河北省邢台市第二中学2021届高三上学期11月月考数学试题

合集下载

2023-2024学年河北省邢台市部分高中高三(上)期中数学试卷【答案版】

2023-2024学年河北省邢台市部分高中高三(上)期中数学试卷【答案版】

2023-2024学年河北省邢台市部分高中高三(上)期中数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |x <1},则如图中阴影部分所表示的集合为( )A .{1}B .{2}C .{﹣1,0}D .{1,2}2.已知(1+i )Z =2﹣4i ,则|Z |=( ) A .2 B .√10 C .4 D .103.已知a =313,b=log 213,c =log 131e ,则( )A .a >c >bB .c >a >bC .a >b >cD .c >b >a4.已知向量a →=(2,1),b →=(1,−3),(ka →−b →)⊥(a →+b →),则实数k 的值为( ) A .−94B .94C .﹣1D .15.已知函数f(x)=(m 2−m −1)x m2+m−3是幂函数,且在(0,+∞)上单调递减,若a ,b ∈R ,且a <0<b ,|a |<|b |,则f (a )+f (b )的值( ) A .恒大于0B .恒小于0C .等于0D .无法判断6.若命题“对任意的x ∈(0,+∞),x +1x−m >0恒成立”为假命题,则m 的取值范围为( )A .{m |m ≥2}B .{m |m >2}C .{m |m ≤2}D .{m |m <2}7.函数y =x−3sinxe |x|的大致图像是( )A .B .C .D .8.将函数f(x)=sin(ωx +π6)(ω>0)的图像向左平移π6个单位长度后,得到的图像关于y 轴对称,且函数f (x )在[0,π6]上单调递增,则ω的取值是( )A .12B .2C .32D .1二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)9.设等差数列{a n }的前n 项和为S n ,且S 30>0,S 31<0,则下列结论正确的是( ) A .a 15>0 B .{Sn n}是等差数列C .a 16>0D .对任意n ∈N *,都有S n ≤S 1510.设f (x )是定义在R 上的奇函数,且f (x )在(0,+∞)上单调递减,f (﹣7)=0,则( ) A .f (x )在(﹣∞,0)上单调递增 B .f (8)<0C .不等式f (x )>0的解集为(﹣∞,﹣7)∪(0,7)D .f (x )的图象与x 轴只有3个交点11.已知函数f(x)={2(x+2)2,x ≤−1|log 2(x +1)|,x >−1,若关于x 的方程f (x )=m 有四个不等实根x 1、x 2、x 3、x 4(x 1<x 2<x 3<x 4),则下列结论正确的是( ) A .1<m ≤2B .﹣3<x 1<﹣2C .﹣1≤4x 3+x 4<0D .x 12+x 22+log m √2的最小值为1012.如图,在△ABC 中,BA =BC =1,延长BC 到点D ,使得BC =CD ,以AD 为斜边向外作等腰直角三角形ADE ,则( )A .AD 2=5﹣4cos BB .sin ∠CAD ∈(12,√32)C .△ACD 面积的最大值为12D .四边形ACDE 面积的最大值为5+2√54三、填空题(共4小题,每小题5分,满分20分)13.已知函数f(x)={(a +2)x ,x ≥2a x +1,x <2是R 上的单调递增函数,则实数a 的取值范围是 .14.已知函数f(x)=1−e x1+e x ,若m >0,n >0,且f (2m )+f (n ﹣1)=f (0),则1m +2n的最小值为 .15.已知x ,y ,z ∈R ,且x ﹣2y +2z =5,则(x +5)2+(y ﹣1)2+(z +3)2的最小值是 .16.已知函数f (x ),g (x )的定义域均为R ,f (x )为奇函数,g (x +1)为偶函数,f (﹣1)=2,g (x +2)﹣f (x )=1,则∑g(i)2023i=1= .四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知数列{a n }的前n 项和为S n ,且a n ={5,n =12n +2,n ≥2.(1)求S n ; (2)若b n =1S n +1,求数列{b n }的前n 项和T n . 18.(12分)已知函数y =f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过点(4,2).(1)若f (3x ﹣1)>f (﹣x +5)成立,求x 的取值范围;(2)若对于任意x ∈[1,4],不等式f (2x )g (x4)−m <0恒成立,求实数m 的取值范围.19.(12分)已知向量a →=(√3,−sin ωx 2),b →=(sinωx ,2sin ωx2),函数f(x)=a →⋅b →+1(其中0<ω<1),函数f (x )的图象的一条对称轴是直线x =π2.(1)求ω的值;(2)若0<α<π3且f(32α)=43,求f(32α+3π8)的值.20.(12分)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cosA a+cosB b=2√3sinC 3a.(1)求角B 的大小;(2)若b =2√3,求△ABC 面积的取值范围.21.(12分)为了改善湖泊的水质,某市环保部门于2021年年终在该湖泊中投入一些浮萍,这些浮萍在水中的繁殖速度越来越快,2022年2月底测得浮萍覆盖面积为360m 2,2022年3月底测得浮萍覆盖面积为480m 2,浮萍覆盖面积y (单位:m 2)与2022年的月份x (单位:月)的关系有两个函数模型y =ka x (k >0,a >1)与y =mx 2+n (m >0)可供选择. (1)分别求出两个函数模型的解析式;(2)若2021年年终测得浮萍覆盖面积为200m 2,从上述两个函数模型中选择更合适的一个模型,试估算至少到哪一年的几月底浮萍覆盖面积能超过8100m 2?(参考数据:lg 2≈0.30,lg 3≈0.48) 22.(12分)已知{a n }是等差数列,a 2+a 5=16,a 5﹣a 3=4.(Ⅰ)求{a n }的通项公式及∑ 2n−1i=2n−1a i (n ∈N *);(Ⅱ)设{b n}是等比数列,且对于任意的k∈N*,当2k﹣1≤n≤2k﹣1时,b k<a n<b k+1.(i)当k≥2时,求证:2k﹣1<b k<2k+1;(ii)求{b n}的通项公式及前n项和.2023-2024学年河北省邢台市部分高中高三(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={﹣1,0,1,2},B ={x |x <1},则如图中阴影部分所表示的集合为( )A .{1}B .{2}C .{﹣1,0}D .{1,2}解:阴影部分表示的集合为A ∩∁R B ,又∁R B ={x |x ≥1},所以A ∩∁R B ={1,2}. 故选:D .2.已知(1+i )Z =2﹣4i ,则|Z |=( ) A .2B .√10C .4D .10解:(1+i )Z =2﹣4i ,则Z =2−4i 1+i =(2−4i)(1−i)(1+i)(1−i)=−1﹣3i ,故|Z |=√(−1)2+(−3)2=√10. 故选:B . 3.已知a =313,b=log 213,c =log 131e ,则( )A .a >c >bB .c >a >bC .a >b >cD .c >b >a解:因为函数y =3x 为单调递增函数, 所以a =313>30=1,即a >1; 因为y =log 2x 为单调递增函数, 所以b =log 213<log 21=0,即b <0;因为y =log 13x 单调递减,所以log 131<log 131e <log 1313,即0<c <1, 故a >c >b . 故选:A .4.已知向量a →=(2,1),b →=(1,−3),(ka →−b →)⊥(a →+b →),则实数k 的值为( )A .−94B .94C .﹣1D .1解:a →=(2,1),b →=(1,−3),则ka →−b →=(2k −1,k +3),a →+b →=(3,−2), (ka →−b →)⊥(a →+b →),则3(2k ﹣1)﹣2(k +3)=0,解得k =94.故选:B .5.已知函数f(x)=(m 2−m −1)x m2+m−3是幂函数,且在(0,+∞)上单调递减,若a ,b ∈R ,且a <0<b ,|a |<|b |,则f (a )+f (b )的值( ) A .恒大于0B .恒小于0C .等于0D .无法判断解:由m 2﹣m ﹣1=1得m =2或m =﹣1, m =2时,f (x )=x 3在R 上是增函数,不合题意,m =﹣1时,f (x )=x ﹣3,在(0,+∞)上是减函数,满足题意,所以f (x )=x ﹣3,a <0<b ,|a |<|b |,则b >﹣a >0,f (﹣a )>f (b ), f (x )=﹣x 3是奇函数,因此f (﹣a )=﹣f (a ), 所以﹣f (a )>f (b ),即f (a )+f (b )<0. 故选:B .6.若命题“对任意的x ∈(0,+∞),x +1x−m >0恒成立”为假命题,则m 的取值范围为( )A .{m |m ≥2}B .{m |m >2}C .{m |m ≤2}D .{m |m <2}解:当原命题为真时,m <x +1x恒成立,即y =x +1x ≥2√x ×1x =2,m <(x +1x)min =2, 则当命题为假命题时,m ≥2, 所以m 的取值范围为{m |m ≥2}. 故选:A . 7.函数y =x−3sinxe |x|的大致图像是( )A .B .C .D .解:设f(x)=y =x−3sinxe |x|,x ∈R , 由f(−x)=−x+3sinxe |x|=−f(x),得f (x )为奇函数,故B ,D 错误;由f(π2)=π2−3sin π2e |π2|=π2−3e π2<0,故A 正确,C 错误.故选:A .8.将函数f(x)=sin(ωx +π6)(ω>0)的图像向左平移π6个单位长度后,得到的图像关于y 轴对称,且函数f (x )在[0,π6]上单调递增,则ω的取值是( )A .12B .2C .32D .1解:f(x)=sin(ωx +π6)的图像向左平移π6个单位长度后,得到g(x)=sin(ωx +π6ω+π6)的图象.因为g(x)=sin(ωx +π6ω+π6)关于y 轴对称,所以π6ω+π6=π2+kπ,k ∈Z ,解得ω=2+6k ,k ∈Z .因为ω>0,故当x ∈[0,π6]时,ωx +π6∈[π6,ωπ6+π6],因为函数f (x )在[0,π6]上单调递增,所以ωπ6+π6∈(π6,π2],解得ω∈(0,2].故ω=2+6k ∈(0,2],解得k ∈(−13,0].因为k ∈Z ,所以k =0,故ω=2. 故选:B .二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)9.设等差数列{a n }的前n 项和为S n ,且S 30>0,S 31<0,则下列结论正确的是( ) A .a 15>0 B .{Sn n}是等差数列C .a 16>0D .对任意n ∈N *,都有S n ≤S 15解:设等差数列{a n } 的公差为d , 则S n =na 1+n(n−1)d2,得S n n =a 1+(n−1)d 2, 所以S n+1n+1−S n n=a 1+nd 2−a 1−(n−1)d 2=d 2,所以{Sn n } 是以a 1为首项,d 2为公差的等差数列,选项B 正确;S 31=31(a 1+a 31)2=31a 16<0,即a 16<0,选项C 错误;S 30=30(a 1+a 30)2=15(a 15+a 16)>0,由于a 16<0,所以a 15>0,A 正确;因为a 15>0,a 16<0,所以当n =15 时,S n 取得最大值,故对任意n ∈N *,恒有S n ≤S 15,选项D 正确. 故选:ABD .10.设f (x )是定义在R 上的奇函数,且f (x )在(0,+∞)上单调递减,f (﹣7)=0,则( ) A .f (x )在(﹣∞,0)上单调递增 B .f (8)<0C .不等式f (x )>0的解集为(﹣∞,﹣7)∪(0,7)D .f (x )的图象与x 轴只有3个交点解:函数f (x )是定义在R 上的奇函数,且f (x )在(0,+∞)上单调递减, 函数f (x )在(﹣∞,0)上单调递减,A 错误;由f (﹣7)=0,得f (7)=0,则f (8)<f (7)=0,B 正确;当x <0时,f (x )>f (﹣7),则x <﹣7,当x >0时,f (x )>f (7),则0<x <7, 因此不等式f (x )>0的解集为(﹣∞,﹣7)∪(0,7),C 正确; 当x <0时,函数f (x )的图象交x 轴于点(﹣7,0), 当x >0时,函数f (x )的图象交x 轴于点(7,0),而f (0)=0,则点(0,0)是函数f (x )的图象与x 轴的公共点, 所以f (x )的图象与x 轴只有3个交点,D 正确. 故选:BCD .11.已知函数f(x)={2(x+2)2,x ≤−1|log 2(x +1)|,x >−1,若关于x 的方程f (x )=m 有四个不等实根x 1、x 2、x 3、x 4(x 1<x 2<x 3<x 4),则下列结论正确的是( ) A .1<m ≤2B .﹣3<x 1<﹣2C .﹣1≤4x 3+x 4<0D .x 12+x 22+log m √2的最小值为10解:作出函数f(x)={2(x+2)2,x ≤−1|log 2(x +1)|,x >−1的图象如下图所示:根据图象知:f(﹣1)=2,f(﹣2)=1,因为直线y=m与函数f(x)的图象有四个交点,则1<m≤2,故A正确;对于B选项,由图可知x1<﹣2,由f(x1)=2(x1+2)2∈(1,2],可得0<(x1+2)2≤1,所以﹣3≤x1<﹣2,故B错误;对于C选项,由图可知﹣1<x3<0<x4,则0<x3+1<1<x4+1,由f(x3)=f(x4),得|log2(x3+1)|=|log2(x4+1)|,即﹣log2(x3+1)=log2(x4+1),所以x4+1=1x3+1,化简得到x4=1x3+1−1.由f(x3)=﹣log2(x3+1)∈(1,2],可得14≤x3+1<12,所以4x3+x4=4x3+1x3+1−1=4(x3+1)+1x3+1−5,由双勾函数的单调性可知g(x)=4x+1x在[14,12)上单调递减,所以4(x3+1)+1x3+1−5>4×12+2−5=−1,且4(x3+1)+1x3+1−5≤4×14+4−5=0,当x3=−34时取等号,所以﹣1<4x3+x4≤0,故C错误;由2(x+2)2=m,可得x2+4x+4﹣log2m=0,所以x1、x2为方程x2+4x+4﹣log2m=0的两根,由根与系数的关系可得{x1+x2=−4x1x2=4−log2m,所以x12+x22+log m√2=(x1+x2)2−2x1x2+log m√2=16−8+2log2m+12log m2=2log2m+12log2m+8≥2√2log2m×12log2m+8=10,当且仅当2log2m=12log2m时,即当m=√2时等号成立,故D正确.故选:AD.12.如图,在△ABC中,BA=BC=1,延长BC到点D,使得BC=CD,以AD为斜边向外作等腰直角三角形ADE ,则( )A .AD 2=5﹣4cos BB .sin ∠CAD ∈(12,√32)C .△ACD 面积的最大值为12D .四边形ACDE 面积的最大值为5+2√54解:在△ABD 中,由余弦定理得AD 2=AB 2+BD 2−2AB ⋅BDcosB =5−4cosB ,A 正确;∠ACB =∠CAB =π−B 2,∠ACD =π−∠ACB =π2+B 2∈(π2,π),则∠CAD ∈(0,π2),所以sin ∠CAD ∈(0,1),B 错误;易得S △CAD =12S △BAD 当BA ⊥CD 时,S △BAD S △ACD 取最大值12,C 正确;S 四边形ACDE =S △ADE +S △ACD =S △ADE +S △ABC =AD 24+12sinB=54−cosB +12sinB =54+√12+(12)2sin(B −φ)≤54+√12+(12)2=5+2√54,其中sinφ=2√55,cosφ=√55,D 正确. 故选:ACD .三、填空题(共4小题,每小题5分,满分20分)13.已知函数f(x)={(a +2)x ,x ≥2a x+1,x <2是R 上的单调递增函数,则实数a 的取值范围是 (1,3] .解:函数f (x )是R 上的增函数,则f (x )在[2,+∞)上单调递增, 故a +2>0⇒a >﹣2,f (x )在(﹣∞,2)上单调递增,则a >1, 且在x =2处,有a 2+1≤2(a +2)⇒﹣1≤a ≤3, 所以a 的取值范围是(1,3]. 故答案为:(1,3].14.已知函数f(x)=1−e x 1+e x ,若m >0,n >0,且f (2m )+f (n ﹣1)=f (0),则1m +2n 的最小值为 8 .解:因为f(x)=1−e x1+e x的定义域为R ,关于(0,0)对称,且f(−x)=1−e −x1+e −x =e x −1e x1+e xe x =e x −11+e x=−f(x),即函数f (x )为奇函数, 又因为f(0)=1−e 01+e 0=0,所以f (2m )+f (n ﹣1)=f (0)=0, 即2m +(n ﹣1)=0,所以2m +n =1,则1m +2n =(1m +2n )(2m +n)=n m +4m n +4≥2√n m ⋅4m n +4=8, 当且仅当{n m =4m n 2m +n =1时,即{m =14n =12,取等号. 所以1m +2n的最小值为8. 故答案为:8.15.已知x ,y ,z ∈R ,且x ﹣2y +2z =5,则(x +5)2+(y ﹣1)2+(z +3)2的最小值是 36 .解:由于[(x +5)2+(y ﹣1)2+(z +3)2][(12+(﹣2)2+22)]≥[(x +5)+(﹣2)(y ﹣1)+2(z +3)]2 =324,则(x +5)2+(y ﹣1)2+(z +3)2≥36(当且仅当x+51=y−1−2=z+32,即{x =−3y =−3z =1时取等号. 故答案为:3616.已知函数f (x ),g (x )的定义域均为R ,f (x )为奇函数,g (x +1)为偶函数,f (﹣1)=2,g (x +2)﹣f (x )=1,则∑g(i)2023i=1= 2023 .解:因为f (x )为奇函数,所以f (﹣x )=﹣f (x ),因为g (x +1)为偶函数,所以g (﹣x +1)=g (x +1),所以g (x +2)=g (﹣x ),g (﹣x +2)=g (x ),又因为g (x +2)﹣f (x )=1,所以g (x +2)=f (x )+1,①所以g (﹣x +2)=f (﹣x )+1,所以g (x )=﹣f (x )+1,②①+②得g (x +2)+g (x )=2,所以g (x +4)+g (x +2)=2,所以g (x +4)=g (x ),又因为g (1)+g (3)=g (2)+g (4)=2,g (2)=f (0)+1=0+1=1,所以∑g(i)2023i=1=505×[g (1)+g (2)+g (3)+g (4)]+g (1)+g (2)+g (3),=505×4+2+1=2023.故答案为:2023.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知数列{a n }的前n 项和为S n ,且a n ={5,n =12n +2,n ≥2. (1)求S n ;(2)若b n =1S n +1,求数列{b n }的前n 项和T n . 解:(1)当n ≥2时,S n =5+(n−1)(6+2n+2)2=5+(n −1)(n +4)=n 2+3n +1. 当n =1时,S 1=a 1=5,也适合上式.故S n =n 2+3n +1.(2)由(1)可得b n =1n 2+3n+2=1(n+1)(n+2)=1n+1−1n+2, 则T n =b 1+b 2+⋯+b n =(12−13)+(13−14)+⋯+(1n+1−1n+2)=12−1n+2=n 2n+4. 18.(12分)已知函数y =f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过点(4,2).(1)若f (3x ﹣1)>f (﹣x +5)成立,求x 的取值范围;(2)若对于任意x ∈[1,4],不等式f (2x )g (x 4)−m <0恒成立,求实数m 的取值范围. 解:∵g (4)=log a 4=2,∴a 2=4,解得a =2,∴g (x )=log 2x ,由已知得f (x )=lo g 12x ,即f (x )=﹣log 2x .(1)∵f (x )=lo g 12x 在(0,+∞)上单调递减,∴{3x −1>0,−x +5>0,3x −1<−x +5,解得13<x <32, ∴x 的取值范围为(13,32). (2)∵f (2x )g (x 4)−m <0, ∴m >f (2x )g (x 4)对于任意x ∈[1,4]恒成立等价于m >(f(2x)g(x 4))max . ∵y =f (2x )g (x 4)=−log 22x log 2x 4=−(1+log 2x )(log 2x ﹣2)=﹣(log 2x )2+log 2x +2, 令u =log 2x ,1≤x ≤4,则u ∈[0,2],∴y =﹣u 2+u +2=−(u −12)2+94, 当u =12,即log 2x =12,即x =√2时,y max =94, ∴实数m 的取值范围是m >94. 即m ∈(94,+∞). 19.(12分)已知向量a →=(√3,−sin ωx 2),b →=(sinωx ,2sin ωx 2),函数f(x)=a →⋅b →+1(其中0<ω<1),函数f (x )的图象的一条对称轴是直线x =π2. (1)求ω的值;(2)若0<α<π3且f(32α)=43,求f(32α+3π8)的值. 解:(1)已知向量a →=(√3,−sin ωx 2),b →=(sinωx ,2sin ωx 2), 则f(x)=a →⋅b →+1=√3sinωx −2sin 2ωx 2+1=√3sinωx +cosωx =2sin(ωx +π6), ∵函数f (x )的图象的一条对称轴是直线x =π2, ∴π2ω+π6=kπ+π2,k ∈Z , 得ω=23+2k ,k ∈Z , ∵0<ω<1,∴ω=23; (2)由(1)可得f(x)=2sin(23x +π6), 由f(32α)=43得2sin(α+π6)=43, 即sin(α+π6)=23, 结合0<α<π3, 则π6<α+π6<π2, 得cos(α+π6)=√1−sin 2(α+π6)=√53, ∴f(32α+3π8)=2sin[(α+π6)+π4]=2sin(α+π6)cos π4+2cos(α+π6)sin π4=2×23×√22+2×√53×√22=2√2+√103.20.(12分)在锐角三角形ABC中,内角A,B,C的对边分别为a,b,c,且cosAa+cosBb=2√3sinC3a.(1)求角B的大小;(2)若b=2√3,求△ABC面积的取值范围.解:(1)由已知条件得bcosA+acosB=2√33bsinC,由正弦定理得sinBcosA+cosBsinA=2√33sinBsinC,即sin(A+B)=2√33sinBsinC,因为在△ABC中,sin(A+B)=sin C≠0,所以sinB=√32,又B是锐角,所以B=π3.(2)由正弦定理得asinA=csinC=bsinB=√3√32=4,则a=4sin A,c=4sin C,所以S△ABC=√34ac=4√3sinAsinC=4√3sin(π3+C)sinC=4√3(√32cosC+12sinC)sinC=6sinCcosC+2√3sin2C=2√3sin(2C−π6)+√3,由0<C<π2,0<2π3−C<π2,得π6<C<π2,所以π6<2C−π6<5π6,所以sin(2C−π6)∈(12,1],所以2√3sin(2C−π6)+√3∈(2√3,3√3],所以△ABC面积的取值范围为(2√3,3√3].21.(12分)为了改善湖泊的水质,某市环保部门于2021年年终在该湖泊中投入一些浮萍,这些浮萍在水中的繁殖速度越来越快,2022年2月底测得浮萍覆盖面积为360m2,2022年3月底测得浮萍覆盖面积为480m2,浮萍覆盖面积y(单位:m2)与2022年的月份x(单位:月)的关系有两个函数模型y=ka x (k>0,a>1)与y=mx2+n(m>0)可供选择.(1)分别求出两个函数模型的解析式;(2)若2021年年终测得浮萍覆盖面积为200m2,从上述两个函数模型中选择更合适的一个模型,试估算至少到哪一年的几月底浮萍覆盖面积能超过8100m2?(参考数据:lg2≈0.30,lg3≈0.48)解:(1)若选择模型y=ka x(k>0,a>1),则{ka 2=360ka 3=480,解得a =43,k =4052, 故函数模型为y =4052(43)x , 若选择模型y =mx 2+n (m >0),则{4m +n =3609m +n =480, 解得m =24,k =264,故函数模型为y =24x 2+264.(2)把x =0代入y =4052(43)x 可得,y =4052=202.5, 把x =0代入y =24x 2+264可得,y =264,∵202.5﹣200<264﹣200,∴选择函数模型y =4052(43)x 更合适, 令y =4052(43)x >8100,可得(43)x >40,两边取对数可得,xlg(43)>lg40, ∴x >lg4+lg10lg4−lg3=2lg2+12lg2−lg3≈2×0.3+12×0.3−0.48≈13.3, 故浮萍至少要到2023年2月底覆盖面积能超过8100m 2.22.(12分)已知{a n }是等差数列,a 2+a 5=16,a 5﹣a 3=4.(Ⅰ)求{a n }的通项公式及∑ 2n−1i=2n−1a i (n ∈N *); (Ⅱ)设{b n }是等比数列,且对于任意的k ∈N *,当2k ﹣1≤n ≤2k ﹣1时,b k <a n <b k +1. (i )当k ≥2时,求证:2k ﹣1<b k <2k +1;(ii )求{b n }的通项公式及前n 项和.解:(Ⅰ)∵{a n }是等差数列,a 2+a 5=16,a 5﹣a 3=4.∴{a 1+d +a 1+4d =2a 1+5d =16a 1+4d −a 1−2d =2d =4,得d =2,a 1=3, 则{a n }的通项公式a n =3+2(n ﹣1)=2n +1(n ∈N •),∑ 2n −1i=2n−1a i 中的首项为a i =2×2n−1+1=2n +1,项数为2n ﹣1﹣2n ﹣1+1=2n ﹣2n ﹣1=2×2n ﹣1﹣2n ﹣1=2n ﹣1,则∑ 2n −1i=2n−1a i =2n ﹣1(2n +1)+2n−1(2n−1−1)2×2=2n ﹣1(2n +1)+2n ﹣1(2n ﹣1﹣1)=2n ﹣1(2n +1+2n ﹣1﹣1)=2n ﹣1(2n +2n ﹣1)=2n ﹣1×3×2n ﹣1=3×4n ﹣1. (Ⅱ)(i )∵2k ﹣1≤n ≤2k ﹣1,∴2k ≤2n ≤2k +1﹣2,1+2k ≤2n +1≤2k +1﹣1, 即1+2k ≤a n ≤2k +1﹣1,当k ≥2时,∵b k <a n <b k +1.∴b k<1+2k,且b k+1>2k+1﹣1,即b k>2k﹣1,综上2k﹣1<b k<1+2k,故成立;(ii)∵2k﹣1<b k<2k+1成立,∵{b n}为等比数列,∴设公比为q,当k≥2时,2k+1﹣1<b k+1<2k+1+1,12k+1<1b k<12k−1,则2k+1−12k+1<b k+1b k<2k+1+12k−1,即2(2k+1)−32k+1<b k+1b k<2(2k−1)+32k−1,即2−32k+1<q<2+32k−1,当k→+∞,2−32k+1→2,2+32k−1→2,∴q=2,∵k≥2时,2k﹣1<b k<2k+1,∴2k﹣1<b12k﹣1<2k+1,即2k−12k−1<b1<2k+12k−1,即2−12k−1<b1<2+12k−1,当k→+∞,2−12k−1→2,2+12k−1→2,则b1=2,则b n=2×2n﹣1=2n,即{b n}的通项公式为b n=2n,则{b n}的其前n项和T n=2(1−2n)1−2=2n+1﹣2.。

河北省邢台市信都区邢台市第一中学2024-2025学年高一上学期第二次月考数学试题(含答案)

河北省邢台市信都区邢台市第一中学2024-2025学年高一上学期第二次月考数学试题(含答案)

邢台一中2024-2025学年第一学期第二次月考高一年级数学试题考试范围:必修一第一章、第二章、第三章说明:1.本试卷共4页,满分150分.2.请将所有答案填写在答题卡上,答在试卷上无效.第Ⅰ卷(选择题 共58分)一、单选题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“”的否定是( )A .B .C .D .2.已知集合,则满足条件的集合的个数为( )A .5B .4C .3D .23.对于实数,“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数的定义域为,则)A .B .C .D .5.若“,使得不等式成立”是假命题,则实数的取值范围为( )A .B .C .D .6.若函数的部分图象如图所示,则( )2,220x x x ∃∈++≤R 2,220x x x ∀∈++>R 2,220x x x ∀∈++≤R 2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R {}{}*30,,40,A x x x B x x x =-≤∈=-≤∈N N A C B ⊆⊆C x 202xx+≥-2x ≤()y f x =[]1,4-y =31,2⎡⎫-⎪⎢⎣⎭31,2⎛⎤ ⎥⎝⎦(]1,935,2⎡⎤-⎢⎥⎣⎦x ∃∈R 23208kx kx ++≤k 03k ≤<03k <<30k -<≤30k -<<()22f x ax bx c=++()1f =A .B .C .D .7.已知函数,若,对均有成立,则实数的取值范围为( )A .B .C .D .8.记表示中最大的数.已知均为正实数,则的最小值为( )A.B .1C .2D .4二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的有( )A .函数在上是单调减函数B .函数与函数C .已知函数,则D .函数的单调增区间为10.二次函数是常数,且的自变量与函数值的部分对应值如下表: (012)……22…23-112-16-13-()221f x x x =-+[)2,x ∃∈+∞[]1,1a ∀∈-()22f x m am <-+m ()3,1-1,13⎛⎫- ⎪⎝⎭11,3⎛⎫- ⎪⎝⎭()1,3-{}max ,,x y z ,,x y z ,x y 2221max ,,4x y x y ⎧⎫+⎨⎬⎩⎭12()11f x x =-()(),11,-∞+∞ ()f t t =()g x =2211f x x x x⎛⎫-=+ ⎪⎝⎭()13f =y =[)1,+∞2(,,y ax bx c a b c =++0)a ≠x y x1-ymn且当时,对应的函数值.下列说法正确的有( )A .B .C .函数的对称轴为直线D .关于的方程一定有一正、一负两个实数根,且负实数根在和0之间11.若函数对定义域中的每一个都存在唯一的,使成立,则称为“影子函数”,以下说法正确的有( )A .“影子函数”可以是奇函数B .“影子函数”的值域可以是R C .函数是“影子函数”D .若都是“影子函数”,且定义域相同,则是“影子函数”第Ⅱ卷(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.当时,的最大值为______.13.已知幂函数图象经过点,若,则实数的取值范围是______;若,则______14.已知是定义域为的函数,且是奇函数,是偶函数,满足,若对任意的,都有成立,则实数的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)32x =0y <0abc >1009mn >12x =x 20ax bx c ++=12-()y f x =D 1x 2x D ∈()()121f x f x ⋅=()f x ()f x ()f x ()2(0)f x x x =>()(),y f x y g x ==()()y f x g x =⋅54x <14345y x x =-+-()f x x α=()4,2()()132f a f a +>-a 120x x <<()()122f x f x +122x x f +⎛⎫ ⎪⎝⎭()(),f x g x R ()f x ()g x ()()22f x g x ax x +=++1212x x <<<()()1225g x g x x ->--a设集合(1)是否存在实数,使是的充分不必要条件,若存在,求出实数的取值范围;若不存在,请说明理由;(2)若,求实数的取值范围.16.(15分)已知函数,对于任意,有.(1)求的解析式;(2)若函数在区间上的最小值为,求的值;(3)若成立,求的取值范围.17.(15分)丽水市某革命老区因地制宜发展生态农业,打造“生态特色水果示范区”.该地区某水果树的单株年产量(单位:千克)与单株施肥量(单位:千克)之间的关系为,且单株投入的年平均成本为元.若这种水果的市场售价为10元/千克,且水果销路畅通.记该水果树的单株年利润为(单位:元).(1)求函数的解析式;(2)求单株施肥量为多少千克时,该水果树的单株年利润最大?最大利润是多少?18.(17分)已知函数.(1)用单调性的定义证明函数在上为增函数;(2)是否存在实数,使得当的定义域为时,函数的值域为.若存在.求出的取值范围;若不存在说明理由.19.(17分)定义:对于定义域为的函数,若,有,则称为的不动点.已知函数.(1)当时,求函数的不动点;{}{}{}2212,40,A x a x a B x x x C y y x B=-≤≤+=-≤==∈a x B ∈x A ∈a A C C = a ()25f x ax bx =+-x ∈R ()()()22,27f x f x f -=+-=()f x ()f x [],3t t +8-t ()()()22,,(1)10x x m f x ∃∈+∞-≥+m ()x ϕx ()232,031645,36x x x x x ϕ⎧+≤≤⎪=⎨-<≤⎪⎩10x ()f x ()f x ()221x f x x-=()f x ()0,+∞λ()f x 11,(0,0)m n m n ⎡⎤>>⎢⎥⎣⎦()f x []2,2m n λλ--λD ()f x 0x D ∃∈()00f x x =0x ()f x ()()218,0f x ax b x b a =+-+-≠1,0a b ==()f x(2)若函数有两个不相等的不动点,求的取值范围;(3)设,若有两个不动点为,且,求实数的最小值.邢台一中2024-2025学年第一学期第二次月考答案1.A 2.B . 3.A 4.B 5.A 6.D 7.B 8.C 9.BC 10.BCD 11.AC12.答案:0 13. 14.15.解:(1)假定存在实数,使足的充分不必要条件,则,则或,解得或,因此,所以存在实数,使是的充分不必要条件,.(2)当时,,则,由,得,当,即时,,满足,符合题意,则;当,由,得,解得,因此,所以实数的取值范围是.16.解:(1)因为关于对称,即,又,则可解得,所以;(2)当,即时,,解得或(舍去);()221y x a x =-++12x x 、1221x x x x +()1,3a ∈()f x 12,x x ()121ax f x a =-b 23,32⎛⎤⎝⎦<5,4a ⎡⎫∈-+∞⎪⎢⎣⎭a x B ∈x A ∈B A Ü20124a a -≤⎧⎨+>⎩20124a a -<⎧⎨+≥⎩2a ≥2a >2a ≥a x B ∈x A ∈2a ≥04x ≤≤15≤≤{}15C x x =≤≤A C C = A C ⊆212a a ->+13a <A =∅A C ⊆13a <212a a -≤+A C ⊆12125a a ≤-≤+≤113a ≤≤1a ≤a 1a ≤()()()22,f x f x f x -=+2x =22ba-=()24257f a b -=--=1,4a b ==-()245f x x x =--32t +≤1t ≤-()()2min ()3(3)4358f x f t t t =+=+-+-=-2t =-0t =当,即时.,不符合题意;当时,,解得(舍去)或,综上,或.(3)由可得,因,依题意,,使成立.而,不妨设,因,则,设,因,则,当且仅当时等号成立,即当时,,故的最大值为2,依题意,,即的取值范围为.17.解:(1)当.时,,当时,,故;(2)当时,开口向上,其对称轴为,所以其最大值为,当当且仅当,即时,等结成立,综上,施肥量为3kg 时,单株年利润最大为380元.18.【详解】(1),设,且,则,因为,所以,所以,即,所以函数在上为增函数.23t t <<+12t -<<()man ()29f x f ==-2t ≥()2min ()458f x f t t t ==--=-1t =3t =2t =-3t =()()2(1)10x m f x -≥+()22(1)45x m x x -≥-+2245(2)10x x x -+=-+>()2,x ∃∈+∞22(1)45x m x x -≤-+22222(1)21241454545x x x x x x x x x x --+-==+-+-+-+2t x =-2x >220,451t x x t >-+=+()2221111t g t t t t=+=+++0t >12t t +≥1t =3x =max ()2g t =22(1)45x x x --+2m ≤m (],2-∞03x ≤≤()()223210101010320f x x x x x =+⨯-=-+36x <≤()1616045101045010f x x x x x ⎛⎫=-⨯-=- ⎪⎝⎭()21010320,0316045010,36x x x f x x x x ⎧-+≤≤⎪=⎨--<≤⎪⎩03x ≤≤()21010320f x x x =-+12x =()23103103320380f =⨯-⨯+=36x <≤16010x x=4x =()222111x f x x x -==-()12,0,x x ∀∈+∞12x x <()()()()22121212122222222212211212111111x x x x x x f x f x x x x x x x x x -+⎛⎫--=--=== ⎪⎝⎭120x x <<(221212120,0,0x x x x x x -+>()()120f x f x -<()()12f x f x <()f x ()0,+∞(2)由(1)可知,在上单调递增,呂存在使得的值域为,则,即,因为,所以存在两个不相等的正根,所以,解得,所以存在使得的定义域为时,值域为.19.【解析】(1)当时,,令,即,解得或,所以的不动点为或4.(2)依题意,有两个不相等的实数根,即方程有两个不相等的实数根,所以,解得,或,且,所以,因为函数对称轴为,当时,随的增大而减小,若,则;当吋,随的增大而增大,若,则;故,所以的取值范围为.(3)令,即,则,当时,由韦达定理得,由题意得,故,于是得,则,令,则,所以,()f x 11,m n ⎡⎤⎢⎥⎣⎦λ()f x []2,2m n λλ--22112112f m mm f n n n λλ⎧⎛⎫=-=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-=- ⎪⎪⎝⎭⎩221010m m n n λλ⎧-+=⎨-+=⎩0,0m n >>210x x λ-+=21212Δ40100x x x x λλ⎧=->⎪=>⎨⎪+=>⎩2λ>()2,λ∈+∞()f x 11,m n ⎡⎤⎢⎥⎣⎦[]2,2m n λλ--1,0a b ==()28f x x x =--()f x x =28x x x --=2x =-4x =()f x 2-()221x a x x -++=12x x 、()2310x a x -++=12x x 、22Δ(3)4650a a a =+-=++>5a <-1a >-12123,1x x a x x +=+=()22221212121221122(3)2x x x x x x x x a x x x x ++==+-=+-2(3)2y x =+-3x =-3x <-y x 5x <-2y >3x >-y x 1x >-2y >()2(3)22,a +-∈+∞1221x x x x +()2,+∞()f x x =()218ax b x b x +-+-=()2280,0ax b x b a +-+-=≠()1,3a ∈128b x x a -=()22f x x =()12121ax x x f x a ==-81b a a a -=-281a b a =+-1t a =-02,1t a t <<=+2(1)18101012t b t t t +=+=++≥+=当且仅当,即时取等号,所以实数的最小值为12.1t t=1,2t a ==b。

2023届河北省邢台市第二中学高三上学期第一次月考数学试题(解析版)

2023届河北省邢台市第二中学高三上学期第一次月考数学试题(解析版)

2023届河北省邢台市第二中学高三上学期第一次月考数学试题一、单选题1.设集合{}{}{}0,1,2,3,4,(3)0,24,U A x x x B x x x *==-==≤≤∈N ,则()U A B =( ) A .{2,4} B .{2,3,4} C .{2} D .{1,2,3,4}【答案】A【分析】解出集合A ,再进行补集交集运算即可. 【详解】12(3)00,3x x x x -=⇒==,则{}{}0,3,1,2,4UA A ==,又{}2,3,4B =,所以(){}24UA B =,.故选:A. 2.已知复数21iz =-,复数z 是复数z 的共轭复数,则z z ⋅=( )A .1BC .2D .【答案】C【分析】根据复数的运算性质,得到2z z z ⋅=,即可求解.【详解】根据复数的运算性质,可得2222221i 1i z z z ⎛⎫⋅==== ⎪ ⎪--⎝⎭. 故选;C .3.设1z 、2z 是复数,则下列说法中正确的是( ) A .若120z z +=,则12z z = B .若12z z +∈R ,则1z 、2z 互为共轭复数C .若12=z z ,则1122z z z z ⋅=⋅D .若12=z z ,则2212z z =【答案】C【分析】求出12z z =-可判断A 选项;利用共轭复数的定义可判断B 选项;利用复数的乘法可判断C 选项;利用特殊值法可判断D 选项.【详解】对于A 选项,若120z z +=,则120z z +=,可得12z z =-,A 错; 对于B 选项,设111i z a b =+,()2221212i ,,,z a b a a b b =+∈R ,则()()121212i z z a a b b +=+++,由题意可得120b b +=,则12b b =-, 但1a 、2a 不一定相等,故1z 、2z 不一定互为共轭复数,B 错;对于C 选项,设()i ,z a b a b =+∈R ,则i z a b =-,222z z a b z ∴⋅=+=,若12=z z ,22111222z z z z z z ⋅===⋅,C 对;对于D 选项,取11i z =+,21i z =-,则12z z =但()2211i 2i z =+=,()2221i 2i z =-=-,则2212z z ≠,D 错. 故选:C. 4.记函数2log 2xy x=-的定义域为集合A ,若“x A ∈”是关于x 的不等式()22200x mx m m +-<>成立”的充分不必要条件,则实数m 的取值范围是( )A .()2,+∞B .[)2,+∞C .()0,2D .(]0,2【答案】B【分析】求出函数2log 2x y x=-的定义域得集合A ,解不等式()22200x mx m m +-<>得m 的范围,根据充分不必要条件的定义可得答案.【详解】函数2log 2xy x =-有意义的条件为02x x>-,解得02x <<, 所以{}02A x x =<<,不等式()22200x mx m m +-<>,即()()20x m x m +-<,因为0m >,所以2m x m -<<,记不等式()22200x mx m m +-<>的解集为集合B ,所以A B ⊆,所以220≥⎧⎨-≤⎩m m ,得2m ≥.故选:B .5.已知定义在R 上的函数()f x 满足()()2f x f x +=-,且在区间()1,+∞上单调递增,则满足()()13f x f x ->+的x 的取值范围为( ) A .()1,-+∞ B .(),1-∞- C .()1,1- D .(),1-∞【答案】B【分析】先求出函数()f x 的对称轴,再根据单调性和对称性可知,自变量离对称轴越远,其函数值越大,由此结论列式可解得结果.【详解】因为函数()f x 满足()()2f x f x +=-,所以()f x 的图象关于直线1x =对称, 又()f x 在区间()1,+∞上单调递增,所以在(,1)-∞上单调递减, 因为()()13f x f x ->+,()()|11||31|x x -->+-, 即2x x ->+,平方后解得1x <-. 所以x 的取值范围为(,1)-∞-. 故选:B.6.如图,在△ABC 中,D 是AB 的中点,O 是CD 上一点,且2CO OD =,则下列说法中正确的个数是( )①0OA OB OC ++=;②过点O 作一条直线与边,AC BC 分别相交于点,E F ,若34CE CA =,CF CB μ=(01)μ≤≤,则34μ=; ③若△ABC 是边长为1的正三角形,M 是边AC 上的动点,则BM MD ⋅的取值范围是323,464⎡⎤--⎢⎥⎣⎦A .0个B .1个C .2个D .3个【答案】C【分析】由1122CD CA CB =+,2,3OC CD OA OD DA =-=+,OB OD DA =-,结合向量的运算判断①;由,,E O F 三点共线结合向量的数乘运算判断②;建立坐标系,利用坐标运算结合二次函数的性质判断③.【详解】对于①:1122CD CA CB =+,2,3OC CD OA OD DA =-=+,OB OD DB =+OD DA =-,故22220333OA OB OC CD OD CD CD ++=-+=-+=,故①正确;对于②:1351()34123OE OC CE CA CB CA CA CB =+=-++=-,111()333OF OC CF CA CB CB CA CB μμ⎛⎫=+=-++=-+- ⎪⎝⎭,因为,,E O F 三点共线,所以OF OEλ=,即511231133λμλ⎧=-⎪⎪⎨⎪-=-⎪⎩,解得4,355λμ=-=,故②错误;对于③:以点D 作为坐标原点,建立如下图所示的直角坐标系,113,0,,0,0,,(0,0)222A B C D ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,13,,(1,0)22AC AB ⎛⎫== ⎪ ⎪⎝⎭,设,[0,1]AM t AC t =∈,因为1313,(1,0)1,2222BM AM AB t t t t ⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,113113,0,,222222MD AD AM t t t t ⎛⎫⎛⎫⎛⎫=-=-=-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以221113311222442BM MD t t t t t ⎛⎫⎛⎫⋅=---=-+- ⎪⎪⎝⎭⎝⎭,当1t =时,43BM MD ⋅=-,当38t =时,2364BM MD ⋅=-,即BM MD ⋅的取值范围是323,464⎡⎤--⎢⎥⎣⎦,故③正确;故选:C7.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[ 3.7]4,[2.3]2-=-=.已知()[ln ]f x x x =,当()0f x =时,x 的取值集合为A ,则下列选项为x A ∈的充分不必要条件的是( ) A .(0,1)x ∈ B .e)x ∈C .(1,2)x ∈D .()2,e x ∈【答案】B【分析】令()ln g x x x =,根据高斯函数知()0f x =时,0()1g x ≤<,利用导数分析不等式的解集,即可得解.【详解】令()ln ,0g x x x x =>, 由题意()0f x =时,0()1g x ≤<,()ln 1g x x '=+,1e x ∴<时,()0g x '<,1e x >时,()0g x '>,所以()g x 在1(0,)e上单调递减,在1(,)e +∞上单调递增,显然1(0,)ex ∈时,()0g x <,又(1)0g =,所以0()1g x ≤<的解为0[1,)x x ∈,其中0()1g x =,因为(2)2ln 2ln 41g ==>,1g ==<,(e)eln e e 1g ==>,所以 0[1,)x ,故选:B8.设a R ∈,函数()2229,1163,1x ax x f x x a x x ⎧-+≤⎪=⎨+->⎪⎩,若()f x 的最小值为()1f ,则实数a 的取值范围为( ) A .[]1,2 B .[]1,3C .[]0,2D .[]2,3【答案】A【分析】当1x >时,结合不等式求得其最小值为123a -,当1x ≤时,()()229f x x a a =-+-,根据函数()f x 的最小值为()1f ,列出不等式组,即可求解.【详解】当1x >时,221688333123x a x a a a x x x +-=++-≥=-, 当且仅当28x x=时,等号成立; 即当1x >时,函数()f x 的最小值为123a -, 当1x ≤时,()()222299f x x ax x a a =-+=-+-,要使得函数()f x 的最小值为()1f ,则满足()11102123a f a a ≥⎧⎨=-≤-⎩,解得12a ≤≤,即实数a 的取值范围是[]1,2. 故选:A.二、多选题9.下列命题正确的是( )A .函数2()ln f x mx x =-在(1,2)上单调递增的一个必要不充分条件是1|4m m ⎧⎫>⎨⎬⎩⎭B .“2a b +>”是“2a b +>”充分不必要条件C .“1a > ”是“11a<”的必要不充分条件 D .命题“[]22,3,10x mx mx ∃∈-+≥”是假命题,则实数m 的取值范围为1{|}6m m ≤-【答案】AB【分析】求得1()2f x mx x '=-,转化为212mx x≥在(1,2)x ∈上恒成立,可判定A 正确;由绝对值三角不等式,结合充要条件的判定,可判定B 正确;由分式不等式的解法,结合充要条件的判定,可判定C 不正确;转化为命题“[]22,3,10x mx mx ∀∈-+<””是真命题,结合分离参数法,可判断D 错误.【详解】对于A 中,由函数2()ln f x mx x =-,可得1()2f x mx x'=-,若函数()f x 在(1,2)上单调递增,即当(1,2)x ∈时,1()20f x mx x'=-≥恒成立, 即212mx x ≥在(1,2)x ∈上恒成立, 又由当(1,2)x ∈时,max 211()22x <,即12m ≥, 函数()f x 在(1,2)上单调递增的一个必要不充分条件是1|4m m ⎧⎫>⎨⎬⎩⎭,所以A 正确;对于B 中,由绝对值三角不等式,可得2a b a b +≥+>,所以充分性成立; 反之:例如:当1,3a b ==-时,满足2a b +>,此时2a b +=,即必要性不成立, 所以“2a b +>”是“2a b +>”充分不必要条件,所以B 正确; 对于C 中,由1110aa a--=<,解得1a >或0a <, 所以“1a > ”是“11a<”的充分不必要条件,所以C 不正确; 对于D 中,由命题“[]22,3,10x mx mx ∃∈-+≥”是假命题,可得命题“[]22,3,10x mx mx ∀∈-+<””是真命题,当[]2,3x ∈时,20x x ->恒成立,所以只需21m x x<--在[]2,3x ∈上恒成立, 当2x =时,min 211()3x x -=--,所以13m <-,所以D 错误. 故选:AB.10.用()C A 表示非空集合A 中元素的个数,定义()()*A B C A C B =-,已知集合()()2222,,,2x y y x a A x y B x y x y y x ⎧⎧+==+⎧⎫⎧⎫⎪==⎨⎨⎬⎨⎨⎬+==⎩⎭⎩⎭⎪⎩⎩∣∣,若*1A B =,则实数a 的取值可能为( ) A .14-B .21-C .1003D .2021【答案】BCD【分析】先求出()1C A =,从而得到()0C B =或()2C B =,利用()1C B =即方程有一个根得到14a =-,那么排除掉A 选项,其他三个选项为正确结果.【详解】由(){}1,1A =,可得()1C A =,若*1A B =,有()0C B =或()2C B =.当()1C B =时,方程组2,y x a y x=+⎧⎨=⎩中消去y 有:20x x a --=,则Δ140a =+=,解得:14a =-,可得若*1A B =,则实数a 的取值范围为14aa ⎧⎫≠-⎨⎬⎩⎭∣,可知选项为:BCD . 故选:BCD11.下列说法中错误的有( ) A .两个非零向量,a b ,若||||||a b a b ,则a 与b 共线且反向B .已知13(2,3),(,)24a b =-=-不能作为平面内所有向量的一个基底C .已知向量(2,1),(3,1)a b ==-,向量b 在向量a 上的投影向量是D .若非零向量a ,b 满足||||||a b a b ==-,则a 与a b +的夹角是60 【答案】CD【分析】由||||||a b a b 计算判断A ;由共线向量的坐标表示判断B ;求出向量b 在向量a 上的投影向量判断C ;求出向量a 与a b +的夹角判断D 作答. 【详解】对于A ,由||||||a b a b 两边平方得:||||a b a b -⋅=,而,a b 是非零向量,则a 与b 共线且反向,A 正确;对于B ,13(2,3),(,)24a b =-=-,且有312()(3)042⨯---⨯=,则//a b ,,a b 不能作为平面内所有向量的一个基底,B 正确;对于C ,向量(2,1),(3,1)a b ==-,向量b 在向量a 上的投影向量是2||a ba a a ⋅=-,C 错误; 对于D ,a ,b 是非零向量,作,OA a OB b ==,因||||||a b a b ==-,则OAB 是正三角形,如图,取线段AB 中点D ,则30DOA ∠=,有2+=a b OD ,即a 与a b +的夹角是30,D 错误. 故选:CD12.设函数()2101,0lg ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,若关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<,则()()1234x x x x +-的值可能是( )A .0B .1C .99D .100【答案】BC【分析】首先根据题意画出图象,根据二次函数的性质得到1210x x +=-,根据对数函数的性质得到431x x =,从而得到()()123433110x x x x x x ⎛⎫+-=-- ⎪⎝⎭,再根据函数单调性求解即可.【详解】如图所示:因为关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<, 所以01a <≤.2101y x x =++的对称轴为5x =-,所以1210x x +=-.因为34lg lg x x =,所以34lg lg 0x x +=,即341x x =,431x x=.因为3lg 1x ≤,所以31110x ≤<. 所以()()123433110x x x x x x ⎛⎫+-=-- ⎪⎝⎭,因为110y x x ⎛⎫=-- ⎪⎝⎭,1110x ≤<为减函数,所以()()(]1234330110,99x x x x x x ⎛⎫∈ ⎪⎭-⎝+-=-.故选:BC三、填空题13.已知向量a ,b ,c 满足,0a b c ++=,2a =,3b =,5c =,则⋅=a b _________. 【答案】6【分析】由0a b c ++=,得a b c +=-,两边平方化简可得答案 【详解】由0a b c ++=,得a b c +=-, 两边平方,得2222a a b b c +⋅+=, 因为235a b c ===,,, 所以42925a b +⋅+=,得·6a b =. 故答案为:6.14.若函数()f x 与()g x 同在一个区间内取同一个自变量时,同时取得相同的最小值,则称这两个函数为“兄弟函数”,已知函数()()2,f x x bx c b c =++∈R 与()21x x g x x-+=是定义在区间1,22⎡⎤⎢⎥⎣⎦上的“兄弟函数”,那么()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最大值是___________. 【答案】2【分析】利用基本不等式求出()g x 的最小值及对应的x 的值,根据“兄弟函数”的定义可知()f x 在区间1,22⎡⎤⎢⎥⎣⎦上最小值为()11f =,根据二次函数的性质求出b 、c 的值,即可得到()f x 的解析式,最后根据二次函数的性质计算可得;【详解】解:211()111x x g x x x x -+==+-≥=,当且仅当1x x=即1x =时取等号, ∴当1x =时,()g x 取最小值()11g =.函数()f x 与()g x 同在一个区间内取同一个自变量时,同时取得相同的最小值,则称这两个函数为“兄弟函数”,∴函数()f x 在区间1,22⎡⎤⎢⎥⎣⎦上最小值为()11f =.∴点()1,1为抛物线2()f x x bx c =++的顶点.∴212414b c b ⎧-=⎪⎪⎨-⎪=⎪⎩,∴22b c =-⎧⎨=⎩. 2()22f x x x ∴=-+.()y f x∴=在区间1,12⎡⎤⎢⎥⎣⎦上单调递减,在区间[]1,2上单调递增.1524f ⎛⎫= ⎪⎝⎭,()22f =, ()f x ∴在区间1,22⎡⎤⎢⎥⎣⎦上的最大值是2.故答案为:2.15.已知0a >,0b >,下面四个结论:①22ab a b a b +≤+;②若0a b >>,则241()ab b b a b ++-的最小值为4;③若a b >,则22c c a b≤;④若11111a b +=++,则2+a b 的最小值为 其中正确结论的序号是______.(把你认为正确的结论的序号都填上) 【答案】①③④【分析】对于①,由222a b ab +≥,得2224a b ab ab ++≥,然后变形后判断,对于②,变形后利用基本不等式判断,对于③,由不等式的性质判断,对于④,将11(122)11a b a b ⎛⎫++++ ⎪++⎝⎭展开由基本不等式可推导出结果【详解】对于①,因为222a b ab +≥,所以2224a b ab ab ++≥,即2()4a b ab +≥,因为0a >,0b >,所以22ab a ba b +≤+,所以①正确, 对于②,因为0a b >>,所以0a b ->, 所以2224141()()()ab b b a b b b a b b b a b ⎛⎫++=++-+ ⎪--⎝⎭ 6≥=,当且仅当224b b =,1()()b a b b a b -=-,即a b ==②错误, 对于③,因为0a b >>,所以110a b <<,因为2c ≥0,所以22c c a b≤,所以③正确,对于④,因为112(1)1(122)3331111b a a b a b a b ++⎛⎫++++=++≥+=+ ⎪++++⎝⎭当且仅当2(1)111b a a b ++=++,即a b ==因为11111a b +=++,所以1223a b +++≥+2a b +≥,当且仅当a b ==④正确, 故答案为:①③④16.已知函数(),0ln ,0x e x f x x x ⎧≤=⎨>⎩,()()1g x f x mx =--,当实数m 的取值范围为________时,()g x 的零点最多. 【答案】210m e <<【分析】作出函数()f x 的图象,由()0g x =得() +1f x mx =,设+1y mx =,分0m =,0m <,>0m 分别讨论+1y mx =与()f x 的交点个数,当>0m 时,求得+1y mx =与xy e =相切时切线的斜率,+1y mx =与ln y x =相切时切线的斜率,由此可求得实数m 的取值范围.【详解】解:作出函数()f x 的图象如图: 由()0g x =得() +1f x mx =,设+1y mx =, 当0m =时,+1y mx =与()f x 有2个交点; 当0m <时,+1y mx =与()f x 有2个交点;. 当>0m 时,设+1y mx =与x y e =相切,切点为()11,x x e ,则'e x y =,所以切线的斜率为11x k e =,其切线方程为:()111x xy e e x x -=-,又因切线恒过点()01,,所以()11110x x e e x -=-,解得10x =,所以切线的斜率为011k e ==,当>0m 时,设+1y mx =与ln y x =相切,切点为()22,ln x x ,则'1y x=,所以切线的斜率为221k x =, 其切线方程为:()2221ln y x x x x -=-, 又因切线恒过点()01,,所以()22211ln 0x x x -=-,解得22x e =,所以切线的斜率为221k e =, 所以当m 1≥时,+1y mx =与()f x 有1个交点; 当211m e <<时,+1y mx =与()f x 有2个交点; 当21m e=时,+1y mx =与()f x 有3个交点; 当210m e <<时,+1y mx =与()f x 有4个交点; 所以实数m 的取值范围为210m e <<时,()g x 的零点最多, 故答案为:210m e <<.四、解答题17.已知函数()22f x x mx n =++的图象过点()1,1-,且满足()()23f f -=.(1)求函数()f x 的解析式:(2)求函数()f x 在[],2a a +上的最小值;(3)若0x 满足()00f x x =,则称0x 为函数()y f x =的不动点,函数()()g x f x tx t =-+有两个不相等且正的不动点,求t 的取值范围.【答案】(1)()2221f x x x =--;(2)()2min23263,,2331,,2221221,2a a a f x a a a a ⎧++≤-⎪⎪⎪⎡⎤=--<<⎨⎣⎦⎪⎪--≥⎪⎩;(3)1t >.【分析】(1)根据f (x )图像过点()1,1-,且满足()()23f f -=列出关于m 和n 的方程组即可求解;(2)讨论对称轴与区间的位置关系,即可求二次函数的最小值; (3)由题可知方程x =g (x )有两个正根,根据韦达定理即可求出t 的范围. 【详解】(1)∵()f x 的图象过点()1,1-, ∴21m n ++=-① 又()()23f f -=, ∴82183m n m n -+=++② 由①②解2m =-,1n =-,∴()2221f x x x =--;(2)()2213221222f x x x x ⎛⎫=--=-- ⎪⎝⎭,[],2x a a ∈+, 当122a +≤,即32a ≤-时,函数()f x 在[],2a a +上单调递减,∴()()2min 2263f x f a a a ⎡⎤=+=++⎣⎦;当122a a <<+,即3122a -<<时,函数()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在1,22a ⎡⎤+⎢⎥⎣⎦单调递增,∴()min1322f x f ⎛⎫⎡⎤==- ⎪⎣⎦⎝⎭; 当12a ≥时,函数()f x 在[],2a a +上单调递增, ∴()()2min221f x f a a a ⎡⎤==--⎣⎦. 综上,()2min23263,,2331,,2221221,2a a a f x a a a a ⎧++≤-⎪⎪⎪⎡⎤=--<<⎨⎣⎦⎪⎪--≥⎪⎩.(3)设()()g x f x tx t =-+有两个不相等的不动点1x 、2x ,且1>0x ,20x >,∴()g x x =,即方程()22310x t x t -++-=有两个不相等的正实根1x 、2x .∴()()21212Δ3810,30,2102t t t x x t x x ⎧⎪=+-->⎪+⎪+=>⎨⎪-⎪=>⎪⎩,解得1t >. 18.在①323n n b T =+,②{}n b 为等比数列,且13b =,23143T T T =+这两组条件中任选一组,补充在下面横线处,并解答下列问题.已知数列21n a n =-,数列{}n b 的前n 项和是n T ,______. (1)求数列{}n b 的通项公式;(2)若数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和为n M ,证明:对任意n *∈N 均有1n M ≤恒成立.【答案】(1)3nn b =(2)证明见解析【分析】(1)若选①,利用退一相减法可得通项公式;若选②,直接可得数列的首项及公比,进而可得通项公式;(2)利用错位相减法可得n M ,进而得证.【详解】(1)解:若选①,当1n =时,11132323b T b =+=+,即13b =; 当2n ≥时,323n n b T =+,11323n n b T --=+, 作差可得1332n n n b b b --=,即13n n b b -=,所以数列{}n b 为等比数列,其首项为13b =,公比3q =,所以1333n nn b -=⨯=;若选②,23143T T T =+,则121231443b b b b b b +=+++,即323b b =, 又数列{}n b 为等比数列,所以3q =,且13b =,所以1333n nn b -=⨯=;(2)证明:由(1)得3nn b =,所以()2112133nn n n a n n b -⎛⎫==-⋅ ⎪⎝⎭,所以()()23111111135232133333n nn M n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⨯+-⨯ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,()()23411111113523213333313n n n n n M +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⨯+-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,则()2311111111122222133333233n nn n M n -+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯+⨯-- ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()211112133112113313n n n -+⎡⎤⎛⎫⎛⎫⨯⨯-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎛⎫⎣⎦=+--⨯ ⎪⎝⎭- ()121121333n n n +⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭()1212233n n +⎛⎫=-+ ⎪⎝⎭,所以()1113nn M n ⎛⎫=-+⋅ ⎪⎝⎭,又n *∈N ,所以()11113nn M n ⎛⎫=-+⋅< ⎪⎝⎭恒成立.19.第四届中国国际进口博览会于2021年11月5日至10日在上海举行.本届进博会有4000多项新产品、新技术、新服务.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2022年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,生产x 千台空调,需另投入资金R 万元,且2210,040901945010000,40x ax x R x x x x ⎧+≤<⎪=⎨-+≥⎪⎩.经测算,当生产10千台空调时需另投入的资金R =4000万元.现每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完. (1)求2022年该企业年利润W (万元)关于年产量x (千台)的函数关系式; (2)2022年产量为多少时,该企业所获年利润最大?最大年利润为多少?注:利润=销售额-成本.【答案】(1)2210600260,040919010000,40x x x W x x x x ⎧-+-≤<⎪=⎨-+-≥⎪⎩(2)当2022年产量为100千台时,该企业的年利润最大,最大年利润为8990万元【分析】(1)由题意可知10x =时,R =4000,代入函数中可求出a ,然后由年利润等于销售总额减去投入资金,再减去固定成本,可求出年利润W (万元)关于年产量x (千台)的函数关系式,(2)分别当040x ≤<和40x ≥求出函数的最大值,比较即可得答案【详解】(1)由题意知,当10x =时,()21010104000R x a =⨯+=,所以a =300. 当040x ≤<时,()229001030026010600260W x x x x x =-+-=-+-;当40x ≥时,22901945010000919010000900260x x x x W x x x-+-+-=--=. 所以2210600260,040919010000,40x x x W x x x x ⎧-+-≤<⎪=⎨-+-≥⎪⎩,(2)当040x ≤<时,()210308740W x =--+,所以当30x =时,W 有最大值,最大值为8740;当40x ≥时,10000100009190291908990W x x x x ⎛⎫=-++≤-⋅+= ⎪⎝⎭, 当且仅当10000x x=,即x =100时,W 有最大值,最大值为8990. 因为87408990<,所以当2022年产量为100千台时,该企业的年利润最大,最大年利润为8990万元. 20.为了使更多人参与到冰雪运动中,某校组织了一次简易冰壶比赛.每场比赛由两支队伍对抗进行,每队由2名成员组成,共进行3局.每局比赛时,两队成员交替发球,每名成员只能从发球区(MN 左侧)掷冰壶一次.当所有成员全部掷完冰壶后,开始计分.若冰壶未到达营垒区,计1-分;若冰壶能准确到达营垒区,计2分,整场比赛累计得分多者获得比赛胜利.已知A 队两名成员甲、乙每次将冰壶投掷到营垒区的概率分别为12和13,B 队两名成员丙、丁每次将冰壶投掷到营垒区的概率均为12.假设两队投掷的冰壶在运动过程中无碰撞,每名成员投掷冰壶相互独立,每局比赛互不影响.(1)求A 队每局得分X 的分布列及期望;(2)若第一局比赛结束后,A 队得1分,B 队得4分,求A 队最终获得本场比赛胜利且总积分比B 队高3分的概率.【答案】(1)分布列见解析,期望为12;(2)43576.【分析】(1)根据题设写出X 的所有可能取值及对应概率,即可得到分布列,再根据分布列求期望即可;(2)同(1)写出B 的分布列,根据题设写出A 队获胜且总积分比B 队高3分所有可能情况,再求出各情况的概率,最后加总即可得结果.【详解】(1)由题设,X 的所有可能取值为2-,1,4,且X 的分布列如下:所以()21413262E X =-++=.(2)设B 队每局得分为Y ,同理Y 的分布列为记A 队、B 队在后两局总得分分别为x 、y ,则所包含的情况如下:()111111132,42362244576P x y ⎛⎫==-=⨯⨯+⨯⨯⨯= ⎪⎝⎭,()111115,122264224P x y ==-=⨯⨯⨯⨯⨯=, ()11111168,22662244576P x y ⎛⎫===⨯⨯⨯+⨯⨯= ⎪⎝⎭,故A 队最终获得本场比赛胜利且总积分比B 队高3分的概率为13164357624576576++=.21.如图所示:已知椭圆E :()222210x y a b a b +=>>的长轴长为4,离心率e =A 是椭圆的右顶点,直线l 过点()1,0M -交椭圆于C ,D 两点,交y 轴于点P ,PC CM λ=,PD DM μ=.记ACD △的面积为S .(1)求椭圆E 的标准方程; (2)求S 的取值范围; (3)求证:λμ+为定值. 【答案】(1)2214x y +=;(2)33; (3)证明见解析.【分析】(1)根据给定条件,求出半焦距c 及b 即可作答.(2)设出直线l 的方程,与椭圆E 的方程联立,结合韦达定理求出面积S 的表达式即可求解作答.(3)由(2)中信息,用点C ,D 的坐标表示出,λμ即可计算作答. 【详解】(1)令椭圆E 的半焦距为c ,依题意,2a =,3c e a ==3c =2221b a c =-=,所以椭圆E 的标准方程为2214x y +=.(2)依题意,直线l 不垂直于坐标轴,设直线l :1x ty =-,0t ≠,设1122(,),(,)C x y D x y ,由22144x ty x y =-⎧⎨+=⎩消去x 并整理得:22(4)230t y ty +--=,则12224t y y t +=+,12234y y t =-+, 2222121212122221243||()()4()44t t y y y y y y y y t t +--=+-+=++由(1)知(2,0)A,则有1216||||12S AM y y =⋅-==,令u >1y u u =+在)+∞则0S <<所以S的取值范围是. (3)由(2)知,1(0,)P t ,由PC CM λ=得111()y y tλ-=-,即111ty λ=-+,而PD DM μ=,同理211u ty =-+,因此,2121212221184222334t y y t t ty ty ty y t λμ+++=-++=-+=-+=--+, 所以83λμ+=-为定值.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答. 22.已知函数2()ln f x ax x x =--. (1)当1a =时,求()f x 的单调区间;(2)若函数()f x 在定义域内有两个不相等的零点12,x x . ①求实数a 的取值范围;②证明:()()12122ln +>-+f x x x x .【答案】(1)单调递减区间为(0,1),单调递增区间为(1,)+∞ (2)① 01a <<;②证明见解析【分析】(1)求导得(21)(1)()x x f x x+-'=,判断导函数符号确定原函数单调性,注意函数定义域;(2)①利用参变分离得2ln x x a x +=,即y a =与2ln x x y x +=有两个交点,判断函数单调性理解计算;②()()12122ln +>-+f x x x x 等价于()()212122+-+>a x x x x ,借助于函数零点整理得()121212ln ln 2⎛⎫-+> ⎪-⎝⎭x x x x x x ,即证1ln 21t t t +⋅>-,构建函数结合导数证明.【详解】(1)当1a =时,函数2()ln f x x x x =--,定义域为(0,)+∞.2121(21)(1)()21x x x x f x x x x x--+-'=--==. 由()0f x '=,得1x =.当01x <<时,()0f x '<,当1x >时,()0f x '>,所以()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞. (2)①若函数()f x 在定义域内有两个不相等的零点12,x x , 则方程2ln 0ax x x --=有两个不等的实根. 即方程2ln x xa x +=有两个不等的实根. 记2ln ()(0)+=>x x g x x x ,则32(n )l 1x x xg x --'=,记()12ln (0)=-->m x x x x ,则()m x 在(0,)+∞上单减,且(1)0m =, ∴当01x <<时,()0,()0'>>m x g x ;当1x >时,()0,()0'<<m x g x , ∴()g x 在(0,1)上单调递增,在(1,)+∞单调递减. ∴max ()(1)1g x g ==.又∵10g e ⎛⎫< ⎪⎝⎭且当1x >时,()0>g x ,∴方程为()g x a =有两个不等的实根时,01a <<.∴当01a <<时函数()f x 在定义域内有两个不相等的零点12,x x . ②要证()()12122ln +>-+f x x x x ,只需证()()()()212121212ln 2ln +-+-+>-+a x x x x x x x x , 只需证()()212122+-+>a x x x x ,因为22111222ln 0,ln 0--=--=ax x x ax x x ,两式相减得: ()()()22121212ln ln 0-----=a x x x x x x .整理得()121212ln ln 1-+=+-x x a x x x x .所以只需证()()12121212ln ln 12⎛⎫-++-+> ⎪-⎝⎭x x x x x x x x ,即证()121212ln ln 2⎛⎫-+> ⎪-⎝⎭x x x x x x ,即1121221ln 21+⋅>-x x x xx x ,不妨设120x x <<,令12(01)x t t x =<<,第 21 页 共 21 页 只需证1ln 21t t t +⋅>-, 只需证(1)ln 2(1)0+--<t t t ,设()(1)ln 2(1)=+--n t t t t ,只需证当01t <<时,()0<n t 即可. ∵221111()ln 1,()0(01)-=+-='''-=<<<t n t t n t t t t t t, ∴()n t '在((0,1)单调递减,∴当01t <<时,()(1)0''>=n t n ,∴()n t 在(0,1)单调递增,当01t <<时()(1)0n t n <=, ∴原不等式得证.【点睛】在证明()()212122+-+>a x x x x ,利用函数零点得()121212ln ln 1-+=+-x x a x x x x ,代入消去a 得()121212ln ln 2⎛⎫-+> ⎪-⎝⎭x x x x x x ,进一步处理得1121221ln 21+⋅>-x x x x x x 换元分析.。

湖南省常德市第一中学2024-2025学年高三上学期第一次月考 数学试题

湖南省常德市第一中学2024-2025学年高三上学期第一次月考 数学试题

常德市第一中学2025届高三第一次月水平检测数学时量:120分钟满分:150分一、单选题。

(本题共8小题,每题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的。

)1.已知集合{}{}21,24A x x B x x =-≤=-<≤,则A B = ()A .{}4x x ≤B .{}34x x ≤≤C .{}23x x -<≤D .{}24x x -<≤2.命题“x ∃∈R ,ln e 0x x x ++>”的否定是()A .x ∃∈R ,ln e 0x x x ++≤B .x ∀∈R ,ln e 0x x x ++≤C .x ∀∉R ,ln e 0x x x ++≤D .x ∃∉R ,ln e 0x x x ++<3.设5log 2a =,25log 3b =,0.20.6c =,则()A .c b a>>B .c a b>>C .b a c>>D .a c b>>4.近年,“人工智能”相关软件以其极高的智能化水平引起国内关注,深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为181425G L ⎛⎫=⨯ ⎪⎝⎭,其中L 表示每一轮优化时使用的学习率,G 表示训练迭代轮数,则学习率衰减到0.2及以下所需的训练迭代轮数至少为(参考数据:lg20.301≈)()A .16B .72C .74D .905.“1m £”是“函数()()22log 1f x x mx =--在()1,+∞单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.对于三次函数()()³²0f x ax bx cx d a =+++≠给出定义:设()f x '是函数()y f x =的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数32115()33212f x x x x =-+-,请你根据上面探究结果,计算12320202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()A .1010B .2020C .2023D .20247.()1212,[1,e]x x x x ∀∈≠,均有122121ln ln x x x x a x x -<-成立,则a 的取值范围为()A .(],0-∞B .[)1,+∞C .[]0,1D .[)0,+∞8.已知函数()()22e ,e xf x x x ag x x =-+=-,若(][]12,0,1,e x x ∞∀∈-∃∈,使()()12g x f x ≤成立,则实数a 的取值范围是()A .[)2e 1,-+∞B .12e 1,e ∞⎡⎫+-+⎪⎢⎣⎭C .)2e ,⎡+∞⎣D .21e ,e ⎡⎫++∞⎪⎢⎣⎭二、多选题(本题有3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,选错得0分)9.下列选项中正确的有()A .若a b >,则22ac bc >B .若集合{}{}20|1,2,A B x ax =-=+=,且B A ⊆,则实数a 的取值所组成的集合是{}1,2-.C .若不等式20ax bx c ++>的解集为{}3|1x x <<,则不等式20cx bx a ++<的解集为1{3x x <或1}x >D .已知函数()1y f x =+的定义域是[]2,3-,则()1y f x =-的定义域是[]0,5.10.已知0,0a b >>,且1a b +=,则()A .ab 的最小值是14B .222a b +最小值为23CD .12aa b+的最小值是111.已知函数()1e ,01ln ,04x x x f x x x +⎧-≤⎪=⎨->⎪⎩,下列选项中正确的是()A .()f x 在(),1-∞-上单调递增,在()1,0-上单调递减B .()f x 有极大值C .()f x 无最小值D .若函数()()()()2[]24h x f x af x a =-+∈R 恰有6个零点,则实数a 的取值范围是5,2⎛⎫+∞ ⎪⎝⎭三、填空题(本题共3小题,每小题5分,共15分)12.已知命题“[]1,5x ∃∈,使得1e 0xa x--<”是假命题,则实数a 的取值范围是.13.已知函数()f x ,()g x 分别是定义在R 上的奇函数,偶函数,且()()e xf xg x +=,则()()22f xg x -=⎡⎤⎡⎤⎣⎦⎣⎦.14.设函数()2e e xf x ax x =--,若在()0,∞+上满足()0f x <的正整数至多有两个,则实数a 的取值范围是.四、解答题(本题共5小题,共77分,解答应写出文字说明,证明过程和演算步骤)15.(13分)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知向量,m n 满足(2,6m a =-,)2sin ,n B b =,且m n ⊥.(1)求角A ;(2)若ABC 是锐角三角形,且3a =,求ABC 周长的取值范围.16.(15分)已知正方体1111ABCD A B C D -的棱长为3,11113PD A D =,11123QC C D =,M 为线段BD 上的动点,M '是点M 关于AD 所在直线的对称点.(1)求证:1MB PQ ⊥;(2)求三棱锥1Q PMB -的体积;(3)当2BM DM =时,求二面角M PQ M '--的余弦值的绝对值.17.(15分)数列{}n a 满足321212222n n a a a a n -+++⋯+=.(1)求{}n a 的通项公式;(2)若n nnb a =,求{}n b 的前n 项和n T .18.(17分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点与点3,12P ⎛⎫ ⎪⎝⎭连线的斜率为2,且点()1,e 在椭圆C 上(其中e 为C 的离心率).(1)求椭圆C 的标准方程.(2)已知点(2,0)D ,过点P 的直线l 与C 交于A ,B 两点,直线DA ,DB 分别交C 于M ,N 两点,试问直线MN 的斜率是否为定值?若是,求出该定值;若不是,请说明理由.19.(17分)已知()2ln x ax x bf x x++=(1)当3,1a b =-=-时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)已知()f x 有两个极值点12,x x ,且满足()()120f x f x +=,求b 的值;(3)在(2)的条件下,若()1f x x ≥-+在[)1,+∞上恒成立,求a 的取值范围.参考答案:1.C 2.B3.B4.C5.B 6.B 7.B 8.B9.CD10.BC 11.ABD 12.(],e 1∞--13.1-14.3e 3e ,9⎛⎤--∞ ⎥⎝⎦11.【详解】对于A ,当0x ≤时,1()e x f x x +=-,则111()(e e )e (1)x x x f x x x +++'=-+=-+,当1x <-时,()0f x '>,当10x -<<时,()0f x '<,所以()f x 在(),1∞--上单调递增,在()1,0-上单调递减,所以A 正确,对于B ,由选项A 可知()f x 在(),1∞--上单调递增,在()1,0-上单调递减,所以()f x 在=1x -处取得极大值,所以B 正确,对于C ,当0x >时,14141ln ,e 14()ln 41ln ,0e 4x x f x x x x ⎧-≥⎪⎪=-=⎨⎪-<<⎪⎩,当14e x ≥时,1ln 04x -≥,当140e x <<时,1ln 04x ->,所以当0x >时,()0f x ≥,因为()f x 在(),1∞--上单调递增,在()1,0-上单调递减,且当0x ≤时,()0f x ≥恒成立,综上,()f x 的值域为[0,)+∞,所以()f x 有最小值0,所以C 错误,对于D ,因为()f x 在(),1∞--上单调递增,在()1,0-上单调递减,()11f -=,(0)0f =,14141ln ,e 14()ln 41ln ,0e 4x x f x x x x ⎧-≥⎪⎪=-=⎨⎪-<<⎪⎩所以()f x 的大致图象如图所示由()0h x =,得()()2[]240f x af x -+=,令()f x t =,则2240t at -+=,由()f x 的图象可知,要使()h x 有6个零点,则方程2240t at -+=有两个不相等的实数根12,t t ,不妨令12t t <,若120,01t t =<<,则由图可知()h x 有6个零点,但202040a -⨯+≠,所以不符合题意,所以1201,1t t <<>,因为2020440a -⨯+=>,所以21240a -+<,解得52a >,即实数a 的取值范围是5,2∞⎛⎫+ ⎪⎝⎭,所以D 正确,故选:ABD 14.3e 3e ,9⎛⎤--∞ ⎝⎦【详解】由在()0,∞+上满足()2e e 0xf x ax x =--<的正整数至多有两个,即在()0,∞+上满足2e e x x a x ->的正整数至多有两个,设()2e e x xg x x -=,0x >,则()()3e 2e xx x g x x -+'=,设()()e 2e x h x x x =-+,0x >,则()()e 1e x h x x '=-+,0x >,设()()e 1e x m x x =-+,0x >,则()e 0xm x x '=>恒成立,则()m x 在()0,∞+上单调递增,即()()0e 10m x m >=->,即()0h x '>,所以()h x 在()0,∞+上单调递增,又()10h =,所以当()0,1x ∈时,()0h x <,即()0g x '<,()g x 单调递减;当()1,x ∈+∞时,()0h x >,即()0g x '>,()g x 单调递增;所以当1x =时,()g x 取最小值,又在()0,∞+上满足()2e e x x a g x x ->=的正整数至多有两个,则()3e 3e39a g -≤=,即3e 3e ,9a ⎛⎤-∈-∞ ⎥⎝⎦,故答案为:3e 3e ,9⎛⎤--∞ ⎥⎝⎦.15.(1)π3A =或2π3.(2)(333,9]+【详解】(1)解:∵m n ⊥,∴22sin 60a B b =,即22sin 6a B b =.由正弦定理得2sin sin 3A B B .∵sin 0B ≠,∴3sin 2A =,∵(0,π)A ∈,∴π3A =或2π3.(2)∵3a =,且三角形ABC 为锐角三角形,∴π3A =.∴由正弦定理得23sin sin sin 32a b cA B C====.∴23sin b B =,23sin c C =.∴)2π23sin sin 3sin sin 3b c B C B B⎤⎛⎫+=+=+- ⎪⎥⎝⎭⎦,31333sin cos sin 3sin 2222B B B B B ⎫⎫=++=+⎪⎪⎪⎪⎭⎭)331π33sin cos 32sin cos 6sin 2226B B B B B ⎛⎫⎛⎫=+=⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭.又∵ABC 为锐角三角形,∴π02B <<,∴2π0π32B <-<,得ππ62B <<,ππ2π363B <+<.∴3πsin()126B <+≤,336sin 66B π⎛⎫<+≤ ⎪⎝⎭,∴336b c <+≤,又∵3a =,∴3339a b c +<++≤.∴ABC 的周长的取值范围为(333,9]+.16.(1)证明见解析(2)52(3)1719【详解】(1)证明:连接1111,AC B D .由11123QC C D =,得11113QD C D =,又11113PD A D =,则有11//PQ AC ,正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11AC ⊂平面1111D C B A ,得111BB A C ⊥,又正方形1111D C B A 中,1111B D AC ⊥,1111BB B D B ⋂=,111,BB B D ⊂平面11BB D D ,所以11AC ⊥平面11BB D D ,由1MB ⊂平面11BB D D ,得111AC MB ⊥.又11//PQ A C ,所以1PQ MB ⊥.(2)111D P D Q ==,22112PQ D P D Q =+=,111111,A B C B A P C Q ==,1111Rt Rt A B P C B Q ≅ ,222222*********B P B Q A P A B ==+=+=,有1113B P B Q ==1221111521322222PQB PQ S PQ PB ⎛⎫=-=-= ⎪⎝⎭,∴11115332Q PMB M PQB PQB V V S --==⨯⨯= .(3)如图所示,以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴建立空间直角坐标系.则(0,0,0)D ,(3,0,0)A ,(1,0,3)P ,(0,1,3)Q ,当2BM DM =时,有(1,1,0)M ,则(1,1,0)M -',(1,1,0)PQ =- ,(1,2,3)QM -'=- .(0,1,3)PM =-设()111,,m x y z = 为平面QPM '的一个法向量,∴111110230PQ m x y QM m x y z ⎧⋅=-+=⎪⎨⋅='--=⎪⎩ ,令13x =,得113,1y z ==-,可得()3,3,1m =- .设()222,,n x y z = 为平面QPM 的一个法向量,∴2222030PQ n x y PM n y z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令23x =,得223,1y z ==,可得(3,3,1)n = .设M PQ M '--所成的角为θ∴17cos 19991991m n m n θ⋅==⋅++⨯++ .17.(1)2nn a =(2)222n nn T +=-【详解】(1)数列{}n a 满足321212222n n a a a a n -++++= ,当2n ≥时,()31212221222n n a a a a n --+++⋯+=-,两式相减可得,122nn a -=,所以2n n a =,当1n =时,1122a ==也满足上式,所以2n n a =;(2)由(1)得2n n n b =,所以231232222nn nT =++++ ,则234111*********n n n n n T +-=+++++ ,两式相减的,2311111(1)11111222112222222212n n n n n n n n n T +++-+=++++-=-=-- ,所以222n nn T +=-.18.(1)2212x y +=(2)是定值,定值为2-(1)由题意可得22222221023211c c a a b a b c-⎧=⎪-⎪⎪⎪+=⎨⎪=+⎪⎪⎪⎩,解得222211a b c ⎧=⎪=⎨⎪=⎩故椭圆C 的标准方程为2212xy +=;(2)由题意可知直线l 的斜率不为0,设直线l 的方程为()312x m y =-+,()11,A x y ,()22,B x y ,()33,M x y ,()44,N x y ,则直线DA 的方程为1122x x y y -=+.联立11222212x x y y x y -⎧=+⎪⎪⎨⎪+=⎪⎩,整理得()()22111132220x y x y y y -+-+=则2113132y y y x =-,即13132y y x =-.代入1122x x y y -=+,得()13112312322232x x x x -=+=---.同理可得()2442231,322232y y x x x ==---.因为()()()()21211213214312123232323211232232MNy y y x y x y y x x k x x x x x x -------===-----()()()21112112123332322222,y my m y my m m y y m y y m y y ⎡⎤⎡⎤⎛⎫⎛⎫--+---+ ⎪ ⎪⎢⎥⎢⎥-⎝⎭⎝⎭⎣⎦⎣⎦===---所以直线MN 的斜率为定值,且定值为2-.19.(1)1y x =-+(2)1b =-(3)[)3,2--【详解】(1)当3,1a b =-=-时,()()13ln ,10f x x x f x =--=,所以()2311f x x x '=-+,所以()11f '=-.所以曲线()y f x =在点()()1,1f 处的切线方程为1y x =-+.(2)因为()()ln ,0,b f x x a x x x =++∈+∞,所以()2221a b x ax bf x x x x +-=+-=',因为()f x 有两个极值点12,x x ,所以()f x '有两个大于0的变号零点,所以方程20x ax b +-=有两个不等正根,所以21212Δ4000a b x x b x x a ⎧=+>⎪=->⎨⎪+=->⎩,解得2400a bb a ⎧>-⎪<⎨⎪<⎩,又因为()()120f x f x +=,即有112212ln ln 0b b x a x x a x x x +++++=,整理得()()12121212ln 0x x x x a x x bx x ++++=,代入1212,x x b x x a =-+=-,可得()()ln 0aa ab b b--+-+=-,解得1b =-,又因为240a ba ⎧>-⎨<⎩,所以可得2a <-,经检验,符合题意.(3)由(2)可知1b =-且2a <-,从而()1ln f x x a x x=+-,因为()1f x x ≥-+在[)1,+∞上恒成立,令()()[)112ln 1,1,g x f x x x a x x x=+-=+--∈+∞,则有()0g x ≥在[)1,+∞上恒成立,易得()12ln1110g a =+--=,因为()2221212a x ax g x x x x ++=++=',所以()13g a '=+,令()[)()221,1,,13h x x ax x h a =++∈+∞=+,对称轴4a x =-,①当32a -≤<-时,()3130,44a h a x =+≥=-≤,所以()h x 在[)1,+∞单调递增,从而()()130h x h a ≥=+≥恒成立,所以()()20h x g x x ='≥在[)1,+∞也恒成立,所以()g x 在[)1,+∞单调递增,从而()()10g x g ≥=恒成立.②当3a <-时,()130h a =+<,所以2210x ax ++=有两个不等实根34,x x (不妨设34x x <),所以341x x <<,且当()41,x x ∈时,()0h x <,从而()()20h x g x x='<,所以()g x 在[]41,x 上单调递减,所以()()410g x g <=,与“()0g x ≥在[)1,+∞上恒成立”矛盾,综上,a 的取值范围是[)3,2--。

四川省绵阳市2024届高三(补习班)上学期11月月考数学(理)试题含解析

四川省绵阳市2024届高三(补习班)上学期11月月考数学(理)试题含解析

绵阳南山2024届补习年级十一月月考理科数学试题(答案在最后)注意事项:1.答卷前,考生务必将自己的班级、姓名、考号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本卷共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1,2A =-,{}2xB y y ==,M A B = ,则集合M 的子集个数是()A.2B.3C.4D.8【答案】C 【解析】【分析】求出集合M ,由此可计算出集合M 的子集个数.【详解】{}{}20xB y y y y ===> ,{}1,0,1,2A =-,{}1,2M A B ∴=⋂=,因此,集合M 的子集个数是224=.故选:C.【点睛】本题考查集合子集个数的计算,一般要求出集合的元素个数,考查计算能力,属于基础题.2.抛物线24y x =的焦点坐标是()A.(0,1)B.(1,0)C.10,16⎛⎫⎪⎝⎭D.1,016⎛⎫⎪⎝⎭【答案】C 【解析】【分析】将抛物线化为标准方程可得焦点坐标.【详解】抛物线24y x =标准方程为214x y =,其焦点坐标为10,16⎛⎫⎪⎝⎭故选:C.3.已知函数()f x 的定义域为R ,则“(1)()f x f x +>恒成立”是“函数()f x 在R 上单调递增”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】函数()f x 为R 上增函数R x ⇒∀∈,(1)()f x f x +>,反之不成立,即可判断出结论.【详解】函数()f x 为R 上增函数R x ⇒∀∈,(1)()f x f x +>,反之不成立,例如定义()f x 在(0,1]上,()f x x =-,且在R 上满足(1)()1f x f x +=+,则有“(1)()f x f x +>”,∴“(1)()f x f x +>”是“函数()f x 为增函数”的必要不充分条件.故选:B .4.若向量,a b满足||||||a b a b +=+,则向量,a b一定满足的关系为()A.0a= B.存在实数λ,使得a bλ=C.存在实数,m n ,使得ma nb= D.||||||a b a b -=-【答案】C 【解析】【分析】对于A,B,D 通过举反例即可判断,对于C 需分a 与b 是否为0讨论即可.【详解】||||||a b a b +=+,两边同平方得222222||||a a b b a a b b +⋅+=+⋅+ ||||a b a b ∴⋅= ,||||cos ||||a b a b θ∴= ,对A ,0b = 时,a为任一向量,故A 错误,对B ,若0b = ,0a ≠时,此时不存在实数λ,使得a b λ=,故B 错误,对于C ,因为||||cos ||||a b a b θ=,当a 与b 至少一个为零向量时,此时一定存在实数m ,n ,使得ma nb = ,具体分析如下:当0a = ,0b ≠r r时,此时m 为任意实数,0n =,当0a ≠ ,0b =时,此时n 为任意实数,0m =,当0a = ,0b =时,,m n 为任意实数,当0a ≠ ,0b ≠r r 时,因为||||cos ||||a b a b θ=,则有cos 1θ=,根据[]0,θπ∈,则0θ=,此时,a b 共线,且同向,则存在实数λ使得a b λ=(0λ>),令n m λ=,其中,m n 同号,即n a b m= ,即ma nb = ,则存在实数m ,n ,使得ma nb = ,故C 正确,对于D ,当0a = ,0b ≠r r时,||||||a b a b -≠- ,故D 错误,故选:C.5.在平面直角坐标系xOy 中,若圆()()2221:14C x y r -+-=(r >0)上存在点P ,且点P 关于直线10x y +-=的对称点Q 在圆()222:49C x y ++=上,则r 的取值范围是()A.(2,+∞) B.[2,+∞) C.(2,8)D.[2,8]【答案】D 【解析】【分析】求出圆1C 关于10x y +-=对称的圆的方程,转化为此圆与()2249x y ++=有交点,再由圆心距与半径的关系列不等式组求解.【详解】()()2221:14C x y r -+-=圆心坐标()11,4C ,设()1,4关于直线10x y +-=的对称点为(),a b ,由141022411a b b a ++⎧+-=⎪⎪⎨-⎪=⎪-⎩,可得30a b =-⎧⎨=⎩,所以圆()()2221:14C x y r -+-=关于直线10x y +-=对称圆的方程为()2220:3C x y r ++=,则条件等价为:()2220:3C x y r ++=与()222:49C x y ++=有交点即可,两圆圆心为()03,0C -,()20,4C -,半径分别为r ,3,则圆心距025C C ==,则有353r r -≤≤+,由35r -≤得28r -≤≤,由35r +≥得2r ≥,综上:28r ≤≤,所以r 的取值范围是[]28,,故选:D.6.已知函数()s π3πin f x x ⎛⎫=+⎪⎝⎭,其在一个周期内的图象分别与x 轴、y 轴交于点A 、点B ,并与过点A 的直线相交于另外两点C 、D .设O 为坐标原点,则()BC BD OA +⋅=()A.118B.89C.49D.29【答案】B 【解析】【分析】根据图象结合三角函数求点,A B ,进而求,BC BD OA +uu u r uu u r uu r,即可得结果.【详解】因为()s π3πin f x x ⎛⎫=+⎪⎝⎭,可得π(0)sin 32f ==,即0,2B ⎛⎫ ⎪ ⎪⎝⎭,由图可知:点A 为减区间的对称中心,令ππ2ππ,3x k k +=+∈Z ,解得22,3x k k =+∈Z ,取0k =,则23x =,即2,03A ⎛⎫⎪⎝⎭,可得232,,,0323BA OA ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭uu r uu r ,因为点A 为线段CD的中点,则42,3BC BD BA ⎛+== ⎝uu u r uu u r uu r ,所以()428339BC BD OA +⋅=⨯=uu u r uu u r uu r .7.已知过椭圆2222:1(0)x y C a b a b+=>>左焦点F且与长轴垂直的弦长为,过点()2,1P 且斜率为-1的直线与C 相交于A ,B 两点,若P 恰好是AB 的中点,则椭圆C 上一点M 到F 的距离的最大值为()A.6B.6+C.6+D.6【答案】D 【解析】【分析】利用椭圆的方程和性质及直线与椭圆位置关系即可解决.【详解】由过椭圆2222:1(0)x y C a b a b +=>>左焦点F且与长轴垂直的弦长为可得椭圆过点(c -,代入方程得222181+=c a b.设()()1122,,,,A x y B x y 则2222112222221,1,x y x y a b a b +=+=,两式作差得22221212220x x y y a b --+=,即()()()()12121212220x x x x y y y y a b -+-++=,因为P 恰好是AB 的中点,所以12124,2x x y y +=+=,又因为直线AB 斜率为-1,所以12121y y x x -=--,将它们代入上式得222a b =,则联立方程222222221812c a b a b a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得66a b c ⎧=⎪=⎨⎪=⎩.所以椭圆C 上一点M 到F的距离的最大值为6+=+a c 故选:D8.若直线y x b =-+与曲线x =b 的取值范围是()A.⎡⎣B.⎡-⎣C.[1,1)-D.]{(1,1-⋃【解析】【分析】由题意作图,根据直线与圆的位置关系,可得答案.【详解】由曲线x =221x y +=,其中0x ≥,表示以原点为圆心,半径为1的右半圆,y x b =-+是倾斜角为135︒的直线,其与曲线有且只有一个公共点有两种情况:(1)直线与半圆相切,根据d r =,所以1d ==,结合图象,可得:b =;(2)直线与半圆的下半部分相交于一个交点,由图可知[1,1)b ∈-.综上可知:[1,1)b ∈-.故选:C.9.已知02αβπ<<<,函数()5sin 6f x x π⎛⎫- ⎝=⎪⎭,若()()1f f αβ==,则()cos βα-=()A.2325B.2325-C.35D.35-【答案】B 【解析】【分析】由已知条件,结合三角函数的性质可得263ππα<<,2736ππβ<<,从而利用()cos cos 66ππβαβα⎡⎤⎛⎫⎛⎫-=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即可求解.【详解】解:令()5sin 06f x x π⎛⎫-= ⎪⎝⎭=,02x π<<,则6x π=或76x π=,令()5sin 56f x x π⎛⎫-= ⎪⎝⎭=,02x π<<,则23x π=,又02αβπ<<<,()()1ff αβ==,所以263ππα<<,2736ππβ<<,1sin 65πα⎛⎫-= ⎪⎝⎭,1sin 65πβ⎛⎫-= ⎪⎝⎭,因为062ππα<-<,26ππβπ<-<,所以cos 65πα⎛⎫-= ⎪⎝⎭,cos 65πβ⎛⎫-=- ⎪⎝⎭,所以()cos cos cos cos sin sin 666666ππππππβαβαβαβα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=---=--+-- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦26261123555525-⨯⨯=-=+,故选:B.10.已知数列{}n a 满足12a =,26a =,且2122n n n a a a ++-+=,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122021232022a a a ⎡⎤⎡⎤⎡⎤++⋅⋅⋅+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()A.2019B.2020C.2021D.2022【答案】D 【解析】【分析】求出()1na n n =+,()2111nn a n+=+,即得解.【详解】解:由题设知,()()2112n n n n a a a a +++---=,214a a -=,故{}1n n a a +-是首项为4,公差为2的等差数列,则122n n a a n +-=+,则11221n n n n a a a a a a ----+-+⋅⋅⋅+-()()()()1213212121n a a n n n n ⎡⎤=-=-+⋅⋅⋅++++-=+-⎣⎦,所以()1na n n =+,故()2111nn a n+=+,又*n ∈N ,当1n =时,2122a ⎡⎤=⎢⎥⎣⎦,当2n ≥时,()211n n a ⎡⎤+=⎢⎥⎢⎥⎣⎦,所以22212202123202221112022a a a ⎡⎤⎡⎤⎡⎤++⋅⋅⋅+=++++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.故选:D .11.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,过2F 作一条直线与双曲线右支交于,A B 两点,坐标原点为O ,若OA c =,15BF a =,则该双曲线的离心率为()A.2B.2C.3D.3【答案】B 【解析】【分析】由1212OA c F F ==得1290F AF ∠=︒,由双曲线定义得23BF a =,在1AF B △中应用勾股定理得2AF a =,在12AF F △中再应用勾股定理得,a c 的关系式,求得离心率.【详解】因为1212OA c F F ==,所以1290F AF ∠=︒,又122BF BF a -=,所以23BF a =,又122AF AF a =+,由22211AF AB BF +=得22222(2)(3)(5)AF a AF a a +++=,解得2AF a =,所以由2221212AF AF F F +=,得222(2)(2)a a a c ++=,解得2c e a ==.故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是由1212OA c F F ==得1290F AF ∠=︒,然后结合双曲线的定义在1AF B △中应用勾股定理求得2AF ,在12AF F △中应用勾股定理建立,a c 的关系.12.设0.02e 1a =-,()0.012e 1b =-,sin 0.01tan 0.01c =+,则()A.a b c >>B.a c b >>C.c a b >>D.b c a>>【答案】A 【解析】【详解】因为()20.020.010.01e 2e 1e 10a b -=-+=->,所以a b >.设()()2e 1sin tan xf x x x =---,则()f x '=212e cos cos xx x--,令()()g x f x '=,则32sin ()2e sin cos xxg x x x'=+-.当π0,6x ⎛⎫∈ ⎪⎝⎭时,2e 2x >,sin 0x >,33π2sin2sin 62πcos 9cos 6x x <=<,所以()0g x '>,所以当π0,6x ⎛⎫∈ ⎪⎝⎭时,()(0)0f x f ''>=,所以()f x 在π0,6x ⎛⎫∈ ⎪⎝⎭上单调递增,从而()(0)0f x f >=,因此(0.01)0f >,即b c >.综上可得a b c >>.故选:A【点睛】比较函数值的大小,要结合函数值的特点,选择不同的方法,本题中,,a b 可以作差进行比较大小,而,b c 的大小比较,则需要构造函数,由导函数得到其单调性,从而比较出大小,有难度,属于难题.二、填空题:本大题共4小题,每小题5分,共20分13.已知复数z 满足13i z z -=-,则z =__________.【答案】5【解析】【分析】设i z a b =+,,R a b ∈,根据复数的模及复数相等的充要条件得到方程组,解得a 、b ,即可求出z ,从而得解.【详解】设i z a b =+,,R a b ∈,则z =,因为13i z z -=-i 13i a b --=-,所以13a b -==⎪⎩,所以43a b =⎧⎨=⎩,即43i z =+,所以5z ==.故答案为:514.已知双曲线22221(0,0)x y a b a b-=>>的一个焦点在直线2y x =-上,且焦点到渐近线的距离为双曲线的方程为_______.【答案】2213y x -=【解析】【分析】根据点到直线的距离公式可得b =,由焦点在直线上可得2c =,进而可求解1a ==.【详解】由题意可得双曲线的焦点在x 轴上,又直线2y x =-与x 的交点为()2,0,所以右焦点为()2,0,故2c =,渐近线方程为b y x a=±,所以(),0cb c a b ==又1a ==,故双曲线方程为2213yx -=,故答案为:2213y x -=15.已知定义在R 上的函数()f x 满足()()2f x f x x +-=,[)12,0,x x ∀∈+∞均有()()()121212122f x f x x x x x x x -+>≠-,则不等式()()112f x f x x -->-的解集为___________.【答案】1,2⎛⎫+∞ ⎪⎝⎭【解析】【分析】构造函数()()212g x f x x =-,通过题干条件得到()g x 为奇函数,且在R 上单调递增,从而根据单调性解不等式,求出解集.【详解】因为定义在R 上的函数()f x 满足()()2f x f x x +-=,所以设()()212g x f x x =-,则()()g x g x =--,所以()()212g x f x x =-为奇函数,因为[)12,0,x x ∀∈+∞,都有()()()121212122f x f x x x x x x x -+>≠-,当12x x >时,则有()()()()1212122x x x x f x f x +-->,即()()22121222x x f x f x ->-,所以()()12g x g x >,所以()g x 在()0,∞+上单调递增,当12x x <时,则有()()22121222x x f x f x -<-,所以()()12g x g x <,所以()g x 在()0,∞+上单调递增,综上:()g x 在()0,∞+上单调递增,因为()g x 为奇函数,则()g x 在R 上单调递增,()()112f x f x x -->-变形为:()()()22111122f x x f x x ->---,即()()1g x g x >-,所以1x x >-,解得:12x >.故答案为:1,2⎛⎫+∞ ⎪⎝⎭16.已知抛物线2:8C y x =,其焦点为点F ,点P 是拋物线C 上的动点,过点F 作直线()1460m x y m ++--=的垂线,垂足为Q ,则PQ PF+的最小值为___________.【答案】5##5+【解析】【分析】通过确定直线过定点M (4,2),得到Q 在以FM 为直径的圆上,将P 到Q 的距离转化为到圆心的距离的问题,再利用抛物线的定义就可得到最小值.【详解】将已知直线(1)460+-+-=m x m y 化为()460-++-=m x x y ,当4x =时2y =,可确定直线过定点(4,2),记为M 点.∵过点F 做直线(1)460+-+-=m x m y 的垂线,垂足为Q ,∴FQ ⊥直线(1)460+-+-=m x m y ,即,90︒⊥∠=FQ MQ FQM ,故Q 点的轨迹是以FM 为直径的圆,半径r =,其圆心为FM 的中点,记为点H ,∴(3,1)H ,∵P 在抛物线2:8C y x =上,其准线为2x =-,∴PF 等于P 到准线的距离.过P 作准线的垂线,垂足为R .要使||||PF PQ +取到最小,即||||PR PQ +最小,此时R 、P 、Q 三点共线,且三点连线后直线RQ 过圆心H .如图所示,此时()min ||||5+=-=-PR PQ HR r故答案为:5三、解答题(共70分)解答应写出文字说明、证明过程或演算步骤.第17—21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC 的面积.【答案】(1;(2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【小问1详解】由于3cos 5C =,0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin sin 45A C ==.【小问2详解】因为4a =,由余弦定理,得2222221612111355cos 22225a a a a b c C ab a a +--+-====,即26550a a +-=,解得5a =,而4sin 5C =,11b =,所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=.18.已知数列{}n a 中的相邻两项21k a -,2k a 是关于x 的方程()232320k k x k x k -++⋅=的两个根,且212(1,2,3,)k k a a k -≤= .(1)求1357,,,a a a a 及2(4)n a n ≥(不必证明);(2)求数列{}n a 的前2n 项和2n S .【答案】(1)13572,,,(4)24812,2n na a a a a n ===≥==;(2)2133222n n n +++-【解析】【分析】(1)方程由因式分解可解得21,23k x x k ==,结合212(1,2,3,)k k a a k -≤= 则可求得1357,,,a a a a ,令()2132n n f n x x =-=-,设()23xg x x =-,由导数法可求得()()()40f n g n g =≥>,则有2n n a =;(2)分组求和,结合公式法求和即可【小问1详解】由题意得,()()213203,2k k x k x x x k -===-⇒,由212(1,2,3,)k k a a k -≤= ,则当1k =时,21123,2x x a ⇒===;当2k =时,21346,4x x a ⇒===;当3k =时,21589,8x x a ⇒===;当4k =时,712612,112x x a ⇒===;当k n =()4n ≥时,21,23n x x n ==,令()2132n n f n x x =-=-,设()23x g x x =-,由()()2ln 2416ln 2330x g x g '=≥=-->',故()g x 单调递增,故()()()430f n g n g =≥=>,则21x x >,∴22n n a =;【小问2详解】由(1)得122122n n nS a a a a -=++++ ()()2363222n n =+++++++ ()()21233212nn n-+=+-2133222n n n ++=+-19.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别是1F ,2F ,上、下顶点分别是1B ,2B ,离心率12e =,短轴长为.(1)求椭圆C 的标准方程;(2)过2F 的直线l 与椭圆C 交于不同的两点M ,N ,若12MN B F ⊥,试求1F MN △内切圆的面积.【答案】(1)22143x y +=;(2)36169π.【解析】【分析】(1)由题意得122c a b ⎧=⎪⎨⎪=⎩,解出即可;(2)首先算出直线l 的方程,然后和椭圆的方程联立消元,算出1F MN △的面积和周长,然后得到1F MN △内切圆的半径即可.【详解】(1)由题意得122c a b ⎧=⎪⎨⎪=⎩,又222a b c =+,解得24a =,23b =,所以椭圆C 的方程为22143x y +=.(2)由(1B ,()21,0F ,知12B F的斜率为12MN B F ⊥,故MN的斜率为3,则直线l的方程为()13y x =-,即1x =+,联立221,431,x y x ⎧+=⎪⎨⎪=+⎩可得:21390y +-=,设()11,M x y ,()22,N x y,则1213y y +=-,12913y y =-,则1F MN △的面积122413S c y y =⋅-==,由1F MN △的周长48L a ==,及12S LR =,得内切圆2613S R L ==,所以1F MN △的内切圆面积为236ππ169R =.20.已知函数()ln(1)2f x x ax =+-+.(1)若2a =,求()f x 在0x =处的切线方程;(2)当0x ≥时,()2ln(1)0f x x x x +++≥恒成立,求整数a 的最大值.【答案】(1)20x y +-=(2)4【解析】【分析】(1)利用函数解析式求切点坐标,利用导数求切线斜率,点斜式求切线方程;(2)0x =时,不等式恒成立;当0x >时,不等式等价于()()1ln 12x x a x ⎡⎤+++⎣⎦≤,设()()()1ln 12x x g x x⎡⎤+++⎣⎦=,利用导数求()g x 的最小值,可求整数a 的最大值.【小问1详解】若2a =,则()ln(1)22f x x x =+-+,()02f =,则切点坐标为()0,2,()121f x x =-+',则切线斜率()01k f '==-,所以切线方程为()20y x -=--,即20x y +-=.【小问2详解】由()2ln(1)0f x x x x +++≥,得(1)[ln(1)2]ax x x ≤+++,当0x =时,02a ⋅≤,a ∈R ;当0x >时,()()1ln 12x x a x⎡⎤+++⎣⎦≤,设()()()1ln 12x x g x x ⎡⎤+++⎣⎦=,()()22ln 1x x g x x --+'=,设()()2ln 1h x x x =--+,()01x h x x +'=>,则()h x 在()0,∞+单调递增,(3)1ln 40h =-<,(4)2ln 50h =->,所以存在0(3,4)x ∈使得()00h x =,即()002ln 1x x -=+.()00,x x ∈时,()0h x <,即()0g x '<;()0,x x ∈+∞时,()0h x >,即()0g x '>,则有()g x 在()00,x 单调递减,在()0,x +∞单调递增,()min 0()g x g x =,所以()()()()()000000001ln 121221x x x x a g x x x x ⎡⎤⎡⎤++++-+⎣⎦⎣⎦≤===+,因为0(3,4)x ∈,所以01(4,5)x +∈,所以整数a 的最大值为4.【点睛】方法点睛:不等式问题,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.解题过程中要注意分类讨论和数形结合思想的应用.21.在平面直角坐标系xOy 中,动点G 到点()4,0F 的距离比到直线60x +=的距离小2.(1)求G 的轨迹的方程;(2)设动点G 的轨迹为曲线C ,过点F 作斜率为1k ,2k 的两条直线分别交C 于M ,N 两点和P ,Q 两点,其中122k k +=.设线段MN 和PQ 的中点分别为A ,B ,过点F 作FD AB ⊥,垂足为D .试问:是否存在定点T ,使得线段TD 的长度为定值.若存在,求出点T 的坐标及定值;若不存在,说明理由.【答案】(1)216y x=(2)存在定点(4,2)T ,使得线段TD 的长度为定值2;理由见解析【解析】【分析】(1)根据动点G 到点(4,0)F 的距离比它到直线60x +=的距离小2和抛物线的定义可知点G 的轨迹是以(4,0)F 为焦点,以直线40x +=为准线的抛物线,进而得出结果;(2)设直线方程,联立抛物线方程,求得A ,B 的坐标,从而表示出AB 的方程,说明其过定点,由FD AB ⊥可说明点D 点在一个圆上,由此可得结论.【小问1详解】由题意可得动点G 到点()4,0F 的距离比到直线60x +=的距离小2,则动点G 到点()4,0F 的距离与到直线40x +=的距离相等,故G 的轨迹是以(4,0)F 为焦点,以直线40x +=为准线的抛物线,设抛物线方程为22,(0)y px p =>,则焦准距8p =,故G 的轨迹的方程为:216y x =;【小问2详解】由题意,直线MN 的方程为1(4)y k x =-,由题意可知12120,0,k k k k ≠≠≠,由2116(4)y x y k x ⎧=⎨=-⎩,消去y 得:2222111(816)160k x k x k -++=,211256(1)0k ∆=+>,设1122(,),(,)M x y N x y ,则1212111221116168,(4)(4)x x y y k x k x k k +=++=-+-=,故21188(4,A k k +,同理可求得22288(4,B k k +,所以直线AB 的斜率21121222218888(4)(4)ABk k k k k k k k k -==++-+,故直线AB 的方程为:()()12121221211121288844442k k k k k k y x x x k k k k k k k k ⎛⎫=--+=-+=-+ ⎪+++⎝⎭,故直线AB 过定点(4,4),设该点为(4,4)E ,又因为FD AB ⊥,所以点D 在以EF 为直径的圆上,由于(4,4),(4,0)E F ,4EF ==,故以EF 为直径的圆的方程为22(4)(2)4x y -+-=,故存在定点(4,2)T ,使得线段TD 的长度为定值2.【点睛】本题考查了抛物线方程的求解以及直线和抛物线的位置关系中的定点问题,综合性较强,解答时要注意设直线方程并和抛物线方程联立,利用很与系数的关系进行化简,关键是解题思路要通畅,计算要准确,很容易出错.(二)选考题:共10分.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题记分.22.在平面直角坐标系xOy 中,直线1C 的参数方程为2cos ,sin ,x t y t αα=+⎧⎨=⎩(t 为参数,0απ<<),曲线2C 的参数方程为()1sin 2,2sin cos ,x y βββ=+⎧⎨=+⎩(β为参数),以坐标原点O 为极点,以x 轴正半轴为极轴建立极坐标系.(1)求曲线2C 的极坐标方程;(2)若点(2,0)P ,直线1C 与曲线2C 所在抛物线交于A ,B 两点,且||2||PA PB =,求直线1C 的普通方程.【答案】(1)2sin 4cos ρθθ=,[]cos 0,2ρθ∈(2)240x y +-=或240x y --=.【解析】【分析】(1)由()2sin cos 1sin 2βββ+=+将曲线2C 的参数方程化为普通方程,再根据极坐标和直角坐标的转化公式即可得出答案;(2)将直线的参数方程代入曲线2C 的普通方程,可得根与系数的关系式,结合根与系数的关系式化简可求得tan α的值,即可求出直线1C 的斜率,再由点斜式即可得出答案.【小问1详解】因为[]1sin 20,2x β=+∈,由()2sin cos 1sin 2βββ+=+,所以曲线2C 的普通方程为24y x =,[]0,2x ∈,cos x ρθ=,sin y ρθ=,所以22sin 4cos ρθρθ=,即2sin 4cos ρθθ=.所以曲线2C 的极坐标方程为2sin 4cos ρθθ=,[]cos 0,2ρθ∈.【小问2详解】设A ,B 两点对应的参数分别为12,t t ,将2cos ,sin ,x t y t αα=+⎧⎨=⎩代入24y x =得22sin 4cos 80t t αα--=,由题知2sin 0α≠,22222216cos 32sin 16(cos sin )16sin 1616sin 0αααααα∆=+=++=+>,所以1224cos sin t t αα+=,1228sin t t α-=.因为||2||PA PB =,所以122t t =,又12280sin t t α-=<,所以122t t =-,故22sin t α=±.当22sin t α=时,代入1224cos sin t t αα+=得tan 2α=-,此时1C 的普通方程为2(2)y x =--,即240x y +-=.当22sin t α=-时,代入1224cos sin t t αα+=得tan 2α=,此时1C 的普通方程为2(2)y x =-,即240x y --=,联立22404x y y x--=⎧⎨=⎩可得()2244x x -=,即2540x x -+=,解得:1x =或4x =,所以直线1C 的普通方程为240x y +-=或240x y --=.23.已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.【答案】(1)(,1)-∞;(2)[1,)+∞【解析】【分析】(1)根据1a =,将原不等式化为|1||2|(1)0x x x x -+--<,分别讨论1x <,12x ≤<,2x ≥三种情况,即可求出结果;(2)分别讨论1a ≥和1a <两种情况,即可得出结果.【详解】(1)当1a =时,原不等式可化为|1||2|(1)0x x x x -+--<;当1x <时,原不等式可化为(1)(2)(1)0x x x x -+--<,即2(1)0x ->,显然成立,此时解集为(,1)-∞;当12x ≤<时,原不等式可化为(1)(2)(1)0x x x x -+--<,解得1x <,此时解集为空集;当2x ≥时,原不等式可化为(1)(2)(1)0x x x x -+--<,即2(10)x -<,显然不成立;此时解集为空集;综上,原不等式的解集为(,1)-∞;(2)当1a ≥时,因为(,1)x ∈-∞,所以由()0f x <可得()(2)()0a x x x x a -+--<,即()(1)0x a x -->,显然恒成立;所以1a ≥满足题意;当1a <时,2(),1()2()(1),x a a x f x x a x x a-≤<⎧=⎨--<⎩,因为1a x ≤<时,()0f x <显然不能成立,所以1a <不满足题意;综上,a 的取值范围是[1,)+∞.【点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型.。

河北省邢台市质检联盟2024_2025学年高一政治上学期11月月考试题

河北省邢台市质检联盟2024_2025学年高一政治上学期11月月考试题

2024~2025学年高一(上)质检联盟第三次月考思想政治本试卷满分100分,考试用时75 分钟。

留意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.本试卷主要考试内容:必修1第3课~第4课,必修2第1课~第2课第1课时。

一、选择题:本题共 16 小题,每小题3分,共48分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1.下图是中国特色社会主义理论写入党章和宪法的时间轴。

下列对图示信息解读正确的是①呈现了马克思主义中国化时代化全部理论成果②中国特色社会主义理论体系实现了马克思主义中国化时代化新的飞跃③中国共产党已经顺当完成了理论创新任务④中国特色社会主义理论是一脉相承、不断丰富和发展的A.①②B.①③C.②④D.③④2.中华人民共和国成立70多年来,我们党团结带领亿万人民创建了世所罕见的经济快速发展奇迹和社会长期稳定奇迹,创建了举世瞩目的“中国之治”。

一方面,“中国之治”是以人为本的治理,目的就是人民的华蜜与利益;另一方面,人民是“中国之治”的参加者、贡献者,“中国之治”能够使各方面制度和国家治理更好地体现人民意志、保障人民权益、激发人民创建活力。

由此可见①中国共产党的领导是中国特色社会主义制度的最大优势②我国已经顺当实现了现代化建设“其次步”目标③中国特色社会主义制度已经完全成熟、定型④中国之治坚持以人民为中心,充分保障人民当家作主A.①②B.①④C.②③D.③④3.从北大红楼旧址、党的一大会址、南湖红船,到井冈山、延安、西柏坡;从江西于都中心红军长征集结动身地,到鄂豫皖苏区烈士陵园、淮海战役纪念馆,全国有 3.6万余处不行移动的革命文物,超百万件(套)国有馆藏革命文物。

北京市铁路第二中学2024-2025学年高三上学期10月月考数学试题 (无答案)

作文《我最喜欢的游戏》
我喜欢的游戏有很多,有老鹰捉小鸡、抓人游戏、捉迷藏……其中我最喜欢的就是玩捉迷藏了。

捉迷藏这个游戏越多人越好玩,所以每逢节日或者家里长辈过生日等大家庭团圆的时候,我们小孩子经常一起玩捉迷藏。

玩捉迷藏之前,要分配好捉的人和躲藏的人。

捉迷藏这个游戏的规则是,如果被找到了,就要和捉人的那个一起去找其他躲起来的人,否则就出局。

听到这里,你应该感觉到了捉迷藏这个游戏很有趣吧?那我就给你们讲讲我是怎么玩的吧!
记得中秋节的时候,我和堂姐、堂弟在院子里面玩捉迷藏,堂姐负责找,我和堂弟就藏起来。

游戏开始,我和堂弟都躲进了厕所,堂姐找啊找,根本找不到我们,过了很久,我们就自己冲了出来,齐声说:“找不到我们了吧,认输吧!”堂姐撇了撇嘴,然后又继续当她的捉人角色,哈哈!
是不是很有趣呢?有空的话,也和你的小伙伴一起玩玩吧!。

高三数学上学期第一次月考试题 11

嘉积中学2021届高三数学上学期第一次月考试题制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题:此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1. 集合}01|{≤-=x x A ,集合}06|{2<--=x x x B ,那么=B A 〔 〕 A.}3|{<x x B.}13|{≤<-x x C.}2|{-<x x D.}12|{≤<-x x2. 命题“012,2≥+-∈∀x x R x 〞的否认是〔 〕A. 012,0200≤+-∈∃x x R xB. 012,0200≥+-∈∃x x R x C. 012,0200<+-∈∃x x R x D. 012,2<+-∈∀x x R x 3.以下求导运算正确的选项是〔 〕A.0)'2(ln =B.(cos )sin x x '=C.()x xe e --'= D.()5615xx --=-'4. 函数x x f x3)21()(-=的零点所在的一个区间是〔 〕A .〔-2,-1〕B .〔-1,0〕C .〔0,1〕D .〔1,2〕 5. 假设函数1322)96()(+-+-=m mx m m x f 是幂函数且为奇函数,那么m 的值是〔 〕A.2B.36. 设5.0)1(-=ea ,2ln =b ,78cosπ=c ,那么〔 〕 A.b c a << B.a b c << C.a c b << D.b a c <<7. 函数xy a b =+()01a a >≠且与y ax b =+的图象有可能是〔 〕A .B .C .D .8. 以下函数中,最小值为4的是〔 〕A.x x y 4+= B.)0(sin 4sin π<<+=x xx y C.xxe e y 4+= D.81log log 3x x y += 9. 函数)10)(32(log )(2≠>+--=a a x x x f a 且,假设0)0(<f ,那么此函数的单调减区间是〔 〕A.]1,(--∞B.)1[∞+-,C.)1,1[-D.]1,3(--10. 我国数学家陈景润在哥德巴赫猜测的研究中获得了世界领先的成果.哥德巴赫猜测是“每个大于2的偶数可以表示为两个素数的和〞,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是〔 〕 A .112B .114C .115D .11811. 加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率〞.在特定条件下,可食用率p 与加工时间是t 〔单位:分钟〕满足函数关系2p at bt c =++〔a 、b 、c 是常数〕,以下图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最正确加工时间是为〔 〕A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟O5430.80.70.5t p12. 设函数()(21)xf x e x ax a =--+,其中1a <,假设存在唯一的整数0x ,使得0()0f x <,那么a 的取值范围是〔 〕A .3[,1)2e -B .33[,)24e -C .33[,)24eD .3[,1)2e二、填空题:此题一共4小题,每一小题5分,一共20分. 13.315sin =________.14. 直线1+=kx y 与曲线b ax x y ++=3相切于点)2,2(A ,那么=+-b a 2_________. 15. )(x f 在R 上是奇函数,且)()2(x f x f -=+.当)2,0(∈x 时,22)(x x f =,那么=)7(f ______.16. 设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,(),x x Df x x x D⎧∈=⎨∉⎩其中集合1{|,}n D x x n n-==∈*N ,那么方程()lg 0f x x -=的解的个数是 . 三、解答题:17题10分,18至22题各12分,一共70分,解容许写出文字说明,证明过程或者演算步骤.17. 计算(1)043231)12(16)51(27-++---〔2〕4lg 525lg 27log 47log 435+-+18. 角α的终边经过点1(,3P - 〔1〕求sin ,cos ,tan ααα的值;〔2〕求)cos()cos(2)25cos(2)3sin(απααπαπ+--++- 的值19. 设函数x x x x f ln )(2--= 〔1〕求)(x f 的单调区间和极值 〔2〕求)(x f 在区间]2,21[上的最值20. 某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进展睡眠时间是的调查.〔1〕应从甲、乙、丙三个部门的员工中分别抽取多少人?〔2〕假设抽出的7人中有4人睡眠缺乏,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用X 表示抽取的3人中睡眠充足的员工人数,求随机变量X 的分布列与数学期望.21. 某快递公司在某的货物转运中心,拟引进智能机器人分拣系统,以进步分拣效率和降低物流本钱,购置x 台机器人的总本钱)1506001()(2++=x x x p 万元. 〔1〕假设使每台机器人的平均本钱最低,问应买多少台?〔2〕现按〔1〕中的数量购置机器人,需要安排m 人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣,经实验知,每台机器人的日平均分拣量⎪⎩⎪⎨⎧>≤≤-=30,48031),60(158)(m m m m m q 〔单位:件〕,传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少百分之几? 22. 函数2()(2)xx f x aea e x =+--.〔1〕讨论()f x 的单调性;〔2〕假设()f x 有两个零点,求a 的取值范围.嘉积中学2021-2021学年度第一学期第一次月考数学〔参考答案〕一、选择题 ACAC DBDC DCBD 二、填空题13、22-14、4015、 -2 16、8三、解答题 17、〔1〕347-〔2〕1 18、〔1〕22tan ,31cos ,322sin =-=-=ααα (2)4-2219、〔1〕〔2〕由〔1〕知无极大值为处取得极小值,极小值在单调递增单点递减,在在则令则令则令定义域为0)1(1)(),1()1,0()(10,0)('1,0)('1,0)('012,0)1)(12(112)('),0()(==∴+∞∴<<<>>==>+∴>-+=--=+∞f x x f x f x x f x x f x x f x x xx x x x x f x f 12ln 2)2(,412ln )21(0)1()(]21[]1,21[)(min -=-===∴又上递增,上递减,在在f f f x f x f20、(1)由,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人. (2)随机变量X 的所有可能取值为0,1,2,3.34337C C ()C k k P X k -⋅==(k =0,1,2,3).所以,随机变量X 的分布列为X 0 1 2 3 P43518351235135随机变量X 的数学期望4181219()0123353535357E X =⨯+⨯+⨯+⨯=.21、〔1〕由总本钱万元,可得每台机器人的平均本钱≥,当且仅当,即当时,等号成立,所以,假设使每台机器人的平均本钱最低,应买台;〔2〕引进机器人后,每台机器人的日平均分拣量.当时,台机器人的日平均分拣量为,当时,日平均分拣量有最大值件. 当时,日平均分拣量为〔件〕. 台机器人的日平均分拣量的最大值为件.假设传统人工分拣件,那么需要人数为〔人〕.日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少.22、〔1〕()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)xx x x f x aea e ae e '=+--=-+,〔ⅰ〕假设0a ≤,那么()0f x '<,所以()f x 在(,)-∞+∞单调递减. 〔ⅱ〕假设0a >,那么由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>, 所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增. 〔2〕〔ⅰ〕假设0a ≤,由〔1〕知,()f x 至多有一个零点.〔ⅱ〕假设0a >,由〔1〕知,当ln x a =-时,()f x 获得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,那么00000000()e (e 2)e 20nnnnf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1). 局部小题解析11、由题意可知2p at bt c =++过点〔3,0.7〕,〔4,0.8〕〔5,0.5〕,代入2p at bt c =++中可解得0.2, 1.5,2a b c =-==-,∴20.2 1.52p t t =-+-= 20.2( 3.75)0.8125t --+,∴当 3.75t =分钟时,可食用率最大.12、由题意可知存在唯一的整数0x ,使得000(21)-<-xe x ax a ,设()(21)=-x g x e x ,()=-h x ax a ,由()(21)x g x e x '=+,可知()g x 在1(,)2-∞-上单调递减,在1(,)2-+∞上单调递增,作出()g x 与()h x 的大致图象如下图,x y g (x )=e x (2x -1)h (x )=ax -a –3–2–112–1123O故(0)(0)(1)(1)>⎧⎨--⎩h g h g ≤,即132<⎧⎪⎨--⎪⎩a a e ≤,所以312a e ≤ 16.由于()[0,1)f x ∈,那么需考虑110x ≤<的情况,在此范围内,x ∈Q 且x D ∈时,设*,,,2qx p q p p=∈≥N ,且,p q 互质, 假设lg x ∈Q ,那么由lg (0,1)x ∈,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质, 因此10n mq p=,那么10()nm q p =,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q ,因此lg x 不可能与每个周期内x D ∈对应的局部相等, 只需考虑lg x 与每个周期x D ∉的局部的交点,画出函数图象,图中交点除外(1,0)其他交点横坐标均为无理数,属于每个周期x D ∉的局部,且1x =处11(lg )1ln10ln10x x '==<,那么在1x =附近仅有一个交点,因此方程()lg 0f x x -=的解的个数为8.制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。

九师联盟2025届高三上学期11月月考数学试题[含答案]

九师联盟高2025届三上学期11月月考数学试题❖一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.函数的值域可以表示为( )y =tanx A. B. {x|y =tanx}{y|y =tanx}C. D. {(x,y)|y =tanx}{y =tanx}2.若“”是“”的充分条件,则是( )sin θ=−22tan θ=1θA. 第四象限角B. 第三象限角C. 第二象限角D. 第一象限角3.下列命题正确的是( )A. ,B. ,∃x ∈R 2x<0∀x ∈(0,4)0<log 2x <2C. , D.,∃x ∈(0,+∞)x 3<x12∃x ∈(0,π2)4sinxcosx =54.函数的大致图象是( )f(x)=x 2−x 4A. B.C.D.5.已知向量,满足,,则向量与的夹角为( )⃗e 1⃗e 2|⃗e 1|=|⃗e 2|=1⃗e 1⋅⃗e 2=0⃗e 1⃗e 1−⃗e 2A. B. C. D. 45∘60∘120∘135∘6.已知,则( )tan5α+π10=2tan 4π−5α5=A. B.C. D.125−12543−437.已知,,,则的最小值为( )a >0b >0a +b =936a+abA. 8B. 9C. 12D. 168.若,,则( )∀x >0(x 2−ax−1)(ln ax−1)≥0a =A.B.C.D.e3−ee4−eee +2ee +1二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得6分,部分选对的得2分,有选错的得0分。

9.已知函数,则( )f(x)=2sin (−x)A. 的值域为B. 为奇函数f(x)[12,2]f(x)C. 在上单调递增D. 的最小正周期为f(x)[−π2,π2]f(x)2π10.国庆节期间,甲、乙两商场举行优惠促销活动,甲商场采用购买所有商品一律“打八四折”的促销策略,乙商场采用“购物每满200元送40元”的促销策略.某顾客计划消费元,并且要利用商场的优x(x >0)惠活动,使消费更低一些,则( )A. 当时,应进甲商场购物 B. 当时,应进乙商场购物0<x <200200≤x <300C. 当时,应进乙商场购物D. 当时,应进甲商场购物400≤x <500x >50011.已知函数满足:①,,②,则( )f(x)∀x y ∈R f(xy)=[f(x)]y;f(−2)>1A. f(0)=0B. f(x +y)=f(x)⋅f(y)C. 在R 上是减函数f(x)D. ,,则∀x ∈[1,3]f(x 2−kx)⋅f(x−3)≥1k ≥3三、填空题:本题共3小题,每小题5分,共15分。

2024—2025学年河北省高三上学期11月阶段调研检测二数学试卷

2024—2025学年河北省高三上学期11月阶段调研检测二数学试卷一、单选题(★★★) 1. 已知全集,,则集合()A.B.C.D.(★) 2. 函数的定义域为()A.B.C.D.(★★) 3. 若事件,发生的概率分别为,,,则“”是“”的()条件.A.充分不必要B.必要不充分C.充分且必要D.既不充分又不必要(★★★) 4. 球是棱长为1的正方体的外接球,则球的内接正四面体体积为()A.B.C.D.(★★★) 5. 某同学掷一枚正方体骰子5次,记录每次骰子出现的点数,统计出结果的平均数为2,方差为0.4,可判断这组数据的众数为()A. 1B. 2C. 3D. 4(★★) 6. 已知,,且,则的最小值为()A. 13B.C. 14D.(★★★) 7. 已知函数的定义域为,且为奇函数,,则一定正确的是()A.的周期为2B.图象关于直线对称C.为偶函数D.为奇函数(★★★★) 8. 已知函数在区间上有且仅有一个零点,当最大时在区间上的零点个数为()A. 466B. 467C. 932D. 933二、多选题(★★) 9. 若,则()A.B.C.D.(★★) 10. 已知平面内点,,点为该平面内一动点,则()A.,点的轨迹为椭圆B.,点的轨迹为双曲线C.,点的轨迹为抛物线D.,点的轨迹为圆(★★★★) 11. 如图,圆锥的底面直径和母线长均为6,其轴截面为,为底面半圆弧上一点,且,,,则()A.当时,直线与所成角的余弦值为B.当时,四面体的体积为C.当且面时,D.当时,三、填空题(★★) 12. 双曲线:的左焦点为,右顶点为,点到渐近线的距离是点到渐近线距离的2倍,则的离心率为 ______ .(★★★) 13. 已知数列满足,其前100项中某项正负号写错,得前100项和为,则写错的是数列中第 ______ 项.(★★★) 14. 如图所示,中,,是线段的三等分点,是线段的中点,与,分别交于,,则平面向量用向量,表示为 ______ .四、解答题(★★) 15. 在中,角,,所对的边分别为,,,且.(1)求角的大小;(2)若,的面积为,求的周长.(★★★) 16. 如图,在四棱锥中,底面为直角梯形,,,,为等边三角形且垂直于底面.(1)求证:;(2)求平面与平面夹角的正弦值.(★★★★) 17. 已知函数.(1)当时,求的图象在点处的切线方程;(2)当时,求的单调区间;(3)若函数单调递增,求实数的取值范围.(★★★★) 18. 椭圆:左右顶点分别为,,且,离心率.(1)求椭圆的方程;(2)直线与抛物线相切,且与相交于、两点,求面积的最大值.(★★★★) 19. (1)在复数范围内解方程;(2)设,且,证明:;(3)设复数数列满足:,且对任意正整数,均有.证明:对任意正偶数,均有.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省邢台市第二中学2021届高三上学期11月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列命题中错误的是( )A .命题“若x y =,则sin sin x y =”的逆否命题是真命题B .命题“()00,x ∃∈+∞00ln 1x x =-”的否定是“()0,,ln 1x x x ∀∈+∞≠-”C .若p q ∨为真命题,则p q ∧为真命题D .00x ∃>使“00ax bx >”是“0a b >>”的必要不充分条件2.函数31()ln 13f x x x =-+的零点个数为( ) A .0 B .1 C .2 D .33.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c C =A .π12B .π6C .π4D .π34.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .CD 5.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC 边上的中线2BD =,则△ABC 的周长为( ) A .15 B .14C .16D .12 6.设2{|430}A x x x =-+,{|(32)0}B x ln x =-<,则AB =( ) A .3(1,)2 B .(1,3]C .3(,)2-∞ D .3(2,3] 7.在棱长为2的正方体1111ABCD A B C D -中,M 是棱11A D 的中点,过1C ,B ,M 作正方体的截面,则这个截面的面积为( )A B C .92 D .988.已知(12)z i i -=,则下列说法正确的是( )A .复数z 的虚部为5iB .复数z 对应的点在复平面的第二象限C .复数z 的共轭复数255i z =- D .15z =二、多选题 9.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,PA ⊥底面ABCD ,PA AB =,截面BDE 与直线PC 平行,与PA 交于点E ,则下列判断正确的是( )A .E 为PA 的中点B .BD ⊥平面PACC .PB 与CD 所成的角为3π D .三棱锥C BDE -与四棱锥P ABCD -的体积之比等于1:4.10.已知函数31()423f x x x =-+,下列说法中正确的有( ) A .函数()f x 的极大值为223,极小值为103-B .当[]3,4x ∈时,函数()f x 的最大值为223,最小值为103- C .函数()f x 的单调减区间为[]22-,D .曲线()y f x =在点(0,2)处的切线方程为42y x =-+11.已知(2,4),(4,1),(9,5),(7,8)A B C D ,如下四个结论正确的是( )A .AB AC ⊥;B .四边形ABCD 为平行四边形;C .AC 与BD 夹角的余弦值为145; D .85AB AC +=12.下面命题正确的是( )A .“1a > ”是“11a<”的充分不必要条件 B .命题“任意x ∈R ,则210x x ++<”的否定是“存在x ∈R ,则210x x ++≥”. C .设,x y R ∈,则“2x ≥且2y ≥ ”是“224x y +≥”的必要而不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件三、填空题13.已知函数2()ln f x ax x x =-在1[,)e+∞上单调递增,则实数a 的取值范围是_____. 14.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知)cos cos ,60a C c A b B -==︒,则A 的大小为__________. 15.如图所示,,OA OB 为两个不共线向量,M 、N 分别为OA 、OB 的中点,点C 在直线MN 上,且(,)OC xOA yOB x y R =+∈则22x y +的最小值为________.四、双空题16.设cos2(sin cos )=++z i θθθ,若z 为实数,则θ=________;若z 为纯虚数,则θ=________.五、解答题17.已知函数()2()log log 2(0,1)a a f x x x a a =-->≠.(1)当2a =时,求(2)f ;(2)求解关于x 的不等式()0f x >;(3)若[2,4],()4x f x ∀∈≥恒成立,求实数a 的取值范围.18.己知向量(),cos 2a m x =,()sin 2,b x n =,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-. (1)当63x ππ-≤≤时,求函数()y f x =的最大值和最小值及相应的x 的值; (2)将函数()y f x =的图象向右平移4π个单位后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数()y g x =的图象,若()g x m =在[]0,2π有两个不同的解,求实数m 的取值范围.19.在①1a ,14,2a 成等差数列,②1a ,21a +,3a 成等比数列,③334S =,三个条件中任选一个,补充在下面的问题中,并作答.注:如果选择多个条件分别作答,按第一个解答计分.已知n S 为数列{}n a 的前n 项和,()*132,n n S a a n =+∈N ,10a ≠ ,且________. (1)求数列{}n a 的通项公式;(2)记22n log n b a =-,求数列{}n b 的前n 项和n T .20.已知函数()2sin cos f x x x x x ⎛⎫=+ ⎪ ⎪⎝⎭,x ∈R . (1)求函数()f x 的单调递增区间;(2)若α为锐角且7129f πα⎛⎫+=- ⎪⎝⎭,β满足()3cos 5αβ-=,求sin β. 21.在四棱锥P ABCD -中,底面ABCD 为正方形,PB PD =.(1)证明:BD ⊥平面PAC ;(2)若PA 与底面ABCD 所成的角为30°,PA PC ⊥,求二面角B PC D --的余弦值. 22.已知函数()(2)(2)x f x ax e e a =---.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当1x >时,()0f x >,求a 的取值范围.参考答案1.C【分析】由原命题与逆否命题真假性相同判断A ,由特称命题的否定形式判断B,由复合命题的真假判断C ,由充分性必要性条件判断D.【详解】A.“若x y =,则sin sin x y =”为真命题,则其逆否命题为真命题,A 正确.B.特称命题的否定需要将存在量词变为全称量词,再否定其结论,故B 正确.C.p q ∨为真命题,包含,p q 有一个为真一个为假和,p q 均为真,p q ∧为真则需要两者均为真,故若p q ∨为真命题,p q ∧不一定为真.C 错.D.若0a b >>,00x ∃>,使00ax bx >成立,反之不一定成立.故D 正确.故本题选C.【点睛】本题考查命题的真假判断与应用,充分必要条件的判断方法,全称命题与特称命题的否定,以及逆否命题等基础知识,是基础题.2.C【解析】21()01f x x x x =-=⇒'= ,所以当(0,1)x ∈ 时2()0,()(,)3f x f x ∈-∞'> ; 当(1,)x ∈+∞ 时2()0,()(,)3f x f x ∈-∞'< ;因此零点个数为2,选C. 3.B【详解】试题分析:根据诱导公式和两角和的正弦公式以及正弦定理计算即可详解:sinB=sin (A+C )=sinAcosC+cosAsinC ,∵sinB+sinA (sinC ﹣cosC )=0,∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0,∴cosAsinC+sinAsinC=0,∵sinC≠0,∴cosA=﹣sinA ,∴tanA=﹣1,∵π2<A <π, ∴A= 3π4, 由正弦定理可得c sin sin a C A=, ∵a=2,,∴sinC=sin c A a=12=22, ∵a >c ,∴C=π6, 故选B .点睛:本题主要考查正弦定理及余弦定理的应用,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.4.C【分析】 由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】 因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a b a b +=- 所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+, 所以13a b ⋅=,则()2263a b a b +=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a ab a b ⋅+==+故选:C.【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.5.A【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果.【详解】由a ,b ,c 成等差数列可知,2b a c =+,因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅, 所以2223bc ab ac a =+-,所以32c a =,54b a =, 若AC 边上的中线2BD =, 所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 解可得4a =,5b =,6c =,故△ABC 的周长为15.故选:A.【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.6.A【分析】求出集合,A B 后可得A B .【详解】 13{|}A x x =≤≤,3{|0321}{|1}2B x x x x =<-<=<<; ∴3(1,)2A B ⋂=, 故选:A .【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交,解对数不等式时注意真数恒为正,本题属于中档题.7.C【分析】设1AA 的中点为N ,则1MN BC ,连接11,,MN NB BC MC , ,则梯形1MNBC 就是过1C ,B ,M 正方体的截面,其面积为()13292+22=22⨯⨯ ,故选C.8.B【分析】由复数除法求出复数z ,然后可判断各选项.【详解】由已知得1(121)212(12)(12)55i i z i i i +===-+--+,所以复数z 的虚部为15,而不是5i ,A 错误;在复平面内,复数z 对应的点为21,55⎛⎫-⎪⎝⎭,在第二象限,B 正确. 255iz =--,C 错误;||5z ==,D 错误; 故选:B . 【点睛】本题考查复数的除法,考查复数的几何意义,共轭复数的概念及模的定义,属于基础题. 9.ABD 【分析】采用排除法,根据线面平行的性质定理以及线面垂直的判定定理,结合线线角的求法,锥体体积公式的计算,可得结果. 【详解】对于A ,连接AC 交BD 于点M ,连接EM ,如图所示,PC //面BDE ,PC ⊂面APC ,且面APC 面=BDE EM ,PC ∴//EM ,又四边形ABCD 是正方形,∴M 为AC 的中点,∴E 为PA 的中点,故A 正确.对于B ,PA ⊥面ABCD ,BD ⊂面ABCD ,∴PA BD ⊥,又AC BD ⊥,AC PA A ⋂=,,AC PA ⊂面PAC∴BD ⊥面PAC ,故B 正确.对于C ,//AB CD ,∴PBA ∠为PB 与CD 所成的角,PA ⊥面ABCD ,AB 面ABCD ,∴PA AB ⊥,在Rt PAB 中,PA AB =,4PBA=π∴∠,故C 错误.对于D ,由等体积法可得1.3C BDE E BCD BCD V V S EA --==⋅,13-=⋅⋅P ABCD ABCD V S PA 又1,22BCD ABCD S S PA EA ==,∴14--=P ABC C BD DE V V ,故D 正确. 故选:ABD . 【点睛】本题考查立体几何的综合应用,熟练线线、线面、面面之间的位置关系,审清题意,考验分析能力,属中档题. 10.ACD 【分析】利用导数研究函数()f x 的极值、最值、单调性,利用导数的几何意义可求得曲线()y f x =在点(0,2)处的切线方程,根据计算结果可得答案. 【详解】 因为31()423f x x x =-+ 所以2()4f x x =-',由()0f x '>,得2x <-或2x >,由()0f x '<,得22x -<<,所以函数()f x 在(,2)-∞-上递增,在[]22-,上递减,在(2,)+∞上递增,故选项C 正确, 所以当2x =-时,()f x 取得极大值3122(2)(2)4(2)233f -=⨯--⨯-+=, 在2x =时,()f x 取得极小值3110(2)242233f =⨯-⨯+=-,故选项A 正确,当[]3,4x ∈时,()f x 为单调递增函数,所以当3x =时,()f x 取得最小值31(3)343213f =⨯-⨯+=-,当4x =时,()f x 取得最大值3122(4)444233f =⨯-⨯+=,故选项B 不正确,因为(0)4f '=-,所以曲线()y f x =在点(0,2)处的切线方程为24(0)y x -=--,即42y x =-+,故选项D 正确.故选:ACD. 【点睛】本题考查了利用导数求函数的极值、最值、单调区间,考查了导数的几何意义,属于基础题. 11.BD 【分析】求出向量,,,AB AC DC BD 坐标,再利用向量的数量积、向量共线以及向量模的坐标表示即可一一判断. 【详解】由(2,4),(4,1),(9,5),(7,8)A B C D ,所以()2,3AB =-,()7,1AC =,()2,3DC =-, ()3,7BD =, 对于A ,143110AB AC ⋅=-=≠,故A 错误;对于B ,由()2,3AB =-,()2,3DC =-,则AB DC =, 即AB 与DC 平行且相等,故B 正确;对于C ,cos ,50AC BD AC BD AC BD⋅===C 错误;对于D ,()||9,2AB AC +=-=D 正确; 故选:BD 【点睛】本题考查了向量的坐标运算、向量的数量积、向量模的坐标表示,属于基础题. 12.ABD 【分析】分别判断充分性与必要性,即可得出选项ACD 的正误;根据全称命题的否定是特称命题,判断选项B 的正误. 【详解】 对于A ,()1110100a a a a a a -<⇔>⇔->⇔<或1a >,则“1a >”是“11a<”的充分不必要条件,故A 对;对于B ,全称命题的否定是特称命题,“任意x ∈R ,则210x x ++<”的否定是“存在x ∈R ,则210x x ++≥”,故B 对;对于C ,“2x ≥且2y ≥” ⇒ “224x y +≥”, “2x ≥且2y ≥” 是 “224x y +≥”的充分条件,故C 错;对于D ,00ab a ≠⇔≠且0b ≠,则“0a ≠”是“0ab ≠”的必要不充分条件,故D 对; 故选:ABD . 【点睛】本题主要考查命题真假的判断,考查充分条件与必要条件的判断,考查不等式的性质与分式不等式的解法,属于易错的基础题. 13.12a ≥【解析】()2ln 10f x ax x =--≥',解得ln 12a x x +≥在1,e ⎡⎫+∞⎪⎢⎣⎭上恒成立,构造函数()()()221·ln 1ln 1ln ,0x x x x x g x g x x x x -++-='===,解得x=1, ()g x ∴在1,1e ⎛⎫ ⎪⎝⎭上单调递增,在()1,+∞上单调递减,g(x)的最大值为g(1)=1, 21a ∴≥,12a ≥,故填12a ≥. 点睛:本题考查函数导数与单调性.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理.也可构造新函数然后利用导数来求解.注意利用数形结合的数学思想方法. 14.75︒ 【解析】)acosC ccosA b -=)sinAcosC sinCcosA sinB -=,即()A C -=, ()1sin ,?3026A C A C π-=-==︒,又因为180B 120A C +=︒-=︒, 所以2150,A 75A =︒=︒, 故答案为75︒.15.18【分析】首先根据平面向量的基本定理得到12x y +=,利用基本不等式得到()21416+≤=x y xy ,再根据()2222x y x y xy +=+-求最小值即可. 【详解】因为M 、N 分别为OA 、OB 的中点, 所以22=+=+OC xOA yOB xON yOM .又因为M 、N 、C 三点共线,所以221x y +=,即12x y +=.因为0x >,0y >,所以()21416+≤=x y xy ,当且仅当14x y ==时取等号.所以()2221111224488+=+-=-≥-=x y x y xy xy . 故答案为:18【点睛】本题主要考查基本不等式求最值,同时考查了平面向量的基本定理,属于中档题. 16.4-k ππ,k Z ∈ 4k ππ+,k Z ∈【分析】根据复数分类的定义结合三角函数的性质,即可得出答案. 【详解】若z 为实数,则sin cos 0θθ+=,即tan 1θ=-,解得,4k k Z πθπ=-+∈若z 为纯虚数,则cos 20sin cos 0θθθ=⎧⎨+≠⎩,即(cos sin )(cos sin )0sin cos 0θθθθθθ-+=⎧⎨+≠⎩即cos sin 0θθ-=,tan 1θ=,解得,4k k Z πθπ=+∈故答案为:4-k ππ,k Z ∈;4k ππ+,k Z ∈【点睛】本题主要考查了由复数的类型求参数的范围,涉及了三角函数的化简求值,属于中档题.17.(1)2-;(2)当1a >时,()0f x >的解集为()210,,a a ⎛⎫+∞ ⎪⎝⎭,当01a <<时;()210,,a a ⎛⎫+∞ ⎪⎝⎭(3)(31,22⎫⎤⎪⎦⎪⎣⎭.【分析】(1)将2a =直接代入解析式计算即可.(2)将()2()log log 20a a f x x x =-->整理为()()log 2log 10a a x x -+>,解得log 1<-a x 或log 2a x >,再对a 讨论即可解不等式.(3)将问题转化为min ()4f x ≥,分别分1a >和01a <<讨论,求()f x 最小值,令其大于4,即可求解. 【详解】(1)当2a =时,()()222log log 2f x x x =--()21122f ∴=--=-(2)由()0f x >得:()()()2log log 2log 2log 10a a a a x x x x --=-+>log 1a x ∴<-或log 2a x >当1a >时,解不等式可得:10x a<<或2x a > 当01a <<时,解不等式可得:1x a>或20x a << 综上所述:当1a >时,()0f x >的解集为()210,,a a ⎛⎫+∞ ⎪⎝⎭;当01a <<时,()0f x >的解集为()210,,aa ⎛⎫+∞ ⎪⎝⎭(3)由()4f x ≥得:()()()2log log 6log 3log 20a a a a x x x x --=-+≥log 2a x ∴≤-或log 3a x ≥①当1a >时,()max log log 4a a x =,()min log log 2a a x =2log 42loga a a -∴≤-=或3log 23log a a a ≥=,解得:1a <≤②当01a <<时,()max log log 2a a x =,()min log log 4a a x =2log 22log a a a -∴≤-=或3log 43log a a a ≥=,解得:12a ≤< 综上所述:a的取值范围为(3,11,22⎫⎤⎪⎦⎪⎣⎭【点睛】本题主要考查了复合函数的单调性、考查函数的最值和恒成立问题、考查分类讨论的思想,属于中档题.18.(1)最大值为2,此时6x π=;最小值为-1,此时6x π=-. (22m ≤<【分析】(1)根据向量数量积坐标公式,列出函数()sin 2cos 2f x a b m x n x =⋅=+,再根据函数图像过定点,求解函数解析式,当63x ππ-≤≤时,解出26x π+的范围,根据三角函数性质,可求最值;(2)根据三角函数平移伸缩变换,写出()y g x =解析式,画出()y g x =在[]0,2π上的图象,根据图像即可求解参数取值范围. 【详解】解:(1)由题意知()sin 2cos 2f x a b m x n x =⋅=+.根据()y f x =的图象过点12π⎛ ⎝和2,23π⎛⎫- ⎪⎝⎭,得到sin cos 66442sin cos33m n m n ππππ=+⎨⎪-=+⎪⎩,解得m ,1n =.()3sin 2cos 22sin 26f x a b x x x π⎛⎫=⋅=+=+ ⎪⎝⎭当63x ππ-≤≤时,52666x πππ-≤+≤,12sin 226x π⎛⎫-≤+≤ ⎪⎝⎭,()f x 最大值为2,此时6x π=,()f x 最小值为-1,此时6x π=-.(2)将函数()y f x =的图象向右平移一个单位得2sin 22sin 2463y x x πππ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得()2sin 23x g x π⎛⎫=- ⎪⎝⎭令23x t π=-,2,33t ππ⎡⎤∈-⎢⎥⎣⎦sin 1t ≤<时,()g x m =在[]0,2π有两个不同的解2sin 223x π⎛⎫≤-<⎪⎝⎭2m ≤<.【点睛】本题考查(1)三角函数最值问题(2)三角函数的平移伸缩变换,考查计算能力,考查转化与化归思想,考查数形结合思想,属于中等题型.19.(1)112n n a -⎛⎫=- ⎪⎝⎭;(2)n (1)T n n =-.【分析】(1)由132n n S a a =+可得出数列{}n a 是等比数列,且得出公比,由选择的条件可求出首项为1,即可写出通项公式;(2)求出n b ,再由等差数列的前n 项和求出n T . 【详解】(1)由已知132n n S a a =+,2n ≥时,11132n n S a a --=+.两式相减得到13-=-n n n a a a ,即112n n a a -=-,因为10a ≠,所以数列{}n a 是公比为12-的等比数列,从而1112n n a a -⎛⎫=- ⎪⎝⎭.选①1a ,14,2a 成等差数列, 由1a ,14,2a 成等差数列,可得12124a a +=⨯,即111122a a -=,解得11a =,所以112n n a -⎛⎫=- ⎪⎝⎭.选②1a ,21a +,3a 成等比数列,1a ,21a +,3a 成等比数列,即1a ,1112a -+,114a 成等比数列,221111124a a ⎛⎫-+= ⎪⎝⎭,解得11a =,所以112n n a -⎛⎫=- ⎪⎝⎭.选③334S =, 334S =,即111113244a a a ⎛⎫+-+= ⎪⎝⎭,解得11a =,所以112n n a -⎛⎫=- ⎪⎝⎭. (2)2222222222211log log log log 22222n n n n n b a n ---⎛⎫⎛⎫=-=--=-==- ⎪⎪⎝⎭⎝⎭.则()n 123022(1)2n n n T b b b b n n +-=+++⋅⋅⋅+==-.【点睛】本题考查等比数列的判断和通项公式的求法,考查等差数列的前n 项和的求法,属于基础题.20.(1)5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2)415. 【分析】(1)利用正弦型函数的单调增区间求()f x 的单调递增区间即可;(2)由已知条件可知1cos 3α=,sin 3α=,结合()3cos 5αβ-=即可求sin β;【详解】(Ⅰ)()22sin cos f x x x x x =1sin 222x x =+sin 23x π⎛⎫=+ ⎪⎝⎭,可知222232k x k πππππ-≤+≤+,k Z ∈为单调增区间,解得51212x k k ππππ-+≤≤,k Z ∈, ∴函数()f x 的单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. (Ⅱ)由(Ⅰ)得7sin 2cos 21229f ππααα⎛⎫⎛⎫+=+==- ⎪ ⎪⎝⎭⎝⎭,227cos 22cos 112sin 9ααα=-=-=-因为α为锐角,所以1cos 3α=,sin 3α=, 又因为()3cos 5αβ-=,所以()4sin 5αβ-=±,由()()()4sin sin sin cos cos sin 15βααβααβααβ=--=⋅--⋅-=⎡⎤⎣⎦. 【点睛】本题考查了三角函数的性质,结合三角恒等变换、同角三角函数关系求正弦值;注意应用了复合函数的单调性求单调区间; 21.(1)见解析,(2)17- 【分析】(1)连接BD 交AC 于O ,连接PO ,则有AC BD ⊥,O 为BD 的中点,再由PB PD =可得BD PO ⊥,由线面垂直的判定定理可证得结论;(2)由(1)可知,平面PAC ⊥平面ABCD ,两平面的交线为AC ,所以过P 作PE 垂直AC 于E ,则PE ⊥平面ABCD ,从而可知平面30PAC ∠=︒,若设PC =2,由可把其它边求出来,然后以A 为坐标原点,AB 为x 轴,AD 为y 轴,过A 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,利用空间向量求解二面角B PC D --的余弦值. 【详解】(1)证明:连接BD 交AC 于O ,连接PO , 因为四边形ABCD 为正方形, 所以AC BD ⊥,O 为BD 的中点,因为PB PD =,所以BD PO ⊥,因为AC PO O =,所以BD ⊥平面PAC ;(2)解:因为BD ⊥平面PAC ,BD 在平面ABCD 内,所以平面PAC ⊥平面ABCD ,过P 作PE 垂直AC 于E ,则PE ⊥平面ABCD ,所以PAC ∠为PA 与底面ABCD 所成的角,即30PAC ∠=︒,设PC =2,因为PA PC ⊥,所以3,4,PA PE AE AC AD =====如图,以A 为坐标原点,AB 为x 轴,AD 为y 轴,过A 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,则(0,0,0),(0,(22A B C D P , 22(0,22,0),(,,3)(22,0,0)22BC CP DC ==--=,, 设平面PBC 法向量为(,,)n x y z =,则 22020n BC n CP x y ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1z =,则(6,0,1)n=, 设平面PDC的法向量为(,,)m a b c =,则 2202022n DC n CP a ⎧⋅==⎪⎨⋅=--+=⎪⎩,令1c =,则(0,6,1)m =, 所以1cos ,77m nm n m n ⋅===⨯, 由图可知二面角B PC D --的平面角为钝角,所以二面角B PC D --的余弦值为17-【点睛】此题考查线面垂直的证明,考查二面欠余弦值的求法,考查空间中线线、线面、面面间的位置关系等知识,考查运算能力,属于中档题.22.(1)见解析;(2)[1)+∞,. 【解析】试题分析:(1)先求导数,再讨论2ax a -+符号,根据符号确定对应单调性,(2)由于()10f =,所以1得右侧附近函数单调递增,再结合(1)可得0a >且21a a-≤,即得a 的取值范围.试题解析:解:(1)()()2xf x ax a e =-+', 当0a =时,()20x f x e '=-<,∴()f x 在R 上单调递减. 当0a >时,令()0f x '<,得2a x a -<;令()0f x '>,得2a x a ->. ∴()f x 的单调递减区间为2,a a -⎛⎫-∞ ⎪⎝⎭,单调递增区间为2,a a -⎛⎫+∞ ⎪⎝⎭. 当0a <时,令()0f x '<,得2a x a ->;令()0f x '>,得2a x a -<. ∴()f x 的单调递减区间为2,a a -⎛⎫+∞ ⎪⎝⎭,单调递增区间为2,a a -⎛⎫-∞ ⎪⎝⎭. (2)当0a =时,()f x 在()1,+∞上单调递减,∴()()10f x f <=,不合题意. 当0a <时,()()()()22222222220f a e e a a e e e e =---=--+<,不合题意. 当1a ≥时,()()20xf x ax a e '=-+>,()f x 在()1,+∞上单调递增,∴()()10f x f >=,故1a ≥满足题意.当01a <<时,()f x 在21,a a -⎛⎫ ⎪⎝⎭上单调递减,在2,a a -⎛⎫+∞ ⎪⎝⎭单调递增, ∴()()min 210a f x f f a -⎛⎫=<= ⎪⎝⎭,故01a <<不满足题意. 综上,a 的取值范围为[)1,+∞.点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.。

相关文档
最新文档