.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是__________.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=__________.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}【考点】Venn图表达集合的关系及运算.【专题】应用题;集合思想;定义法;集合.【分析】由图知,阴影部分表示的集合中的元素是在集合N中的元素但不在集合M中的元素组成的,即N∩C U M.【解答】解:由韦恩图知阴影部分表示的集合为N∩(C U M)M={x|y=ln(x2﹣2x) }∴x2﹣2x>0,解得x<0,或x>2,∴M={x|x<0,或x>2},∴C U M={x|0≤x≤2}=[0,2],N={y|y=}={y|y≥1}=[1,+∞),∴N∩(C U M)=[1,2],故选:C【点评】本小题主要考查Venn图表达集合的关系及运算、二次不等式的解法等基础知识,属于基础题2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣【考点】分段函数的应用;函数的零点.【专题】函数的性质及应用.【分析】由f(a)=﹣3,结合指数和对数的运算性质,求得a=7,再由分段函数求得f(6﹣a)的值.【解答】解:函数f(x)=且f(a)=﹣3,若a≤1,则2a﹣1﹣2=﹣3,即有2a﹣1=﹣1<0,方程无解;若a>1,则﹣log2(a+1)=﹣3,解得a=7,则f(6﹣a)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.【点评】本题考查分段函数的运用:求函数值,主要考查指数和对数的运算性质,属于中档题.3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0【考点】命题的真假判断与应用.【专题】计算题;规律型;简易逻辑.【分析】利用命题的否定判断A的正误;四种命题的逆否关系判断B的正误;充要条件判断C 的正误;命题的真假判断D的正误;【解答】解:对于A,命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠x0,不满足命题的否定形式,所以不正确;对于B,命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5,不满足否命题的形式,所以不正确;对于C,若ω=1是函数f(x)=cosx在区间[0,π]上单调递减的,而函数f(x)=cosωx在区间[0,π]上单调递减的,ω≤1,所以ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件,正确.对于D,命题:∃x0∈R,x02+a<0为假命题,则命题:a≥0,∀x∈R,x2+a≥0是真命题;所以,命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0,不正确;故选:C.【点评】本题考查命题的真假的判断与应用,基本知识的考查.4.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.【考点】由三视图求面积、体积.【专题】图表型.【分析】先由三视图还原成原来的几何体,再根据三视图中的长度关系,找到几何体中的长度关系,进而可以求几何体的体积.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是组合体的体积,一般组合体的体积要分部分来求.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣2【考点】椭圆的简单性质.【专题】计算题.【分析】通过题意可推断出当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.进而可根据椭圆的方程求得焦点的坐标和P的坐标,进而求得和,则•的值可求得.【解答】解:根据题意可知当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.这时,F1(﹣,0),F2(,0),P(0,1),∴=(﹣,﹣1),=(,﹣1),∴•=﹣2.故选D【点评】本题主要考查了椭圆的简单性质.考查了学生数形结合的思想和分析问题的能力.6.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】分别讨论a,b,c的取值X围,即可比较大小.【解答】解:1<log37<2,b=21.1>2,c=0.83.1<1,则c<a<b,故选:B.【点评】本题主要考查函数值的大小比较,根据指数和对数的性质即可得到结论.7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.27【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的R,P,Q的值,当Q=0时,满足条件Q=0,退出循环,输出P的值为3.【解答】解:模拟执行程序,可得P=153,Q=63不满足条件Q=0,R=27,P=63,Q=27不满足条件Q=0,R=9,P=27,Q=9不满足条件Q=0,R=0,P=9,Q=0满足条件Q=0,退出循环,输出P的值为9.故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的R,P,Q的值是解题的关键,属于基本知识的考查.8.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.4【考点】三角函数的化简求值.【专题】计算题;转化思想;转化法;三角函数的求值.【分析】先根据对数的运算性质求出tanθ,再化简代值计算即可.【解答】解:点(16,tanθ)在函数y=log2x的图象上,∴tanθ=log216=4,∴====,故选:B.【点评】本题考查了二倍角公式,函数值的求法,以及对数的运算性质,属于基础题.9.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零【考点】函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】由函数的性质可知,f(x)=()x﹣log3x在(0,+∞)上是减函数,且可得f(x0)=0,由0<x0<x1,可得f(x1)<f(x0)=0,即可判断【解答】解:∵实数x0是方程f(x)=0的解,∴f(x0)=0.∵函数y()x,y=log3x在(0,+∞)上分别具有单调递减、单调递增,∴函数f(x)在(0,+∞)上是减函数.又∵0<x0<x1,∴f(x1)<f(x0)=0.∴f(x1)的值恒为负.故选A.【点评】本题主要考查了函数的单调性的简单应用,解题的关键是准确判断函数f(x)的单调性并能灵活应用.10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.20【考点】数列的求和.【专题】等差数列与等比数列.【分析】首先根据题中的已知条件已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,进一步求出数列的通项公式,然后根据通项公式求出各项的值,最后确定结果.【解答】解:已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2则:∴a n=3n﹣5a2+a4+a5+a9=40故选:B【点评】本题考查的知识点:根据点的斜率求出数列的通项公式,由通项公式求数列的项.11.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.【考点】对数的运算性质;函数的图象与图象变化.【分析】根据函数y=e|lnx|﹣|x﹣1|知必过点(1,1),再对函数进行求导观察其导数的符号进而知原函数的单调性,得到答案.【解答】解:由y=e|lnx|﹣|x﹣1|可知:函数过点(1,1),当0<x<1时,y=e﹣lnx﹣1+x=+x﹣1,y′=﹣+1<0.∴y=e﹣lnx﹣1+x为减函数;若当x>1时,y=e lnx﹣x+1=1,故选D.【点评】本题主要考查函数的求导与函数单调性的关系.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)【考点】函数奇偶性的性质.【专题】转化思想;数学模型法;函数的性质及应用;导数的综合应用.【分析】f(x)是定义在R上的奇函数,可得:f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),可得:xf′(x)+2f(x)>0,由g(x)=x2f(x),可得g′(x)>0.可得函数g(x)在(0,+∞)上单调递增.即可得出.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),∴xf′(x)+2f(x)>0,∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0.∴函数g(x)在(0,+∞)上单调递增.又g(0)=0,g(﹣x)=x2f(﹣x)=﹣g(x),∴函数g(x)是R上的奇函数,∴g(x)是R上的增函数.由不等式g(x)<g(1﹣3x),∴x<1﹣3x,解得.∴不等式g(x)<g(1﹣3x)的解集为:.故选:B.【点评】本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=.【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据对数和幂的运算性质计算即可.【解答】解:()+lg+lg70+=+lg()+1﹣lg3=+lg+1=+1+1=,故答案为:.【点评】本题考查了对数和幂的运算性质,关键是掌握性质,属于基础题.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是﹣8.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】将z=x﹣3y变形为,此式可看作是斜率为,纵截距为的一系列平行直线,当最大时,z最小.作出原不等式组表示的平面区域,让直线向此平面区域平移,可探求纵截距的最大值.【解答】解:由z=x﹣3y,得,此式可看作是斜率为,纵截距为的直线,当最大时,z最小.画出直线y=x,x+2y=2,x=﹣2,从而可标出不等式组表示的平面区域,如右图所示.由图知,当动直线经过点P时,z最小,此时由,得P(﹣2,2),从而z min=﹣2﹣3×2=﹣8,即z=x﹣3y的最小值是﹣8.故答案为:﹣8.【点评】本题考查了线性规划的应用,为高考常考的题型,求解此类问题的一般步骤是:(1)作出已知不等式组表示的平面区域;(2)运用化归思想及数形结合思想,将目标函数的最值问题转化为平面中几何量的最值问题处理.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=﹣8.【考点】奇偶性与单调性的综合;函数的周期性.【专题】数形结合.【分析】由条件“f(x﹣4)=﹣f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【解答】解:此函数是周期函数,又是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×(﹣6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=﹣8.故答案为﹣8.【点评】数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是①②④.【考点】命题的真假判断与应用;奇偶性与单调性的综合.【专题】函数思想;定义法;函数的性质及应用.【分析】是结合复合函数单调性的关系进行判断.②根据基本由函数奇偶性的定义判断函数为偶函数判断;③利用对勾函数的单调性判断;④由对勾函数的最值及函数奇偶性的性质进行判断即可.【解答】解:①函数f(x)=lg,(x∈R且x≠0).∵=2,∴f(x)=lg≥2,即f(x)的最小值是lg2,故①正确,②∵f(﹣x)==f(x),∴函数f(x)为偶函数,图象关于y轴对称,故②正确;③当x>0时,t(x)=,在(0,1)上单调递减,在(1,+∞)上得到递增,∴f(x)=lg在(0,1)上单调递减,在(1,+∞)上得到递增,故③错误;④∵函数f(x)是偶函数,由③知f(x)在(0,1)上单调递减,在(1,+∞)上得到递增,∴在(﹣1,0)上单调递增,在(﹣∞,﹣1)上得到递减,故④正确,故答案为:①②④【点评】本题考查了命题的真假判断与应用,考查了函数奇偶性的性质,考查了复合函数的单调性,是中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.【考点】必要条件;绝对值不等式的解法.【专题】规律型.【分析】先求出命题p,q的等价条件,利用¬p是¬q的必要不充分条件转化为q是p的必要不充分条件,建立条件关系即可求出m的取值X围.【解答】解:由||=,得|x﹣4|≤6,即﹣6≤x﹣4≤6,∴﹣2≤x≤10,即p:﹣2≤x≤10,由x2+2x+1﹣m2≤0得[x+(1﹣m)][x+(1+m)]≤0,即1﹣m≤x≤1+m,(m>0),∴q:1﹣m≤x≤1+m,(m>0),∵¬p是¬q的必要不充分条件,∴q是p的必要不充分条件.即,且等号不能同时取,∴,解得m≥9.【点评】本题主要考查充分条件和必要条件的应用,将¬p是¬q的必要不充分条件转化为q 是p的必要不充分条件是解决本题的关键.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.【考点】函数零点的判定定理;根的存在性及根的个数判断.【专题】计算题;函数的性质及应用;导数的综合应用;不等式的解法及应用.【分析】(1)由基本不等式可得g(x)=x+≥2=2e,从而求m的取值X围;(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,求导F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);从而判断函数的单调性及最值,从而确定m的取值X围.【解答】解:(1)∵g(x)=x+≥2=2e;(当且仅当x=,即x=e时,等号成立)∴若使函数y=g(x)﹣m有零点,则m≥2e;故m的取值X围为[2e,+∞);(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);故当x∈(0,e)时,F′(x)<0,x∈(e,+∞)时,F′(x)>0;故F(x)在(0,e)上是减函数,在(e,+∞)上是增函数,故只需使F(e)<0,即e+e+e2﹣2e2﹣m+1<0;故m>2e﹣e2+1.【点评】本题考查了基本不等式的应用及导数的综合应用,同时考查了函数零点的判断与应用,属于中档题.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.【考点】求对数函数解析式;函数解析式的求解及常用方法;函数最值的应用.【专题】计算题;转化思想.【分析】(1)由已知条件可知函数g(x)的图象上的任意一点P(x,y)关于原点对称的点Q (﹣x,﹣y)在函数f(x)图象上,把Q(﹣x,﹣y)代入f(x),整理可得g(x)(2)由(1)可令h(x)=f(x)+g(x),先判断函数h(x)在[0,1)的单调性,进而求得函数的最小值h(x)min,使得m≤h(x)min【解答】解:(1)设点P(x,y)是g(x)的图象上的任意一点,则Q(﹣x,﹣y)在函数f (x)的图象上,即﹣y=log a(﹣x+1),则∴(2)f(x)+g(x)≥m 即,也就是在[0,1)上恒成立.设,则由函数的单调性易知,h(x)在[0,1)上递增,若使f(x)+g(x)≥m在[0,1)上恒成立,只需h(x)min≥m在[0,1)上成立,即m≤0.m的取值X围是(﹣∞,0]【点评】本题(1)主要考查了函数的中心对称问题:若函数y=f(x)与y=g(x)关于点M (a,b)对称,则y=f(x)上的任意一点(x,y)关于M(a,b)对称的点(2a﹣x,2b﹣y)在函数y=g(x)的图象上.(2)主要考查了函数的恒成立问题,往往转化为求最值问题:m≥h(x)恒成立,则m≥h(x)m≤h(x)恒成立,max则m≤h(x)min20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.【考点】基本不等式在最值问题中的应用.【专题】计算题.【分析】(1)赢利总额y元即x年中的收入50x减去购进机床的成本与这x年中维修、保养的费用,维修、保养的费用历年成等差数增长,,(2)由(1)的结论解出结果进行判断得出何年开始赢利.(3)算出每一种方案的总盈利,比较大小选择方案.【解答】解:(1)y=﹣2x2+40x﹣98,x∈N*.(2)由﹣2x2+40x﹣98>0解得,,且x∈N*,所以x=3,4,,17,故从第三年开始盈利.(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).由y=﹣2x2+40x﹣98=﹣2(x﹣10)2+102≤102,所以按第二方案处理总利润为102+12=114(万元).∴由于第一方案使用时间短,则选第一方案较合理.【点评】考查审题及将题中关系转化为数学符号的能力,其中第二问中考查了一元二次不等式的解法,第三问中考查到了基本不等式求最值,本题是一个函数基本不等式相结合的题.属应用题中盈利最大化的问题.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】综合题;导数的综合应用.【分析】(1)求导数,利用导数的正负,即可讨论函数h(x)=的单调性;(2)求出g(x)max=g(2)=1,当x∈[,2]时,f(x)=+xlnx恒成立,等价于a≥x﹣x2lnx 恒成立,然后利用导数求函数u(x)=x﹣x2lnx在区间[,2]上取得最大值,则实数a的取值X围可求.【解答】解:(1)h(x)==+lnx,h′(x)=,①a≤0,h′(x)≥0,函数h(x)在(0,+∞)上单调递增②a>0时,h'(x)>0,则x∈(,+∞),函数h(x)的单调递增区间为(,+∞),h'(x)<0,则x∈(0,),函数h(x)的单调递减区间为(0,),.(2)g(x)=x3﹣x2﹣3,g′(x)=3x(x﹣),x 2g′(x)0 ﹣0 +g(x)﹣递减极小值递增 13由上表可知,g(x)在x=2处取得最大值,即g(x)max=g(2)=1所以当x∈[,2]时,f(x)=+xlnx≥1恒成立,等价于a≥x﹣x 2lnx恒成立,记u(x)=x﹣x2lnx,所以a≥u(x)max,u′(x)=1﹣x﹣2xlnx,可知u′(1)=0,当x∈(,1)时,1﹣x>0,2xlnx<0,则u′(x)>0,∴u(x)在x∈(,2)上单调递增;当x∈(1,2)时,1﹣x<0,2xlnx>0,则u′(x)<0,∴u(x)在(1,2)上单调递减;故当x=1时,函数u(x)在区间[,2],上取得最大值u(1)=1,所以a≥1,故实数a的取值X围是[1,+∞).【点评】本题考查了利用导数研究函数的单调性,考查了导数在最大值、最小值问题中的应用,考查了数学转化思想方法和函数构造法,训练了利用分离变量法求参数的取值X围,属于中档题.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).【考点】参数的意义;简单曲线的极坐标方程.【专题】选作题;转化思想;综合法;坐标系和参数方程.【分析】(1)把参数方程和极坐标方程化为直角坐标方程,联立方程组求出交点的坐标,再把交点的直角坐标化为极坐标;(2)画出图象,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.【解答】解:(1)由(θ为参数),消去参数得:x2+(y﹣2)2=4,即x2+y2﹣4y=0;由ρ=﹣4cosθ,得ρ2=﹣4ρcosθ,即x2+y2=﹣4x.两式作差得:x+y=0,代入C1得交点为(0,0),(﹣2,2).其极坐标为(0,0),(2,);(2)如图,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.此时|AB|=2+4,O到AB的距离为.∴△OAB的面积为S=×(2+4)×=2+2.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程,考查了推理能力与计算能力,属于基础题.23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.【考点】绝对值不等式的解法.【专题】不等式的解法及应用.【分析】(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)求得f(x)=|2x+2|﹣|x﹣1|=在区间[﹣4,2]内的值域,结合|2x+2|﹣|x﹣1|>a无解,求得a的X围.【解答】解:(1)当a=0时,不等式即|2x+2|﹣|x﹣1|>0,可得①,或②,或③.解①求得 x<﹣3,解②求得﹣<x<1,解③求得x≥1.综上可得,原不等式的解集为{x|x<﹣3,或x>﹣}.(2)当x∈[﹣4,2],f(x)=|2x+2|﹣|x﹣1|=的值域为[﹣2,3],而不等式|2x+2|﹣|x﹣1|>a无解,故有a≤3.【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想;还考查了分段函数的应用,求函数的值域,属于中档题.。
河北省邢台市第二中学2014-2015学年高二上学期第三次月考数学(文)试题人教A版

高二上学期第三次月考数学(文)试题一、选择题(每题5分,共60分,将正确选项涂在答题卡上) 1、抛物线212y x =的焦点为( )A .()6,0B .()0,6C .()3,0D .()0,32、双曲线13222=-y x 的离心率为 ( )A B C D 3、命题“00,20x x R ∃∈≤”的否定为( )A .00,20x x R ∀∈≤B .00,20x x R ∀∈≥C .00,20x x R ∀∈<D .00,20x x R ∀∈> 4. 已知1:1,:1p x q x><,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也非必要条件 5. 若A x f =')(0,则xx f x x f x ∆-∆-→∆)()(lim000等于( )A .AB .A -C .A 21 D .以上都不是6.已知双曲线()2222:10,0x y C a b a b -=>>,则C 的渐近线方程为( )111....432A y x B y x C y x D y x =±=±=±=±7.已知对k R ∈直线10y kx --=与椭圆2215x y m+=恒有公共点,则实数m 的取值范围是()A .(0,1)B . (0,5)C .),5()5,1[+∞⋃D .[1,5)8.曲线1323+-=x xy 在点)1,1(-处的切线方程为( )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y9.如图是'()f x 的图像,则正确的判断个数是( )(1))(x f 在)3,5(--上是减函数;(2)4=x 是极大值点; (3)2=x 是极值点;(4))(x f 在)2,2(-上先减后增; A.0 B .1 C .2 D. 310、已知函数()3sin 34(,)f x a x bx a R b R =++∈∈,()f x '为()f x 的导函数,则()()2014(2014)2015(2015)f f f f ''+-+--=( ) A .8 B .2014 C .2015 D .011. 函数a ax x y +-=23在)1,0(内有极小值,则实数a 的取值范围为( ) A. )3,0( B. )3,(-∞ C. ),0(+∞ D. )23,0(12.已知双曲线()2222:10,0x y E a b a b-=>>的右焦点为()3,0F ,过点F 的直线交双曲线于,A B 两点,若AB 的中点坐标为()12,15N --,则E 的方程为( ) 22222222.1.1.1.136634554x y x y x y x y A B C D -=-=-=-=二 、填空题(每题5分,共20分,将正确答案写在答题纸上)13.方程22113x y m m+=--表示焦点在y 轴上的椭圆,则m 的取值范围是_ _____.14.已知定义在R 上的可导函数y =f (x )的图象在点1M (,f(1))处的切线方程为122y x =-+,则f (1)+f ′(1)=_ _____.15.已知P 是双曲线1366422=-y x 上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为_ _____.16、已知函数223)(a bx ax x x f +++=在1=x 处有极值10,则)2(f =_ _____.三、解答题:(第17题10分,其它各12分,共70分,将规范的答题过程写在答题纸上.) 17.(本题满分10分)设命题12:,6:2>≥-xq x x p ,已知“”“”p q q ∧⌝与同时为假命题,. (1)分别判断p 和q 的真假; (2)求满足条件的x 的取值集合.18.(本题满分12分)某种产品的广告费支出x 与销售额y (单位:万元)之间有如下对应数据:(1)求回归直线方程;(2)试预测广告费支出为10万元时,销售额多大? (参考数据:521145ii x ==∑ 52113500ii y ==∑511380i ii x y==∑参考公式:线性回归方程系数:1221ni ii ni i x y nx yb x nx==-=-∑∑,ay bx =-)19.(本题满分12分)已知函数321()33f xx x x a =-+++. (1)求()f x 的单调区间;(2)若()f x 在区间[﹣3,3]上的最小值为,求a 的值.20.(本题满分12分)已知中心在原点的双曲线的渐近线方程是y =,且双曲线过点(Ⅰ)求双曲线的方程;(Ⅱ)过双曲线右焦点F 作倾斜角为4π的直线交双曲线于,A B ,求||AB .21.(本题满分12分) 已知函数()ln f x x x =.(Ⅰ)求函数()f x 在[1,3]上的最小值;(Ⅱ)若对1[,e]ex ∀∈,都有不等式22()3f x x ax ≥-+-成立,求实数a 的取值范围.22. (本题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 右焦点)0,1(F ,且21=e (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(A B ,都不是顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.2013级高二上学期第三次月考文数参考答案三、解答题17.解:(1) “”“”p q q ∧⌝与同时为假命题,所以q 为真,p 为假------------------4分(2)由(1)知⎩⎨⎧<->62x x x 解得03x <<--------------------------------------8分故x 的取值集合为{}|03x x <<. --------------------------------------10分 18. (1)解:2+4+5+6+825=555x ==,30+40+60+50+70250=5055y == ------3分又已知521145ii x==∑ ,511380i i i x y ==∑于是可得:5152215138055506.51455555i ii i i x y x yb x x==--⨯⨯===-⨯⨯-∑∑, ------------------------5分50 6.5517.5a y bx =-=-⨯=因此,所求回归直线方程为: 6.517.5y x =+ --------------------------------8分 (2)解:根据上面求得的回归直线方程,当广告费支出为10万元时,6.51017.5=82.5y =⨯+ (万元) 即这种产品的销售收入大约为82.5万元. ------12分19.解:(1)∵321()33f x x x x a =-+++,∴2'()23f x x x =-++ --------------------------------------2分 令'()0f x >,得13x -<<;令'()0f x <,得13x x <->或, ∴()f x 的单调减区间为(-∞,-1),(3,+∞),单调增区间为(-1,3). ---------------------------------------6分 (2)当x ∈[-3,-1]时,'()0f x <;当x ∈[-1,3]时,'()0f x > ∴min 17()(1)1333f x f a =-=+-+=∴4a =.------------------------------------------------------------12分 20.解:(1)设所求双曲线方程为:223(0)x y λλ-=≠,点代入得:3λ=,故所求双曲线方程为:2213y x -= --------------------------------------4分 (2)直线AB 的方程为:2y x =-,设1122(,),(,)A x y B x y ,由22233y x x y =-⎧⎨-=⎩ 得:22470x x +-=,则1212272x x x x +=-⎧⎪⎨=-⎪⎩-----------------9分∴12||6AB x x -==弦长 ------------12分22.解:(Ⅰ)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,由已知得:21=e 且1c =, ∴2a =,∴2223b a c =-=. ∴椭圆的标准方程为22143x y +=.---------------------------------------4分 (Ⅱ)设11()A x y ,,22()B x y ,,联立221.43y kx m x y =+⎧⎪⎨+=⎪⎩,得222(34)84(3)0k x mkx m +++-=, 22222212221226416(34)(3)03408344(3).34m k k m k m mk x x k m x x k ⎧⎪∆=-+->+->⎪⎪+=-⎨+⎪⎪-=⎪+⎩,即,, ------------8分 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-=++=+++=+, 因为以AB 为直径的圆过椭圆的右顶点(20)D ,,∴1AD BD k k =-,即1222211-=-⋅-x y x y ,---------------------------------10分 ∴1212122()40y y x x x x +-++=,∴2222223(4)4(3)1640343434m k m mk k k k --+++=+++,∴0416722=++k mk m .解得:027=+k m 或02=+k m∴直线l 过点)0,72(或点)0,2((舍)--------------------------------------12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二年级第二次月考数学试题一、选择题(本大题共有12个小题,每个小题5分,共计60分)1.点P(a ,b ,c )到坐标平面x O y 的距离是()A a 2+b 2B a +bC cD |c |2.若点(k ,0)与(b ,0)的中点为(-1,0),则直线y =kx +b 必定经过点()A (1,-2)B . (1,2)C . (-1,2)D . (-1,-2)3. 已知椭圆的标准方程x 2+ y 210 =1,则椭圆的焦点坐标为() A (±10 ,0) B (0, ±10 ) C (0,±3) D (±3,0)4.已知直线l 1:(k -3)x +(4-k )y +1=0,与直线l 2:2(k -3)x -2y +3=0平行,则k 的值为()A 1或3B 1或5C 3或5D 1或25.直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M 、N 两点,若|MN|≥2 3 ,则k 的取值范围是()A [-34 ,0]B [-33 ,33 ]C [- 3 , 3 ]D [-23,0] 6.圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是()A πSB 2πSC 3πSD 4πS7.直线c osθ·x +sinθ·y -1=0与圆x 2+y 2=1的位置关系是()A 相交B 相切C 相离D 不能确定8.设a 、b 是两条不同的直线,α、β是两个不同的平面,则下列四个命题: ①若a ⊥b ,a ⊥α,则b ∥α;②若a ∥α,α⊥β,则a ⊥β;③若a ⊥β,α⊥β,则a ∥α;④若a ⊥b ,a ⊥α,b ⊥β,则α⊥β。
其中正确的命题个数是()A 0个B 1个C 2个D 3个9. 一个几何体的三视图如图所示,则此几何体的体积是()A .112B .80C .72D .6410.正四棱柱ABCD-A 1B 1C 1D 1中,AB=3,BB 1= 4,长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R-PQMN 的体积是()A 6B 10C 12D 不确定11.如图所示,是一个无盖正方体盒子的表面展开图,A 、B 、C 为其上的三个点, 则在正方体盒子中,∠ABC 等于()A 45°B 60°C 90°D 120°12.一条光线从点(-2,-3)射出,经y 轴反射后与圆 (x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为()A - 53 或 - 35B - 32 或 - 23C - 54 或 - 45D - 43 或 - 34二、填空题(本大题共有4个小题,每个小题5分,共计20分)13.方程x 225-m+ y 216 + m =1表示焦点在y 轴上的椭圆,则m 的取值范围是_____________. 14.已知正四棱锥的体积为12,底面对角线的长为2 6 ,则侧面与底面所成的二面角等于________.15.若直线l 1: y =kx +1与l 2: x -y -1=0的交点在第一象限内,则k 的取值范围是__________.16.在三棱锥A-BCD 中,侧棱AB 、AC 、AD 两两垂直,△ABC 、△ACD 、△ADB 的面积分别为22 、32 、62,则三棱锥A-BCD 外接球的表面积为______________. 三、解答题(本大题共有6个小题,其中第17题10分,其它小题每小题12分,共计70分)17.求满足下列条件的直线方程(1)过点(-2,3),且在两坐标轴上截距相等;(2)过点(2,-3),且到A (-1,1)和B(5,5)的距离相等。
· A · ·B C18.如图所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,AA1= 3 。
(1)证明:A1C⊥平面AB1C1;(2)若D是棱CC1的中点,在棱AB上是否存在一点E,使DE∥平面AB1C1?证明你的结论。
19.已知圆C:(x-1)2+ y2=9内有一定点P(2,2),过点P作直线l交圆C于A、B两点. (1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程;(3)当直线l的倾斜角为45°时,求弦AB的长。
20、如图(1)所示,已知矩形ABCD,AB=2AD=2a,E是CD边的中点,以AE为棱,将△DAE向上折起,将D 折到D′的位置,使平面D′AE与平面ABCE成直二面角如图(2)所示。
(1)求直线D′B与平面ABCE所成的角的正切值;(2)求四棱锥D′-ABCE的体积;(3)求异面直线AD′与BC所成的角。
21、△ABC 的顶点A 固定,点A 的对边BC 的长是2a ,边BC 上的高的长是b ,边BC 沿一条定直线移动,求△ABC 外心的轨迹方程。
22、如图,在Rt △ABC 中,AC=BC,PA ⊥平面ABC ,PB 与平面ABC 成60°角(1) 求证:平面PBC ⊥平面PAC ;(2) 求二面角C-PB-A 的正切值。
APB C高二年级第二次月考数学答案一、 选择题: DACCB DBBBA BD二、填空题:13、( 92,25) 14、60° 15、-1<k <1 16、6π 三、解答题17、解:(1)当所求直线过原点时满足题意,此时的直线方程为y =-32x ,即3x +2y =0;当所求直线不过原点时,设其方程为x a + y a =1,∵所求直线过点(-2,3),∴有-2a + 3a=1,解得a =1,∴所求直线的方程为x +y =1,即x +y -1=0。
综上所述所求直线的方程为3x +2y =0或x +y -1=0。
(2)当所求直线的斜率不存在时,直线的方程为x =2,此时点A 和B 到直线x =2的离都是3,∴满足题意。
当所求直线的斜率存在时,设其斜率为k ,则方程为kx -y -2k -3=0,由A 和B 到所求的直线的距离相等,∴有| k·(-1)-1-2k -3|1+k 2 = |k·5-5-2k -3|1+k2 ,解得k = 23 ,∴所求直线的方程为y +3= 23(x -2)。
故所求直线的方程为x =2或2x -3y -13=0。
18、证明:(1)∵∠ACB=90°,∴BC ⊥AC.∵三棱柱ABC-A 1B 1C 1是直三棱柱,∴BC ⊥CC 1. ∵AC∩CC 1=C,∴BC ⊥平面ACC 1A 1.∵AC 1⊂平面ACC 1A 1,∴BC ⊥A 1C.∵BC ∥B 1C 1,∴B 1C 1∥A 1C.在Rt △ABC 中,AB=2,BC=1,∴AC= 3 .∵AA 1= 3 ∴四边形ACC 1A 1为正方形.∴A 1C ⊥AC 1.∵B 1C 1∩AC 1=C 1,∴A 1C ⊥平面AB 1C 1。
(2)在棱AB 上存在点E ,使得DE ∥平面AB 1C 1。
证明如下:取BB 1的中点F ,AB 的中点E ,连结DF 、FE ,在直三棱柱ABC-A 1B 1C 1中,BB 1C 1C 为矩形,∵D 是棱CC 1的中点,∴DF ∥B 1C 1,而B 1C 1⊂平面AB 1C 1,∴DF ∥平面AB 1C 1.在三角形ABB 1中,E 、F 分别是AB 、BB 1的中点,∴EF ∥AB 1,而AB 1⊂平面AB 1C 1,∴EF ∥平面AB 1C 1.又∵DF∩EF=F ,∴平面DEF ∥平面AB 1C 1.∵DE ⊂平面DEF ,∴DE ∥平面ED CA A 1C B B·AB 1C 1.故存在点E 为AB 的中点满足题意。
19、解:(1)由圆的方程可知圆心C 的坐标为(1,0),∵直线l 过点P(2,2),∴由两点式得所求直线l 的方程为y -02-0 =x -12-1,即2x -y -2=0. (2)∵弦AB 被点P 平分∴由圆的性质可知,直线l 与CP 垂直,而k CP = 2-02-1=2, ∴所求直线l 的斜率为-12 ,由点斜式得所求方程为y -2=-12(x -2),即x +2y -6=0. (3)∵直线l 的倾斜角为45°,∴直线l 的斜率为1,∴直线l 的方程为x -y =0,由点到直线的距离公式得圆心C 到直线l 的距离为22,而圆的半径为3,∴有(|AB|2 )2=32-(22)2=172,∴|AB|=34 即弦AB 的长为34 。
20、解;(1)∵D′-AE-B 是直二面角,∴平面D′AE ⊥平面ABCE.作D′O ⊥AE 于O ,连结OB,则D′O ⊥平面ABCE ,∴∠D′BO 是直线D′B 与平面ABCE 所成的角.∵D′A=D′E=a ,且D′O ⊥AE 于O ,∠AD′E=90°∴O 是AE 的中点,∴AO=OE=D′O=22a ,∠D′AE=∠BAO=45°.∴在△AOB 中,OB=OA 2+AB 2-2·OA·ABcos45°=(22a)2+(2a)2-2·(22a)(2a) 22 =102a .∴在Rt △D′OB 中,t a n ∠D′BO=D′O OB =22a /102a =55. (2)∵四边形ABCE 是直角梯形,∴S ABCE = 12 (a +2a )·a =32a 2.又∵D′O 是四棱锥的高且D′O=22a ,∴V D′-ABC E= 13 (22a )( 32 a 2)=24a 3. (3)由图(1)可知BE ⊥AE ,∵D′-AE-B 是直二面角,∴平面D′AE⊥平面ABCE.又AE 是平面D′AE 与平面ABCE 的交线,∴BE ⊥平面D′AE ,∴BE ⊥D′E,即△D′EB 是直角三角形。
又D′E=a ,BE= 2 a ,∴D′B= 3 a ,取AB 的中点F ,和D′B 的中点G ,并连结EF 、EG 、FG ,则EF ∥BC,FG ∥AD′,∴∠GFE 就是异面直线AD′与BC 所成的角。
在△EFG 中EF=BC=a ,FG= 12 AD′=12 a ,EG= 12 D′B= 32a .∴△EFG 是直角三角形,∴c os ∠GFE=FG EF =12,∴异面直线AD′与BC 所成的角为60° 21解:如图,以BC 边所在的定直线为x 轴,以过A 点与x 轴垂直的直线为y 轴,建立直角坐标系,则A 点的坐标为(0,b ).设△ABC 的外心为M (x ,y ),作MN ⊥BC 于N ,则MN 是边BC 的垂直平分线.∵|BC|=2a ,∴|BN|=a ,|MN|=|y |.又M 是△ABC 的外心,∴M ∈{M||MA|=|MB|}.而|MA|=x 2+(y -b)2 .|MB|=|MN|2+|NB|2 =a 2+y 2 ∴x 2+(y -b)2 =a 2+y 2 化简得所求轨迹方程为x 2―2by +b 2―a 2=022、(1)证明:∵PA ⊥平面ABC ,BC 证明:∵PA ⊥平面ABC ,BC ⊂平面ABC ,∴BC ⊥PA ,又∵BC ⊥AC ,且AC∩PA=A ,∴BC ⊥平面PAC ,而BC ⊂平面PBC ,∴平面PBC ⊥平面PAC ;(3) 解:取AB 的中点D ,过D 作DE ⊥PB 交PB 于E ,连接CE ,∵PA ⊥平面ABC ,∴平面PAB ⊥平面ABC ,∴CD ⊥平面PAB ,而PB ⊂平面PAB ,∴PB ⊥CD ,∴∠CED 就是二面角C-PB-A 的平面角,令AC=2,则BC=2,在Rt △ABC 中,AC=BC,∴AB=2 2 ,∴CD= 2 ,又∵PB 与平面ABC 成60°角,PA ⊥平面ABC ,∴∠PBA=60°,∴PB=4 2 ,PA=2 6 ,易知△PAB ∽△DEB ,∴DE=62 ,在Rt △CDE 中,t a n ∠CED=CD DE = 2 62=2 3 3 ∴二面角C-PB-A 的正切值为2 3 3。